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Last Two Lectures: Directed and Undirected Graphical Models

We’ve discussed the most common classes of graphical models:

DAG models represent probability as ordered product of conditionals,

p(x) =

d∏
j=1

p(xj |xpa(j)),

and are also known as “Bayesian networks” and “belief networks”.

UGMs represent probability as product of non-negative potentials φc,

p(x) =
1

Z

∏
c∈C

φc(xc), with Z =
∑
x

∏
c∈C

φc(xc),

and are also known as “Markov random fields” and ”Markov networks”.

We saw how to write Gaussians as special cases, today we focus on discrete xj .
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Last Time: Conditional Independence in UGMs

In UGMs, conditional independence is determined by reachability.

A ⊥ B | C if all paths from A to B are blocked by C.

The independence assumptions in DAGs were defined by

p(xj |x1:j−1) = p(xj |xpa(j)),

that we’re independent of previous non-parents given parents.

In UGMs there is no order and we instead have a local Markov property,

p(xj |x1:d) = p(xj |xnei(j)),

that we’re independent of all non-neighbours given neighbours in the graph.
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Markov Blanket

Markov blanket is the set nodes that make you independent of all other nodes.

In UGMs the Markov blanket is the neighbours.

Markov blanket in DAGs is all parents, children, and co-parents:
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Inference in Discrete Graphical Models

Common inference tasks in graphical models:
1 Compute p(x) for an assignment to the variables x.
2 Generate a sample x from the distribution.
3 Compute univariate marginals p(xj).
4 Compute decoding argmaxx p(x).
5 Compute univariate conditional p(xj |xj′).

All of the above are easy in tree-structured graphs.

For DAGs, a tree-structured has at most one parent.
For UGMs, a tree-structured graph has no cycles.

The above may be harder for general graphs:

In DAGs the first two are easy, the others are NP-hard.
In UGMs all of these are NP-hard.
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Moralization: Converting DAGs to UGMs

To address the NP-hard problems, DAGs and UGMs use same techniques.

We’ll focus on UGMs, but we can convert DAGs to UGMs:

p(x) =

d∏
j=1

p(xj |xpa(j)) =
d∏

j=1

φj(xj , xpa(j)).

Graphically: we drop directions and “marry” parents (moralization).

May lose some condtional independences, but doesn’t change computational cost.



Complexity of Inference in Graphical Models ICM and Gibbs Sampling Variational Inference

Moralization: Converting DAGs to UGMs

Models that can be represented as DAGs or UGMs are called decomposable.

Includes chains, trees, and fully-connected graphs.

These models allow some efficient operations.

E.g., we can write them as DAGs and do ancestral sampling.
But this is a restricted model class that we won’t talk much about.

We can perform the inference in general UGMs with message passing.

The algorithms for general graphs are almost identical....
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Exact Inference in UGMs
For example, consider a UGM that is a simple 4-node cycle:

Assuming we use pairwise potentials, we can compute Z using

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)
∑
x1

φ12(x1, x2)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)M24(x2, x4)

=
∑
x4

∑
x3

φ34(x3, x4)M34(x3, x4) =
∑
x4

M4(x4).
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Exact Inference in UGMs
Message-passing costs depends on graph structure and the order of the sums.
Consider chain-structured UGM with sums in a different order:

Z =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

d∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

∑
x1

d∏
j=2

φ(xj , xj−1)

=
∑
x5

∑
x3

∑
x2

∑
x4

d∏
j=3

φ(xj , xj−1)
∑
x1

φ(x2, x1)︸ ︷︷ ︸
M2(x2)

=
∑
x5

∑
x3

∑
x2

φ(x3, x2)
∑
x4

φ(x4, x3)φ(x5, x4)M2(x2)︸ ︷︷ ︸
M235(x2,x3,x5)

.

So even though we have a chain, we have an M with k3 values instead of k.
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Variable Order and Treewidth

So cost of message passing depends on
1 Graph structure.
2 Variable order.

Cost of for the best ordering is given by:

O(dkω+1), where ω is the treewidth of the graph.

Treewidth ω is “minimum size of largest clique, minus 1, over all triangulations”.

For chains, ω = 1 (by going through the chain in order).
An m1 by m2 lattice has ω = min{m1,m2}.

For 28 by 28 MNIST digits it would cost O(784 ∗ 229).
For some graphs ω = (d− 1) so there is no gain.
Computing ω and the optimal ordering is NP-hard.

But various heuristic ordering methods exist.
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Variable Order and Treewidth

Trees have ω = 1, so with the right order inference costs O(dk2).

A big loop has ω = 2, so cost can be O(dk3).

The below grid-like structure has ω = 3, so cost is O(dk4).
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Belief Propagation and Junction Trees

Recall the forward-backward algorithm in Markov chains:

We compute the forward messages and the backwards messages.
With both types of messages we can compute all univariate marginals.

Belief propagation is generalization to trees:

We start at an arbitrary “root”, and pass messages away from it.
We also start from the leaves, pass messages towards root.

Generalization to general graphs is the junction tree method.

Unfortunately, low tree width models are very restricted.

This has motivated a ton of work on approximate inference...
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Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

On each iteration t, choose a variable jt.
Optimize xjt with the other variables held fixed.

