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Last Time: Loss Plus Regularizer Framework

We discussed the typical “minimizing loss plus regularizer” framework,

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

.

Loss function fi measures how well we fit example i with parameters w.

Regularizer g measures how complicated the model is with parameters w.

Regularization parameter λ > 0 controls strength of regularization:

Usually set by using a validation set or with cross-validation.
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Last Time: L2-Regularized Least Squares

One of the simplest examples is L2-regularized least squares:

f(w) =
1

2

n∑
i=1

(wTxi − yi)2 + λ

2

d∑
j=1

w2
j ,

We showed how to write this in matrix and norm notation:

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

We showed how to derive the gradient and minimum of quadratics,

∇f(w) = XTXw −XT y + λw, w∗ = (XTX + λI)−1(XT y).

We showed how to derive the Hessian and that it is positive-definite,

∇2f(w) = XTX + λI � 0.

Today: a probabilistic perspective on the loss plus regularizer framework.
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Logistic Regression for Binary yi

After squared error, second most common loss function is logistic loss,

f(w) =

n∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2,

for binary yi ∈ {−1,+1} and where we make predictions using ŷi =sign(wT x̂i).

This is not a norm, so where does it come from?

When λ = 0, this is derived as a maximum likeilihood estimate (MLE).

When λ > 0, this is derived as a maximum a posteriori (MAP) estimate.
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Maximum Likelihood Estimation (MLE)

MLE in an abstract setting:

We have a dataset D.
We want to pick a model h among a set of models H.
We define the likelihood as the probability mass/density function p(D|h).
We choose the model h∗ that maximizes the likelihood,

h∗ ∈ argmax
h∈H

p(D|h).

MLE has appealing “consistency” properties as n→∞ (take STAT 560/561).

In the case of regression, we usually maximize the conditional likelihood,

p(y|X,w),

where we condition on the features X.
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Minimizing the Negative Log-Likelihood

To maximize the likelihood, usually we minimize the negative log-likelihood,

h∗ ∈ argmax
h∈H

p(D|h) ≡ argmin
h∈H

− log p(D|h),

This yields same solution.

Logarithm is monotonic: if α > β then log(α) > log(β).
Changing sign flips max to min.

See “Max and Argmax” notes on the webpage if the above seems strange.
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Minimizing the Negative Log-Likelihood

We use logarithm because it turns multiplication into addition,

log(αβ) = log(α) + log(β),

or more generally

log

(
n∏

i=1

ai

)
=

n∑
i=1

log(ai).

If data is n IID samples Di then p(D|h) =
∏n

i=1 p(Di|h), and our MLE is

h∗ ∈ argmax
h∈H

n∏
i=1

p(Di|h) ≡ argmin
h∈H

−
n∑

i=1

log p(Di|h).



MAP Estimation Minimizing Maxes of Linear Functions Convex Functions

MLE Interpretation of Logistic Regression

For IID regression problems the conditional negative log-likelihood can be written

− log p(y|X,w) = − log

(
n∏

i=1

p(yi|xi, w)

)
= −

n∑
i=1

log p(yi|xi, w).

Logistic regression assumes conditional likelihood using sigmoid function σ,

p(yi|xi, w) = σ(yiwTxi), where σ(α) =
1

1 + exp(−α)
.
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MLE Interpretation of Logistic Regression

For IID regression problems the conditional negative log-likelihood can be written

− log p(y|X,w) = − log

(
n∏

i=1

p(yi|xi, w)

)
= −

n∑
i=1

log p(yi|xi, w).

Logistic regression assumes conditional likelihood using sigmoid function σ,

p(yi|xi, w) = σ(yiwTxi), where σ(α) =
1

1 + exp(−α)
.

Plugging in the sigmoid we get

f(w) = −
n∑

i=1

log

(
1

1 + exp(−yiwTxi)

)
=

n∑
i=1

log(1 + exp(−yiwTxi))︸ ︷︷ ︸
logistic loss

,

using log(1) = 0.

Many loss functions are equivalent to negative log-likelihoods.
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Least Squares as Conditional-Gaussian MLE

Recall the Gaussian (normal) distribution,

p(α|µ, σ2) = 1

σ
√
2π

exp

(
−(µ− α)2

2σ2

)
.

Least squares is MLE assuming Gaussian conditional likelihood with mean wTxi,

p(yi|xi, w, σ2) = 1

σ
√
2π

exp

(
−(wTxi − yi)2

2σ2

)
∝ exp

(
−(wTxi − yi)2

2σ2

)
,

where for probabilities ∝ means “equal up to a constant not depending on yi”.

