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Admin

e Auditting/registration forms:

e Submit them at end of class, pick them up end of next class.
o | need your prereq form before I'll sign registration forms.

@ Website/Piazza:
e https://www.cs.ubc.ca/~schmidtm/Courses/540-W17.

e https://piazza.com/ubc.ca/winterterm22016/cpscb540.

e Tutorials: start this Friday (4:00 in DMP 110).
@ Assignment 1 due January 16.

e 1 late day to hand it in January 18.
o 2 late days to hand it in January 23.

Convex Functions
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Last Time: Loss Plus Regularizer Framework

@ We discussed the typical “minimizing loss plus regularizer” framework,

flw) = ;fi(w) + Ag(w)

;,_/ regularizer
data-fitting term

@ Loss function f; measures how well we fit example 7 with parameters w.

@ Regularizer g measures how complicated the model is with parameters w.

@ Regularization parameter A\ > 0 controls strength of regularization:
e Usually set by using a validation set or with cross-validation.
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Last Time: L2-Regularized Least Squares

@ One of the simplest examples is L2-regularized least squares:
1< A<

_ T, i i\ 2 2

fw) =52 (what =y + 55wl
i= j=

We showed how to write this in matrix and norm notation:

1 A
flw) = Sl Xw —yl* + 5 [|w]|.
2 2
@ We showed how to derive the gradient and minimum of quadratics,

Viw)=XT"Xw— XTy+ I, w*=(XTX+ )1 (XTy).

We showed how to derive the Hessian and that it is positive-definite,

V2f(w)=XTX + X = 0.

Today: a probabilistic perspective on the loss plus regularizer framework.
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Logistic Regression for Binary 4/

@ After squared error, second most common loss function is logistic loss,
“ A
flw) =" log(1 + exp(—y'w"z")) + §lel27
i=1
for binary 3* € {—1,+1} and where we make predictions using 4 =sign(w? 2).

@ This is not a norm, so where does it come from?

@ When X\ = 0, this is derived as a maximum likeilihood estimate (MLE).

@ When X > 0, this is derived as a maximum a posteriori (MAP) estimate.
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Maximum Likelihood Estimation (MLE)

@ MLE in an abstract setting:

We have a dataset D.

We want to pick a model h among a set of models H.

We define the likelihood as the probability mass/density function p(D|h).
We choose the model h* that maximizes the likelihood,

h* € argmax p(D|h).
heH

@ MLE has appealing “consistency” properties as n — oo (take STAT 560/561).

@ In the case of regression, we usually maximize the conditional likelihood,

p(y|X, w),

where we condition on the features X.



MAP Estimation Minimizing Maxes of Linear Functions Convex Functions

Minimizing the Negative Log-Likelihood

@ To maximize the likelihood, usually we minimize the negative log-likelihood,

h* € argmaxp(D|h) = argmin — log p(D|h),
heH heH

@ This yields same solution.

o Logarithm is monotonic: if a > 3 then log(a) > log(3).
e Changing sign flips max to min.

@ See “Max and Argmax” notes on the webpage if the above seems strange.
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Minimizing the Negative Log-Likelihood

@ We use logarithm because it turns multiplication into addition,

log(afB) = log(a) + log(f),

or more generally
n n
log <H ai> = Zlog(ai).
i=1 i=1

o If data is n 11D samples D; then p(D|h) =[]\, p(D;|h), and our MLE is

h* € argmax | | p(D;|h) —argmln— log p(D;|h
g [(0.1) = argnin =3 tsaDi1)
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MLE Interpretation of Logistic Regression

@ For IID regression problems the conditional negative log-likelihood can be written

—log p(y| X, w) = —log <Hp(yilxi,w)> = —> logp(y'[a’, w).
i=1

i=1
@ Logistic regression assumes conditional likelihood using sigmoid function o,
B 1
" l+exp(—a)’

0(x)

p(yi|$i,w)20(yinxi), where  o(a)
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MLE Interpretation of Logistic Regression

For IID regression problems the conditional negative log-likelihood can be written

n
—log p(y| X, w) = —log (Hp y'la, w> == logp(y'|a’, w).
=1

@ Logistic regression assumes conditional likelihood using sigmoid function o,
o , A 1
A i, T, .0
= , where o(a) = ——F—.
ply'la’ ) = oly'w’s") @) = e

Plugging in the sigmoid we get

g 1 i T 4
f<w>=—§1og(l+exp(_yw) Zlog t exp(—yfuTa)),

logistic loss

using log(1) = 0.
Many loss functions are equivalent to negative log-likelihoods.
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Least Squares as Conditional-Gaussian MLE

