CPSC 540: Machine Learning
Hidden Markov Models, Boltzmann Machines

Mark Schmidt
University of British Columbia

Winter 2017
Admin

- **Assignment 4:**
 - Due Monday.

- Interested in TAing CPSC 340 in the summer?
 - Contact Mike Gelbart.

- **Suggestions from unofficial course evals:**
 - Split into 2 courses.
 - Post lecture slides without transitions.
 - Supplementary documents/notes/book.
 - Extra office hours on Tuesdays at 2:30.
Last Time: Approximate Inference

- We’ve been discussing **graphical models** for density estimation,

\[
p(x_1, x_2, \ldots, x_d) = \prod_{j=1}^{d} p(x_j | x_{\text{pa}(j)}), \quad p(x_1, x_2, \ldots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),
\]

where are natural and widely-used models for many phenomena.
 - These will also be among ingredients of more advanced models we’ll see later.

- But typical calculations involving graphical models are typically **NP-hard**.
 - We can convert to DAGs to UGMs, so we’ll just study UGMs.

- We considered **approximate inference** in discrete UGMs:
 1. **Iterated conditional mode** (ICM) algorithm for approximate decoding.
 2. **Gibbs sampling** MCMC algorithm for approximate sampling.
 3. **Mean-field** variational method for approximate marginals.
Pseudo-Code for ICM

- ICM is a coordinate-wise method for approximate decoding:
 - Choose a coordinate i to update.
 - Maximize x_i keeping other variables fixed.

- Consider a pairwise UGM:

 $$p(x_1, x_2, \ldots, x_d) \propto \left(\prod_{i=1}^{d} \phi_i(x_i) \right) \left(\prod_{(i,j) \in E} \phi_{ij}(x_i, x_j) \right),$$

 and consider updating a node i that only has 2 neighbours (j and k):
 1. Compute $M_i(x_i) = \phi_i(x_i)\phi_{ij}(x_i, x_j)\phi_{ik}(x_i, x_k)$ for all x_i.
 2. Set x_i to the largest value of $M_i(x_i)$.

Pseudo-Code for Gibbs Sampling

- **Gibbs sampling** is a coordinate-wise method for approximate sampling:
 - Choose a coordinate i to update.
 - Sample x_i keeping other variables fixed.

- Consider a pairwise UGM:

 \[
 p(x_1, x_2, \ldots, x_d) \propto \left(\prod_{i=1}^{d} \phi_i(x_i) \right) \left(\prod_{(i,j) \in E} \phi_{ij}(x_i, x_j) \right),
 \]

 and consider updating a node i that only has 2 neighbours (j and k):

 1. Compute $M_i(x_i) = \phi_i(x_i) \phi_{ij}(x_i, x_j) \phi_{ik}(x_i, x_k)$ for all x_i.
 2. Sample x_i proportional to $M_i(x_i)$.
Pseudo-Code for Mean Field

- **Mean field** is a coordinate-wise method for approximate **marginals**:
 - Choose a coordinate \(i \) to update.
 - Update \(q_i(x_i) \) keeping other variables fixed (\(q_i(x_i) \) approximates \(p_i(x_i) \)).

- Consider a **pairwise UGM**:

\[
p(x_1, x_2, \ldots, x_d) \propto \left(\prod_{i=1}^{d} \phi_i(x_i) \right) \left(\prod_{(i,j) \in E} \phi_{ij}(x_i, x_j) \right),
\]

and consider updating a node \(i \) that only has 2 neighbours (\(j \) and \(k \)):

1. Compute \(M_i(x_i) = \exp \left(\sum_{x_j} q_j(x_j) \log \phi_{ij}(x_i, x_j) + \sum_{x_k} q_k(x_k) \log \phi_{ik}(x_i, x_k) \right) \).
2. Set \(q_i(x_i) \) proportional to \(\phi_i(x_i) M_i(x_i) \).
Last Time: Belief Propagation

- We discussed belief propagation for forest-structured UGMs.
 (undirected graphs with no loops, which must be pairwise)
- Belief propagation is a message-passing algorithm with a specific message order.
 - “Forward pass” away from root, and “backward” pass from leaves to root.
Last Time: Belief Propagation

- Belief propagation “messages” have the form:

\[M_{ic}(x_c) \propto \sum_{x_i} \phi_i(x_i) \phi_{ic}(x_i, x_c) M_{ji}(x_i) M_{ki}(x_i), \]

when we’re sending to “child” \(c \) after receiving messages from “parents” \(j \) and \(k \).