Another way we’ll write this assumption is

yi ∼ N (wTxi, σ2),

which is read “yi is generated from a Gaussian with mean wTxi and variance σ2”.
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Least Squares as Conditional-Gaussian MLE
Least squares is the MLE under our assumption that yi ∼ N (wTxi, σ2),

w∗ ∈ argmin
w∈Rd

n∑
i=1

− log p(yi|w, xi)

≡ argmin
w∈Rd

n∑
i=1

− log

(
1

σ
√
2π

exp

(
−(wTxi − yi)2

2σ2

))

≡ argmin
w∈Rd

n∑
i=1

[
− log

(
1

σ
√
2π

)
+

(wTxi − yi)2

2σ2

]
.

Notice that constant doesn’t depend on w so doesn’t change argmin,

≡ argmin
w∈Rd

1

2σ2

n∑
i=1

(wTxi − yi)2 ≡ argmin
w∈Rd

1

2

n∑
i=1

(wTxi − yi)2︸ ︷︷ ︸
least squares

,

where we note that σ > 0 doesn’t change argmin.
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Maximum Likelihood Estimation and Overfitting

In our abstract setting with data D the MLE is

h∗ ∈ argmax
h∈H

p(D|h).

But conceptually MLE is a bit weird:

“Find the h that makes D have the highest probability given h”.

And MLE often leads to overfitting:

Data could be very likely in some very unlikely model from family.
For example, a complex model overfits by memorizing the data.

What we really want:

“Find the h that is the most likely given the data D”’.
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Maximum a Posteriori (MAP) Estimation

Maximum a posteriori (MAP) estimate maximizes the reverse probability,

h∗ ∈ argmax
h∈H

p(h|D).

This is what we want: the probability of h given our data.

MLE and MAP are connected by Bayes’ rule,

p(h|D)︸ ︷︷ ︸
posterior

=
p(D|h)p(h)

p(D)
∝ p(D|h)︸ ︷︷ ︸

likelihood

p(h)︸︷︷︸
prior

.

So MAP maximizes the likelihood p(D|h) times the prior p(h):

Prior is our “belief” that h is correct model before seeing data.
Prior can reflect that complex models are likely to overfit.
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MAP Estimation and Regularization

From Bayes rule the MAP estimate with IID examples Di is

h∗ ∈ argmax
h∈H

p(h|D) ≡ argmax
h∈H

n∏
i=1

[p(D|h)] p(h).

By again taking the negative logarithm we get

h∗ ∈ argmin
h∈H

n∑
i=1

− log p(Di|h)︸ ︷︷ ︸
loss

− log p(h)︸ ︷︷ ︸
regularizer

,

so we can view the negative log-prior as a regularizer.

Many regularizers are equivalent to negative log-priors.
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L2-Regularization and MAP Estimation
We obtain L2-regularization under an independent Gaussian assumption,

wj ∼ N (0, 1/λ).

This implies that

p(w) =

d∏
j=1

p(wj |λ) ∝
d∏

j=1

exp

(
−λ
2
w2
j

)
= exp

−λ
2

d∑
j=1

w2
j

 .

so we have that

− log p(w) = − log exp

(
−λ
2
‖w‖2

)
=
λ

2
‖w‖2.

So the MAP estimate with IID training examples would be

w∗ ∈ argmin
w∈Rd

− log p(y|X,w)− log p(w) ≡ argmin
w∈Rd

n∑
i=1

− log p(yi|xi, w) + λ

2
‖w‖2.
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MAP Estimation Perspective

Many of our loss functions and regularizers have probabilistic interpretations.

For example, Laplace likelihood leads to absolute error and L1-regularization.

Probabilitic interpretation lets us define regression losses in non-standard settings:

Multi-label yi.
Multi-class yi.
Ordinal yi.
Count yi.
Survival time yi.
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Outline

1 MAP Estimation

2 Minimizing Maxes of Linear Functions

3 Convex Functions
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Current Hot Topics in Machine Learning

Graph of most common keywords among ICML papers in 2015:

Why is there so much focus on deep learning and optimization?
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Why Study Optimization in CPSC 540?

In machine learning, training is typically written as optimization:

Numerically optimize parameters w of model, given data.

There are some exceptions:
1 Counting- and distance-based methods (KNN, random forests).

See CPSC 340.