@ Recall the Gaussian (normal) distribution,

ooy,

2
aju,0") = ———€ex —
p( |:u ) Um p< 202
T .1

@ Least squares is MLE assuming Gaussian conditional likelihood with mean w* x*,

1 ( (le,i _ y’)Q)
i v a—
oV 2T 20
( (wa’ yz)2>
X exp B

p(y|z’, w, 0?) =

20

where for probabilities o means “equal up to a constant not depending on "
@ Another way we'll write this assumption is

Y~ NwTa?, o),

which is read “y’ is generated from a Gaussian with mean w” 2

and variance 02" .
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Least Squares as Conditional-Gaussian MLE

o Least squares is the MLE under our assumption that 3 ~ N (w?z?, 02),

n

w* € argmin Z —log p(y'|w, %)
weR? i=1

n S
. 1 ('LUT:L"L _ yz)2)>
= argmin E —log| ——exp | ——F75——
wgeRd — & <0\/ T < 202

(2

n ) )
. 1 (waz _ yz)2:|
= argmin E —log + .
ng]Rd [ - <0\/ 27T> 202

i=1

@ Notice that constant doesn't depend on w so doesn’t change argmin,

n

: 1 S T, .1 7\2 1 T, .1 2
= argmin —5 w r — = argmin — wr —

least squares

where we note that o > 0 doesn’t change argmin.
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Maximum Likelihood Estimation and Overfitting

@ In our abstract setting with data D the MLE is

h* € argmaxp(D|h).
heH

@ But conceptually MLE is a bit weird:
e “Find the h that makes D have the highest probability given h".

@ And MLE often leads to overfitting:

e Data could be very likely in some very unlikely model from family.
o For example, a complex model overfits by memorizing the data.

@ What we really want:
e “Find the h that is the most likely given the data D"".
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Maximum a Posteriori (MAP) Estimation

Maximum a posteriori (MAP) estimate maximizes the reverse probability,

h* € argmaxp(h|D).
heH

@ This is what we want: the probability of h given our data.

o MLE and MAP are connected by Bayes' rule,
p(D|h)p(h
p(hI) = PPPR) iy oy
N — p(D) N N~
posterior likelihood prior

@ So MAP maximizes the likelihood p(D|h) times the prior p(h):

o Prior is our “belief” that & is correct model before seeing data.
e Prior can reflect that complex models are likely to overfit.
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MAP Estimation and Regularization

@ From Bayes rule the MAP estimate with IID examples D; is

n

h* € argmaxp(h|D) = argmaxH [p(D]h)] p(h).
heH her

@ By again taking the negative logarithm we get

n
h* € argmin Z —log p(D;|h) —logp(h),
he” G~ "
- loss regularizer
so we can view the negative log-prior as a regularizer.
e Many regularizers are equivalent to negative log-priors.
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L2-Regularization and MAP Estimation
@ We obtain L2-regularization under an independent Gaussian assumption,
wj ~N(0,1/X).
@ This implies that

d d
plw) = [ plugh) o [[ exp (—;wf) ~ exp

J=1 J=1

w\y

d
2w}
7j=1

so we have that
A A
~togp(u) = ~logexp (~3ul*) = 3wl
@ So the MAP estimate with 1D training examples would be

A
w* € argmin —log p(y| X, w) — log p(w) = argmin Z —log p(y|z’, w) + = ||wl*.
weRY weRd ;7 2
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MAP Estimation Perspective

@ Many of our loss functions and regularizers have probabilistic interpretations.
e For example, Laplace likelihood leads to absolute error and L1-regularization.

@ Probabilitic interpretation lets us define regression losses in non-standard settings:
o Multi-label .

Multi-class 7.

Ordinal 3.

Count y°.

Survival time 3.
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Outline

© Minimizing Maxes of Linear Functions
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Current Hot Topics in Machine Learning

@ Graph of most common keywords among ICML papers in 2015:

@ Why is there so much focus on deep learning and optimization?

Convex Functions
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Why Study Optimization in CPSC 5407

@ In machine learning, training is typically written as optimization:
o Numerically optimize parameters w of model, given data.

@ There are some exceptions:
© Counting- and distance-based methods (KNN, random forests).
e See CPSC 340.
@ Integration-based methods (Bayesian learning).

o Later in course.

Although you still need to tune parameters in those models.

@ But why study optimization? Can't | just use optimization libraries?
o “\", linprog, quadprog, fminunc, fmincon, CVX, and so.