- We obtain the “forward” and “backward” Markov chain messages with 1 parent.

- Univariate marginals are proportional to \(\phi_i(x_i) \) times all “incoming” messages.

- Replace \(\sum_{x_i} \) with \(\max_{x_i} \) for decoding.
 - “Sum-product” and “max-product” algorithms.
Loopy Belief Propagation

- Belief propagation “messages” have the form:

\[M_{ic}(x_c) \propto \sum_{x_i} \phi_i(x_i) \phi_{ic}(x_i, x_c) M_{ji}(x_i) M_{ki}(x_i), \]

when we’re sending to “child” \(c \) after receiving messages from “parents” \(j \) and \(k \).

- A “hacker” approach to approximate marginals (loopy belief propagation):
 - Choose an edge \(ic \) to update.
 - Update messages \(M_{ic}(x_c) \) keeping all other messages fixed.
 - Repeat until “convergence”.

- Empirically much better than mean field, we’ve spent 20 years figuring out why.
Discussion of Loopy Belief Propagation

- Loopy BP locally minimizes KL, but isn’t optimizing an objective.
 - Convergence of loopy BP is hard to characterize: does not converge in general.

- Mean-field optimizes “Gibbs mean-field free energy”: a lower bound on Z.
- If it converges loopy BP finds fixed point of “Bethe free energy”:
 - Not a bound but a better approximation than mean-field.

- Recent works give convex variants that upper bound Z.
 - Tree-reweighted belief propagation.

- Only has closed-form update for Gaussian/discrete UGMs.
 - Can approximate non-Gaussian/discrete models using expectation propagation.

- For details on the above, see
 people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
Outline

1. Block Approximate Inference
2. Hidden Markov Models
3. Boltzmann Machines
Closure of UGMs under Conditioning

- UGMs are closed under conditioning:
 - If $p(x)$ is a UGM, then $p(x_A|x_B)$ can be written as a UGM (for partition A and B).

Consider a 4-node chain-structured UGM, $(x_1) - (x_2) - (x_3) - (x_4)$,

$$p(x_1, x_2, x_3, x_4) = \frac{1}{Z} \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4).$$

Conditioning on x_2 and x_3 gives UGM over x_1 and x_4 (tedious: bonus slide)

$$p(x_1, x_4|x_2, x_3) = \frac{1}{Z'} \phi'_1(x_1) \phi'_4(x_4),$$

where new potentials “absorb” the shared potentials with observed nodes:

$$\phi'_1(x_1) = \phi_1(x_1) \phi_{12}(x_1, x_2), \quad \phi'_4(x_4) = \phi_4(x_4) \phi_{34}(x_3, x_4).$$
Closure of UGMs under Conditioning

- Conditioning on x_2 and x_3 in a chain,

 Graphically, we “erase the black nodes and their edges”.

- Notice that inference in the conditional UGM may be much easier.
Inference in Conditional UGM

- Consider the following graph which could describe bus stops:

- If we condition on the “hubs”, the graph forms a forest (and inference is easy).
Basic approximate inference methods like ICM and Gibb sampling:
- Update one x_j at a time.
- Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:
- Update a set of x_j at once.
- Efficient if conditional UGM allows exact inference.