2 Integration-based methods (Bayesian learning).

Later in course.

Although you still need to tune parameters in those models.

But why study optimization? Can’t I just use optimization libraries?

“\”, linprog, quadprog, fminunc, fmincon, CVX, and so.
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The Effect of Big Data and Big Models
Datasets are getting huge, we might want to train on:

Entire medical image databases.
Every webpage on the internet.
Every product on Amazon.
Every rating on Netflix.
All flight data in history.

With bigger datasets, we can build bigger models:
Complicated models can address complicated problems.
Regularized linear models on huge datasets are standard industry tool.
Deep learning allows us to learn features from huge datasets.

But optimization becomes a bottleneck because of time/memory.
We can’t afford O(d2) memory, or an O(d2) operation.
Going through huge datasets hundreds of times is too slow.
Evaluating huge models many times may be too slow.

Next class we’ll start large-scale machine learning.
But first we’ll show how to use some “off the shelf” optimization methods.
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Robust Regression in Matrix Notation

Regression with the absolute error as the loss,

f(w) =

n∑
i=1

|wTxi − yi|.

In CPSC 340 we argued that this is more robust to outliers.

We can write this in matrix notation as

f(w) = ‖Xw − y‖1.

where recall that the L1-norm of a vector r of length n is

‖r‖1 =
n∑

i=1

|ri|.

This objective is not quadratic, but can be minimized as a linear program.
Minimizing a linear function with linear constraints.
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Robust Regression as a Linear Program

L1-norm regression in summation notation,

argmin
w∈Rd

n∑
i=1

|wTxi − yi|.

Re-write absolute value using |α| = max{α,−α},

argmin
w∈Rd

n∑
i=1

max{wTxi − yi, yi − wTxi}.

Introduce n variables ri that upper bound the max functions,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri, with ri ≥ max{wTxi − yi, yi − wTxi},∀i.

This is a linear objective with non-linear constraints.
Note that we have ri = |wTxi − yi| at the solution.

Otherwise, either the constraints are violated or we could decrese ri.
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Robust Regression as a Linear Program
L1-norm regression in summation notation,

argmin
w∈Rd

n∑
i=1

|wTxi − yi|.

Re-write absolute value using |α| = max{α,−α},

argmin
w∈Rd

n∑
i=1

max{wTxi − yi, yi − wTxi}.

Introduce n variables ri that upper bound the max functions,

argmin
w∈Rd, r∈Rn

n∑
i=1

ri, with ri ≥ max{wTxi − yi, yi − wTxi},∀i.

Having ri bound the max is equivalent to ri bounding max arguments.

argmin
w∈Rd, r∈Rn

n∑
i=1

ri, with ri ≥ wTxi − yi, ri ≥ yi − wTxi,∀i.
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Robust Regression as a Linear Program

We’ve shown that L1-norm regression can be written as a linear program,

argmin
w∈Rd, r∈Rn

n∑
i=1

ri, with ri ≥ wTxi − yi, ri ≥ yi − wTxi,∀i,

or in matrix notation as

argmin
w∈Rd, r∈Rn

1T r, with r ≥ Xw − y, r ≥ y −Xw,

where 1 is a vector containinng all ones and inequalities are element-wise.

For medium-sized problems, we can solve this with Matlab’s linprog.
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Minimizing Absolute Values and Maxes

A general approach for minimizing absolute values and/or maximums:
1 Introduce maximums over linear functions to replace minimizing absolute values.
2 Introduce new variables that are constrained to bound the maximums.
3 Transform to linear constraints by splitting the maximum constraints.

For example, we can write minimizing support vector machine (SVM) objective,

f(w) =

n∑
i=1

max{0, 1− yiwTxi}+ λ

2
‖w‖2,

as a quadratic program (quadratic objective with linear constraints).
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Support Vector Machine as a Quadratic Program

The SVM optimization problem is

argmin
w∈Rd

n∑
i=1

max{0, 1− yiwTxi}+ λ

2
‖w‖2,

Introduce new variables to upper-bound the maxes,

argmin
w∈Rd,r∈Rn

n∑
i=1

ri +
λ

2
‖w‖2, with r ≥ max{0, 1− yiwTxi}, ∀i.