Convex Functions
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The Effect of Big Data and Big Models

@ Datasets are getting huge, we might want to train on:
e Entire medical image databases.
o Every webpage on the internet.
o Every product on Amazon.
e Every rating on Netflix.
o All flight data in history.
@ With bigger datasets, we can build bigger models:
o Complicated models can address complicated problems.
e Regularized linear models on huge datasets are standard industry tool.
e Deep learning allows us to learn features from huge datasets.

@ But optimization becomes a bottleneck because of time/memory.
o We can't afford O(d?) memory, or an O(d?) operation.
e Going through huge datasets hundreds of times is too slow.
e Evaluating huge models many times may be too slow.
@ Next class we'll start large-scale machine learning.
o But first we'll show how to use some “off the shelf” optimization methods.
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Robust Regression in Matrix Notation

@ Regression with the absolute error as the loss,

n

flw) =" [wa’ .

i=1
@ In CPSC 340 we argued that this is more robust to outliers.
@ We can write this in matrix notation as

f(w) = [| Xw = ylh.

where recall that the L1-norm of a vector r of length n is

n
Il = Iril.
i=1

@ This objective is not quadratic, but can be minimized as a linear program.
e Minimizing a linear function with linear constraints.
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Robust Regression as a Linear Program

L1-norm regression in summation notation,

argmlnz lwl 2t — 4.

wER i=1

@ Re-write absolute value using |o| = max{«a, —a},

argmmZmax{w b — oyt —wlzt}).

@ Introduce n variables r; that upper bound the max functions,
n
: : T, i i i T, i\
argmin ri, with 7 > max{w’ z' —y',y" —w” x'},Vi.
weRd,reR™ ;3
@ This is a linear objective with non-linear constraints.

Note that we have r; = |w” 2! — y| at the solution.
o Otherwise, either the constraints are violated or we could decrese r;.
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Robust Regression as a Linear Program

L1-norm regression in summation notation,

argmlnz |w?T x

’LUERd i=1

Re-write absolute value using |a| = max{«, —a},

argmin Zmax{w b — oyt —wlz'}).

’LUGR i=1

Introduce n variables r; that upper bound the max functions,
n
argmin ZT“ with ;> max{w! z' — y*,y" — w? z'}, Vi.
wG]Rd, reR” i=1

Having r; bound the max is equivalent to r; bounding max arguments.
n
. . T i i i T i\
argmin ry, with 7, >w' ' —¢', rp >y —w 2", Vi
wERd, reR” i=1
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Robust Regression as a Linear Program

@ We've shown that L1-norm regression can be written as a linear program,
n
. ) : , T i _ i .. i T, v
argmin ri, with r; >w z'—vy", r;, >y —w 2", Vi,
wE]Rd, reR™ i=1

or in matrix notation as

argmin 17r,  with > Xw -y, r >y — Xw,
weRd, reR™

where 1 is a vector containinng all ones and inequalities are element-wise.

@ For medium-sized problems, we can solve this with Matlab's /inprog.

Convex Functions
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Minimizing Absolute Values and Maxes

@ A general approach for minimizing absolute values and/or maximums:

@ Introduce maximums over linear functions to replace minimizing absolute values.
@ Introduce new variables that are constrained to bound the maximums.
© Transform to linear constraints by splitting the maximum constraints.

@ For example, we can write minimizing support vector machine (SVM) objective,
n
= 3 max{0,1 -y} + S,

as a quadratic program (quadratic objective with linear constraints).
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Support Vector Machine as a Quadratic Program
@ The SVM optimization problem is
argmin Zmax{o 1 —ylwl2’} 4+ 2 HwH2,
weR4 i=1

@ Introduce new variables to upper-bound the maxes,

argmin Zrl —||w||2 with 7 > max{0,1 — y'w? 2"}, Vi.

weRd,reR™ ;—

@ Split the maxes into separate constraints,

argmin 177 4 —Hw||2 with >0, r > Y Xw,
weRd reR”

where Y is a diagonal matrix with the y* values along the diagonal.
o This means Y X is X with each row scaled by the corresponding *.

Conv

ex Functions
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General Lp-norm Losses

o Consider minimizing the regression loss

fw) = [[Xw =yl

where || - ||, is a general Lp-norm,

1
n p
HﬂpZ(E:MV>-
i=1

@ Recall the three properties of norms:
Q |r|l, =0iffr =0,
Q ||0r]| = 10| - ||r|| for a scalar 6, (absolute homogeneity)
Q |Ir+ull <7l + |Jull, (triangle inequality)
and that these imply norms are non-negative.
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General Lp-norm Losses

e Consider minimizing the regression loss

flw) = [[Xw =yl

where || - ||, is a general Lp-norm,

1
n P
HHMZ(EIMW)-
=1

With p = 2, we can minimize the function using linear algebra.
e By non-negativity, squaring it doesn’t change the argmax.