A common choice is tree-structured blocks.
Block-Structured Approximate Inference

- Dividing a lattice into two tree-structured blocks:

- We can maximize/sample blue pixels given red pixels, and vice versa.
- We could also consider random tree-structured sub-graphs.
Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:
Discussion of Advanced Inference Methods

- Block versions of basic methods:
 - Block ICM.
 - Block Gibbs sampling.
 - Structured mean field (disjoint blocks).
 - Generalized belief propagation (disjoint blocks).

- We can do exact decoding in binary pairwise UGMs with “attractive potentials”,
 \[\log \phi_{ij}(1, 1) + \log \phi_{ij}(2, 2) \geq \log \phi_{ij}(1, 2) + \log \phi_{ij}(2, 1), \]
 as a graph cut problem (very widely-used in computer vision).

 - Alpha-beta swaps and alpha-expansions do block updates with this operation.
 - Analogous sampling method is Swendson-Wang.

- The final class of approximate inference methods are convex relaxations:
 - Formulate decoding or inference as an integer linear program.
 - Approximate this with a linear program or semi-definite program.
Outline

1. Block Approximate Inference
2. Hidden Markov Models
3. Boltzmann Machines
Where we are where we’re going...

- Last n lectures: four topics related to density estimation:
 1. **Mixture models** can model clusters in the data.
 2. **Latent-factor models** consider interacting hidden factors in the data.
 3. **Graphical models** can model direct dependencies between variables.
 4. **Approximate inference** is needed when probabilities are too complicated.

- Each has many applications, but they’re limited/boring on their own.

- But by **combining them we get very powerful** models.
 - Next time we’ll start combining them with supervised learning tricks from 340.
We previously considered the “Vancouver Rain” data:

We said that a **homogeneous Markov chain** is a good model:
- Captures direct dependency between adjacent days.
Back to the Rain Data

- But doesn’t it rain less in the summer?

- There are hidden clusters in the data not captured by the Markov chain.
 - But mixture of independent models are inefficient at representing direct dependency.

- We can capture direct dependence and clusters with mixture of Markov chains:

![A graphical representation of the mixture of Markov chains model.]

- Cluster \(z \) chooses which homogeneous Markov chain parameters to use.
 - We could learn that we're more likely to have rain in winter.
 - Graph has treewidth of 2: exact inference and EM will be cheap.
Back to the Rain Data

- The rain data is artificially divided into months.

- Consider viewing rain data as one very long sequence \(n = 1 \).

- This doesn’t affect homogeneous Markov chain because of parameter tieing.

- But a mixture doesn’t make sense when \(n = 1 \).

- One way to address this:
 - Let each day have its own cluster.
 - Have a Markov dependency between cluster values of adjacent days.
Hidden Markov Models

- **Hidden Markov models** have each x_j depend on hidden Markov chain.

 ![Diagram](image)

 - For the rain data, cluster z_j could be “rainy season” or “dry season”.
 - Each x_j is spit out based on z_j, the value of our cluster at time j.
 - We model probability staying in same z_j or transitioning to another.

- Inference is easy in this model: it’s a tree.
- Learning with EM is also easy due to chain-structured z_j dependence:
 - Convert to UGM, conditioning on x_j gives a chain, run forward-backward.
Hidden Markov Models

- Hidden Markov models have each x_j depend on hidden Markov chain.

Note that the x_j can be continuous even with discrete clusters z_j.

- If the z_j are continuous it’s often called a state-space model.
 - If everything is Gaussian, it leads to Kalman filtering.
 - Keywords for non-Gaussian: unscented Kalman filter and particle filter.

- Variants of HMMs are probably the most-used time-series model...
Applications of HMMs and Kalman Filters

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).