Split the maxes into separate constraints,

argmin
w∈Rd,r∈Rn

1T r +
λ

2
‖w‖2, with r ≥ 0, r ≥ Y Xw,

where Y is a diagonal matrix with the yi values along the diagonal.
This means Y X is X with each row scaled by the corresponding yi.
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General Lp-norm Losses

Consider minimizing the regression loss

f(w) = ‖Xw − y‖p,

where ‖ · ‖p is a general Lp-norm,

‖r‖p =

(
n∑

i=1

|ri|p
) 1

p

.

Recall the three properties of norms:
1 ‖r‖p = 0 iff r = 0,
2 ‖θr‖ = |θ| · ‖r‖ for a scalar θ, (absolute homogeneity)
3 ‖r + u‖ ≤ ‖r‖+ ‖u‖, (triangle inequality)

and that these imply norms are non-negative.
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General Lp-norm Losses

Consider minimizing the regression loss

f(w) = ‖Xw − y‖p,

where ‖ · ‖p is a general Lp-norm,

‖r‖p =

(
n∑

i=1

|ri|p
) 1

p

.

With p = 2, we can minimize the function using linear algebra.
By non-negativity, squaring it doesn’t change the argmax.

With p = 1, we can minimize the function using linear programming.

With p =∞, we can also use linear programming.
For 1 < p <∞, we can use gradient descent (next lecture).

It’s smooth once raise to the power p.

If we use p < 1 (which is not a norm), minimizing f is NP-hard.
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Convex Functions

With p ≥ 1 the problem is convex, while with p < 1 the problem is non-convex.

Convexity is usually a good indicator of tractability:
Minimizing convex functions is usually easy.
Minimizing non-convex functions is usually hard.

Existing software (like CVX) minimizes a wide variety of convex functions.

To define convex functions, we first need the notion of a convex combination:
A convex combination of two variables w and v is given by

θw + (1− θ)v for any 0 ≤ θ ≤ 1.

A convex combination of k variables {w1, w2, . . . , wk} is given by

k∑
c=1

θcwc where
k∑

c=1

θc = 1, θc ≥ 0.
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Convex Sets

The domain of a convex function must be a convex set:
A set C is convex if convex combinations of points in the set are also in the set.

For all w ∈ C and v ∈ C we have θw + (1− θ)v ∈ C for 0 ≤ θ ≤ 1.
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Examples of Simple Convex Sets

Real space Rd.

Positive orthant Rd
+ : {w | w ≥ 0}.

Hyper-plane: {w | aTw = b}.
Half-space: {w | aTw ≤ b}.
Norm-ball: {w | ‖w‖p ≤ τ}.
Norm-cone {(w, τ) | ‖w‖p ≤ τ}.
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Examples of Simple Convex Sets

Real space Rd.

Positive orthant Rd
+ : {w | w ≥ 0}.

Hyper-plane: {w | aTw = b}.
Half-space: {w | aTw ≤ b}.
Norm-ball: {w | ‖w‖p ≤ τ}.
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Showing a Set is Convex from Defintion

We can prove convexity of a set from the definition:

Choose a generic w and v in C, show that generic u between them is in the set.

Hyper-plane example: C = {w | aTw = b}.
If w ∈ C and v ∈ C, then we have aTw = b and aT v = b.
To show C is convex, we can show that aTu = b for u between w and v.

aTu = aT (θw + (1− θ)v)
= θ(aTw) + (1− θ)(aT v)
= θb+ (1− θ)b = b.
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Showing a Set is Convex from Defintion

We can prove convexity of a set from the definition:

Choose a generic w and v in C, show that generic u between them is in the set.

Norm-ball example: C = {w | ‖w‖p ≤ 10}.
If w ∈ C and v ∈ C, then we have ‖w‖p ≤ 10 and ‖v‖p ≤ 10.
To show C is convex, we can show that ‖u‖p ≤ 10 for u between w and v.

‖u‖p = ‖θw + (1− θ)v‖p
≤ ‖θw‖p + ‖(1− θ)v‖p (triangle inequality)

= |θ| · ‖w‖p + |1− θ| · ‖v‖p (absolute homogeneity)

= θ‖w‖p + (1− θ)‖v‖p (0 ≤ θ ≤ 1)

≤ θ10 + (1− θ)10 = 10.
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Showing a Set is Convex from Intersections

The intersection of convex sets is convex.

Proof is trivial: convex combinations in the intersection are in the intersection.

We can prove convexity of a set by showing it’s an intersection of convex sets.

Example: {w|aTw = b, ‖w‖p ≤ 10} is convex.

It’s the intersection of our two previous examples.
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Showing a Set is Convex from Intersections
The intersection of convex sets is convex.