With p = 1, we can minimize the function using linear programming.
With p = 0o, we can also use linear programming.
For 1 < p < 0o, we can use gradient descent (next lecture).

e It's smooth once raise to the power p.

If we use p < 1 (which is not a norm), minimizing f is NP-hard.
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Convex Functions

@ With p > 1 the problem is convex, while with p < 1 the problem is non-convex.

@ Convexity is usually a good indicator of tractability:
e Minimizing convex functions is usually easy.
e Minimizing non-convex functions is usually hard.

e Existing software (like CVX) minimizes a wide variety of convex functions.

@ To define convex functions, we first need the notion of a convex combination:
e A convex combination of two variables w and v is given by

0w+ (1—6)v forany 0<60<1.

o A convex combination of k variables {wy,ws, ..., w} is given by

k k
Z&ch where ZOC =1,6.>0.
c=1

c=1



MAP Estimation Minimizing Maxes of Linear Functions Convex Functions

Convex Sets

@ The domain of a convex function must be a convex set:
e A set C is convex if convex combinations of points in the set are also in the set.
o ForallweCandv e C we have fw+ (1 —0)v € C for 0 <6 < 1.
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Examples of Simple Convex Sets

Real space R¢.

Positive orthant RY : {w | w > 0}.
Hyper-plane: {w | a”w = b}.
Half-space: {w | a”w < b}.
Norm-ball: {w | [|w]|, < 7}.

Norm-cone {(w,7) | [|w||, < T}
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Examples of Simple Convex Sets

Real space RY.

Positive orthant R% : {w | w > 0}.
Hyper-plane: {w | a’w = b}.
Half-space: {w | aTw < b}.
Norm-ball: {w | ||w]|, < 7}.

Norm-cone {(w,7) | ||w|, < T}
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Examples of Simple Convex Sets

Convex Functions

Real space R%.

Positive orthant RY : {w | w > 0}.
Hyper-plane: {w | a’w = b}.
Half-space: {w | aTw < b}.
Norm-ball: {w | ||w]|, < 7}.

Norm-cone {(w,7) | ||w||, < 7}.
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Examples of Simple Convex Sets

\
L:Z'nﬂrm ”loc.”\

£ rading i
Real space R?. °

Positive orthant R% : {w | w > 0}. C
Hyper-plane: {w | a”w = b}.
Half-space: {w | a”w < b}.
Norm-ball: {w | ||w]|, < 7}.

Norm-cone {(w, 7) | [|w]|, < T}.
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Examples of Simple Convex Sets

Lp=norm “ball"
of rad uS '

Real space R?.
Positive orthant R% : {w | w > 0}. =

Hyper-plane: {w | a”w = b}. /‘\/l.,\‘
Half-space: {w | a”w < b}.
Norm-ball: {w | ||w]|, < 7}.

Norm-cone {(w, 7) | [|w]|, < T}.
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Examples of Simple Convex Sets

T

Real space R%.

Positive orthant RY : {w | w > 0}.

Hyper-plane: {w | a”w = b}. //
Half-space: {w | aTw < b}.

Norm-ball: {w | ||wl||, < 7}.

Norm-cone {(w,7) | ||w|, < T}

® 6 6 o o o
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Showing a Set is Convex from Defintion

@ We can prove convexity of a set from the definition:
o Choose a generic w and v in C, show that generic u between them is in the set.

o Hyper-plane example: C = {w | a”w = b}.
e Ifw e C and v e, then we have a’w = b and aTv = b.
o To show C is convex, we can show that a”u = b for u between w and v.

au=a” (0w + (1 - O)v)

= 0(aw) + (1 — 0)(a™v)
— b+ (1—0)b =1,
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Showing a Set is Convex from Defintion

@ We can prove convexity of a set from the definition:
@ Choose a generic w and v in C, show that generic u between them is in the set.

@ Norm-ball example: C = {w | ||wl|, < 10}.

o If we C and v e, then we have ||w||, <10 and ||v||, < 10.
e To show C is convex, we can show that |ju||, < 10 for u between w and v.

[ullp = [[6w + (1 = O)vll,

< |[ow|l, + ||(1 = O)v]], (triangle inequality)
=10 - ||lwl|lp +[1 =8| |lv]lp (absolute homogeneity)
= Oflwllp + (1 = 0)|vl, 0<<1)

<010+ (1 — )10 = 10.
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Showing a Set is Convex from Intersections

@ The intersection of convex sets is convex.
e Proof is trivial: convex combinations in the intersection are in the intersection.