Applications include:

- Single Molecule Kinetic analysis
- Cryptanalysis
- Speech recognition
- Speech synthesis
- Part-of-speech tagging
- Document Separation in scanning solutions
- Machine translation
- Partial discharge
- Gene prediction
- Alignment of bio-sequences
- Time Series Analysis
- Activity recognition
- Protein folding
- Metamorphic Virus Detection
- DNA Motif Discovery

Applications:

- Attitude and Heading Reference Systems
- Autopilot
- Battery state of charge (SoC) estimation
- Brain-computer interface
- Chaotic signals
- Tracking and Vertex Fitting of charged particles in Particle Detectors
- Tracking of objects in computer vision
- Dynamic positioning
- Economics, in particular macroeconomics, time series analysis, and econometrics
- Inertial guidance system
- Orbit Determination
- Power system state estimation
- Radar tracker
- Satellite navigation systems
- Seismology
- Sensorless control of AC motor variable-frequency drives
- Simultaneous localization and mapping
- Speech enhancement
- Visual odometry
- Weather forecasting
- Navigation system
- 3D modeling
- Structural health monitoring
- Human sensorimotor processing
Who is Guarding Who?

- There is a lot of data on offense of NBA basketball players.
 - Every point and assist is recorded, more scoring gives more wins and $$$.

- But how do we measure defense?
 - We need to know who each player is guarding.

- HMMs can be used to model who is guarding who over time.
 - https://www.youtube.com/watch?v=JvNkZdZJBt4
Outline

1. Block Approximate Inference
2. Hidden Markov Models
3. Boltzmann Machines
In 340 we discussed **supervised deep learning**.
 - And **autoencoders** as a form of unsupervised learning.

Does it make sense to talk about **deep density estimation**?

Standard argument:
 - Human learning seems to be mostly unsupervised.
 - Could we learn unsupervised models with much less data?

 - One of first non-convolutional deep networks that people got working.
Cool Pictures Motivation for Deep Learning

- First layer of z_i trained on 10 by 10 image patches:

- Visualization of second and third layers trained on specific objects:
 - faces
 - cars
 - elephants
 - chairs
 - faces, cars, airplanes, motorbikes

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
Recall the mixture of independent models:

\[
p(x) = \sum_{c=1}^{k} p(z = c) \prod_{j=1}^{d} p(x_j | z = c).
\]

Given \(z \), each variable \(x_j \) comes from some “nice” distribution.

This is enough to model any distribution.

- Just need to know cluster of \(x \) and distribution of \(x_j \) given \(z \).
- But not efficient representation: number of cluster might be huge.
Consider the following model with binary z_1 and z_2:

Have we gained anything?

- We have 4 clusters based on two hidden variables.
- Each cluster shares a parent/part with 2 of the other clusters.
Consider the following model:

- Now we have 16 clusters, in general we’ll have 2^k with k hidden nodes.
 - The discrete latent-factors give combinatorial number of mixtures.
 - We’ll assume $p(x_j|z_1, z_2, z_3, z_4)$ is a linear model (Gaussian, logistic, etc.).
 - Distributed representation where x is made of parts z.
 - With d visible x_j and k hidden z_j, we only have dk parameters.
Deep Belief Networks

- Deep belief networks add more binary hidden layers:

- Data is at the bottom.
- First hidden layer could be “basic ingredients”.
- Second hidden layer could be general “parts”.
- Third hidden layer could be “abstract concept”.
Deep Belief Networks

- **Deep belief networks** add more binary hidden layers:

 ![Deep Belief Network Diagram]

- If we were conditioning on *top* layer:
 - Sampling would be easy.
- But we’re conditioning on the *bottom* layer:
 - Everything is hard.
 - There is combinatorial “explaining away”.
- Common training method:
 - Greedy “layerwise” training as a restricted Boltzmann machine.
Boltzmann Machines

- Boltzmann machines are UGMs with binary latent variables:

- Yet another latent-variable model for density estimation.
 - Hidden variables again give a combinatorial latent representation.
 - Hard to do anything in this model, even if you know all the z.

By restricting graph structure, some things get easier:

- **Restricted Boltzmann machines (RBMs):** edges only between the x_j and z_c.

Given visible x, inference on z is easy:
- E.g., block Gibbs sampling is just sampling each z_c independently.

Given hidden z, inference on x is easy:
- E.g., block Gibbs sampling is just sampling each x_j independently.