Proof is trivial: convex combinations in the intersection are in the intersection.

We can prove convexity of a set but showing it’s an intersection of convex sets.

Example: the w satisfying linear constraints form a convex set:

Aw ≤ b
Aeqw = beq

LB ≤w ≤ UB.
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Convex Functions

Two equivalent defintions of aconvex function:
1 Area above the function is a convex set.
2 The function is always below the “chord’’ between two points.

f(θw + (1− θ)v) ≤ θf(w) + (1− θ)f(v), for all w ∈ C, v ∈ C, 0 ≤ θ ≤ 1.

Implications: all local minima are global minima.

We can globally minimize a convex function by finding any stationary point.
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Examples of Convex Functions

1D quadratic: aw2 + bw + c, when a > 0.

Linear: aTw + b.

Exponential: exp(aw).

Negative logarithm: − log(w).

Absolute value: |w|.
Max: maxi{wi}.
Negative entropy: w logw, for w > 0.

Logistic loss: log(1 + exp(−w)).
Log-sum-exp: log(

∑
i exp(w)).
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Differentiable Convex Functions

Convex functions must be continuous, and have a domain that is a convex set.
But they may be non-differentiable.

For differentiable convex functions, there is third equivalent definiton:
A differentiable f is convex iff f is always above tangent.

f(v) ≥ f(w) +∇f(w)T (v − w), ∀w ∈ C, v ∈ C.

Notice that ∇f(w) = 0 implies f(v) ≥ f(w) for all v, so w is a global minimizer.
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Twice-Differentiable Convex Functions

For twice-differentiable convex functions, there is a fourth equivalent definition:

A twice-differentiable f is convex iff f is curved upwards everywhere.

For univariate functions, this means f ′′(w) ≥ 0 for all w.

Usually the easiest way to show a twice-differentiable f is convex.

For multivariate functions, means the Hessian is positive semi-definite for all w,

∇2f(w) � 0,

meaning that vT∇2f(w)v ≥ 0 for all w and v.
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Convexity and Least Squares

We can use twice-differentiable definition to show convexity of least squares,

f(w) =
1

2
‖Xw − y‖2.

Using results from last time we have

∇2f(w) = XTX =

n∑
i=1

xi(xi)T

So we want to show that XTX � 0 or equivalently that vTXTXv ≥ 0 for all v.

We did this last time in matrix notation, let’s do it in summation notation:

vT

(
n∑

i=1

xi(xi)T

)
v =

n∑
i=1

vTxi(xi)
T v =

n∑
i=1

(vTxi)
(
(xi)

T v
)
=

n∑
i=1

(vTxi)2 ≥ 0,

so least squares is convex and setting ∇f(w) = 0 gives global minimum.
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Operations that Preserve Convexity

There are a few operations that preserve convexity.

Can show convexity by writing as sequence of convexity-preserving operations.

If f and g are convex functions, the following preserve convexity:
1 Non-negative scaling: h(w) = αf(w).

2 Sum: h(w) = f(w) + g(w).

3 Maximum: h(w) = max{f(w), g(w)}.
4 Composition with affine map:

h(w) = f(Aw + b),

where an affine map w 7→ Aw + b is a multi-input multi-output linear function.

But note that composition f(g(w)) is not convex in general.
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Convexity of SVMs

If f and g are convex functions, the following preserve convexity:
1 Non-negative scaling.
2 Sum.
3 Maximum.
4 Composition with affine map.

We can use these to quickly show that SVMs are convex,

f(w) =

n∑
i=1

max{0, 1− yiwTxi}+ λ

2
‖w‖2.

Second term has a Hessian of λI so is convex because λI � 0.

First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.

Since both terms are convex, and sums preserve convexity, SVMs are convex.
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Summary

MLE and MAP estimation give probabilistic interpretation to losses/regularizers.

Converting non-smooth problems involving max to constrained smooth problems.

Convex functions are special functions where all stationary points are global
minima.

Showing functions are convex from definitions or convexity-preserving operations.

How do we solve “large-scale” problems?
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Bonus Slide: ∝ Probability Notation

When we write
p(y) ∝ f(y),

we mean that
p(y) = κf(y),

where κ is the number need to make p a probability.

If y is discrete taking values in Y,

κ =
1∑

y∈Y f(y)
.

If y is continuous taking values in Y,

κ =
1∫

y∈Y f(y)
.

Return to Gaussian MLE.
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