@ We can prove convexity of a set by showing it's an intersection of convex sets.

o Example: {w|a®w = b, |wl||, < 10} is convex.
e It's the intersection of our two previous examples.
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Showing a Set is Convex from Intersections

@ The intersection of convex sets is convex.
o Proof is trivial: convex combinations in the intersection are in the intersection.

@ We can prove convexity of a set but showing it's an intersection of convex sets.

@ Example: the w satisfying linear constraints form a convex set:
Aw <b
Aeqw = beq
LB <w < UB.
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Convex Functions

@ Two equivalent defintions of aconvex function:

@ Area above the function is a convex set.
@ The function is always below the “chord’” between two points.

flw+ (1—0)v) <0f(w)+ (1—6)f(v), forallweC,veC,0<0<1.

@ Implications: all local minima are global minima.

@ We can globally minimize a convex function by finding any stationary point.
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Examples of Convex Functions

1D quadratic: aw? + bw + ¢, when a > 0.
Linear: a”w + b.

Exponential: exp(aw).

Negative logarithm: — log(w).

Absolute value: |w|.

Max: max;{w;}.

Negative entropy: w logw, for w > 0.
Logistic loss: log(1 + exp(—w)).
Log-sum-exp: log(}_, exp(w)).

Convex Functions
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Differentiable Convex Functions

@ Convex functions must be continuous, and have a domain that is a convex set.
e But they may be non-differentiable.

e For differentiable convex functions, there is third equivalent definiton:
o A differentiable f is convex iff f is always above tangent.

f) > f(w) + Vf(w) (v —w), YweCl,veCl.

e Notice that V f(w) = 0 implies f(v) > f(w) for all v, so w is a global minimizer.
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Twice-Differentiable Convex Functions

@ For twice-differentiable convex functions, there is a fourth equivalent definition:
o A twice-differentiable f is convex iff f is curved upwards everywhere.

e For univariate functions, this means f”(w) > 0 for all w.
e Usually the easiest way to show a twice-differentiable f is convex.

@ For multivariate functions, means the Hessian is positive semi-definite for all w,
V2 f(w) =0,

meaning that v V2 f(w)v > 0 for all w and v.
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Convexity and Least Squares

@ We can use twice-differentiable definition to show convexity of least squares,

1
flw) = 51X =yl

@ Using results from last time we have
n . .
Vif(w)=XTX =) al(a’)”
i=1

@ So we want to show that X7 X > 0 or equivalently that oI XT Xy >0 for all v.
@ We did this last time in matrix notation, let's do it in summation notation:

n n

ol (Zl xl(:vz)T> v = ;UTﬂfi(.fL‘i)TU = Z(UT%) ((I‘Z)T’U) _ Z(UTZJ)Q >0,

i=1 i=1

so least squares is convex and setting V f(w) = 0 gives global minimum.
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Operations that Preserve Convexity

@ There are a few operations that preserve convexity.
e Can show convexity by writing as sequence of convexity-preserving operations.

e If f and g are convex functions, the following preserve convexity:

© Non-negative scaling: hw) = af (w).
Q Sum: h(w) = f(w) + g(w).
© Maximum: h(w) = max{ f(w), g(w)}.

© Composition with affine map:
h(w) = f(Aw + b),

where an affine map w — Aw + b is a multi-input multi-output linear function.

@ But note that composition f(g(w)) is not convex in general.
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Convexity of SVMs

o If f and g are convex functions, the following preserve convexity:
© Non-negative scaling.
Q Sum.
© Maximum.
© Composition with affine map.

@ We can use these to quickly show that SVMs are convex,
n
=> max{0,1 - y'w'a'} + = ku2.

@ Second term has a Hessian of \I so is convex because Al = 0.
o First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.

@ Since both terms are convex, and sums preserve convexity, SVMs are convex.
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Summary

MLE and MAP estimation give probabilistic interpretation to losses/regularizers.
Converting non-smooth problems involving max to constrained smooth problems.
Convex functions are special functions where all stationary points are global
minima.

Showing functions are convex from definitions or convexity-preserving operations.

How do we solve “large-scale” problems?
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Bonus Slide: o< Probability Notation

@ When we write
p(y) o< f(y),
we mean that
p(y) = f(y),
where k is the number need to make p a probability.
o If y is discrete taking values in ),

1
T e )
@ If y is continuous taking values in Y,
B 1
T oW

@ Return to Gaussian MLE.
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