Standard training method:
- Use block Gibbs sampling to approximate gradient (next time).
Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM.
Greedy Layerwise Training of Stacked RBMs

- Step 1: Train an RBM.
- Step 2:
 - Fix first hidden layer values.
 - Train an RBM.
Greedy Layerwise Training of Stacked RBMs

- **Step 1:** Train an RBM.
- **Step 2:**
 - Fix first hidden layer values.
 - Train an RBM.
- **Step 3:**
 - Fix second hidden layer values.
 - Train an RBM.
Deep Belief Networks

- Keep top as an RBM.
- For the other layers, use DAG parameters that implement block sampling.
 - Can sample by running block Gibbs on top layer for a while, then ancestral sampling.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
Deep Belief Networks

- Can add a class label to last layer.

- Can use “fine-tuning” as a feedforward neural network to refined weights.
 - https://www.youtube.com/watch?v=KuPai0ogiHk
Deep Boltzmann Machines

- **Deep Boltzmann machines** just keep as an undirected model.
 - Sampling is nicer: no explaining away within layers.
 - Variables in layer are independent given variables in layer above and below.
Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

Figure 5: **Left:** The architecture of deep Boltzmann machine used for NORB. **Right:** Random samples from the training set, and samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Summary

- **Loopy belief propagation** is a heuristic for estimating marginals.
- **Conditioning in UGMs** leads to a smaller/simpler UGM.
- **Block approximate inference** works better than single-variable methods.
- **Hidden Markov models** model time-series with latent factors.
- **Boltzmann machines** are UGMs with binary hidden variables.
 - Restricted Boltzmann machines only allow connections between hidden/visible.
- **Deep belief networks and Boltzmann machines** have layers of hidden variables.

- Next time: we’ll use these tools for supervised learning.
Bonus Slide: Conditioning in UGMs

- Conditioning on x_2 and x_3 in 4-node chain-UGM gives

$$p(x_1, x_4 | x_2, x_3) = \frac{p(x_1, x_2, x_3, x_4)}{p(x_2, x_3)}$$

$$= \frac{\frac{1}{Z} \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \phi_4(x_4) \phi_1(x_1, x_2) \phi_2(x_2, x_3) \phi_3(x_3, x_4)}{\sum_{x'_1, x'_4} \frac{1}{Z} \phi_1(x'_1) \phi_2(x'_2) \phi_3(x'_3) \phi_4(x'_4) \phi_1(x'_1, x'_2) \phi_2(x'_2, x'_3) \phi_3(x'_3, x'_4)}$$

$$= \frac{\frac{1}{Z} \phi_1(x_1) \phi_2(x_2) \phi_3(x_3) \phi_4(x_4) \phi_1(x_1, x_2) \phi_2(x_2, x_3) \phi_3(x_3, x_4)}{\frac{1}{Z} \phi_2(x_2) \phi_3(x_3) \phi_2(x_2, x_3) \sum_{x'_1, x'_4} \phi_1(x'_1) \phi_4(x'_4) \phi_1(x'_1, x'_2) \phi_3(x_3, x'_4)}$$

$$= \frac{\phi_1(x_1) \phi_4(x_4) \phi_1(x_1, x_2) \phi_3(x_3, x_4)}{\sum_{x'_1, x'_4} \phi_1(x'_1) \phi_4(x'_4) \phi_1(x'_1, x'_2) \phi_3(x_3, x'_4)}$$

$$= \frac{\phi'_1(x_1) \phi'_4(x_4)}{\sum_{x'_1, x'_4} \phi'_1(x'_1) \phi'_4(x'_4)}$$
Bonus Slide: Other Graphical Models

- Factor graphs: we use a square between variables that appear in same factor.
 - Can distinguish between a 3-way factor and 3 pairwise factors.
- Chain-graphs: DAGs where each block can be a UGM.
- Ancestral-graph:
 - Generalization of DAGs that is closed under conditioning.
- Structural equation models: generalization of DAGs that allows cycles.