A special case of coordinate optimization.

Iterations correspond to finding mode of conditional p(xj |x−j),

xj ← max
c
p(xj = c|x−j).

3 main issues:
1 How can you optimize p(x) if evaluating it is NP-hard?
2 Is coordinate optimization efficient for this problem?
3 Does it find the global optimum?
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ICM Issue 1: Intractable Objective

How can you optimize p(x) if evaluating it is NP-hard?

Note that it’s easy to evaluate unnormalized probability.

p̃(x) =
∏
c∈C

φc(xc),

so we have p(x) = p̃(x)
Z .

And for decoding we only need unnormalized probabilities,

argmax
x

p(x) ≡ argmax
x

p̃(x)

Z
≡ argmax

x
p̃(x).

To update xj we actually only need consider φc involving xj
We only care about x−j in the Markov blanket (neighbours in the graph).
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ICM Issue 2: Efficiency
Is coordinate optimization efficient for this problem?

Consider a pairwise UGM,

p(x) ∝

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 .

or

log p(x) =

d∑
j=1

log φj(xj) +
∑

(i,j)∈E

log φij(xi, xj) + constant.

which is a special case of

f(x) =

d∑
j=1

fj(xj) +
∑

(i,j)∈E

fij(xi, xj),

which is one of our problems where coordinate optimization is efficient.
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ICM Issue 3: Non-Convexity

Does it find the global optimum?

Negative log-probability is usually non-convex, so doesn’t find global optimum.

There exist many globalization methods that can improve its performance:

Restarting with random initializations.
Simulated annealing, genetic algorithms, ant colony optimization, etc.
See the book/class of Holger Hoos on stochastic local search methods.
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ICM in Action
Consider using a UGM for image denoising:

We have

Unary potentials φj for each position.

Pairwise potentials φij for neighbours on grid.

Parameters are trained as CRF (later).

Goal is to produce a noise-free image (show video).
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Coordinate Sampling

What about approximate sampling?

In DAGs, ancestral sampling conditions on sampled values of parents,

xj ∼ p(xj |xpa(j)).

In ICM, we approximately decode a UGM by iteratively maximizing an xjt ,

xj ← max
xj

p(xj |x−j).

We can approximately sample from a UGM by iteratively sampling an xjt ,

xj ∼ p(xj |x−j),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

Gibbs sampling starts with some x and then repeats:
1 Choose a variable j uniformly at random.
2 Update xj by sampling it from its conditional,

xj ∼ p(xj |x−j).

Analogy: sampling version of coordinate optimization:

Transformed d-dimensional sampling into 1-dimensional sampling.

Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling

For UGMs these conditionals needed for Gibbs sampling have a simple form,

p(xj = c|x−j) =
p(xj = c, x−j)∑

xj=c′ p(xj = c′, x−j)
=

p̃(xj = c, x−j)∑
xj=c′ p̃(xj = c′, x−j)

,

because the Z is the same in the numerator and denominator terms.

And UGMs it further simplifies due to the local Markov property,

p(xj |x−j) = p(xj |xMB(j)).

Thus these iterations are very cheap:

We’re just sampling a discrete variable given its Markov blanket.
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Gibbs Sampling in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Sample variable j: x2 =
[
2 2 1 1

]
.

Select random j like j = 1.

Sample variable j: x3 =
[
3 2 1 1

]
.

Select random j like j = 2.

Sample variable j: x4 =
[
3 2 1 1

]
.

. . .

Use the samples to form Monte Carlo estimators.
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Gibbs Sampling in Action: UGMs

Back to image denoising...

(show videos)
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Gibbs Sampling in Action: UGMs
Gibbs samples after every 100d iterations:
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:
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Gibbs Sampling in Action: Multivariate Gaussian

Gibbs sampling works for general distributions.
E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
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Gibbs Sampling and Markov Chains
Why would Gibbs sampling work?

Consider the samples {x0, x1, x2, . . . } generated from Gibb sampling.
Each samples xt is a d-dimensional vector.
These samples xt follow a homogeneous Markov chain.

Under weak conditions, homogenous MCs converge to an invariant distribution π,

π(s) =
∑
s′

pt(x
t = s|xt−1 = s′)π(s′),

where pt are the transition probabilities of the Markov chain.
p(xj |x−j) > 0 is sufficient for Gibbs sampling.
A weaker condition is “irreducible and aperiodic”.

Invariant distribution π of Gibbs sampling is the original distribution p.
If we stop it after a really long time, the final Gibbs sample will come from p(x).

A special case of Markov chain Monte Carlo (MCMC) methods.
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Markov Chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC): given target p, design transitions such that

1

n

n∑
t=1

g(xi)→
∑
x∈X

g(x)p(x) = E[g(X)],

as n→∞.

We are generating dependent samples whose average converges to expectation.

There are many transitions that will yield target as invariant distribution.
Typically easy to design sampler, but hard to characterize rate of convergence.

Gibbs sampling satisfies the above under very weak conditions.

Typically, we don’t take all samples:
Burn in: throw away the initial samples when we haven’t converged to stationary.
Thinning: only keep every k samples, since they will be highly correlated.

It can very hard to diagnose if we reached invariant distribution.
Recent work showed that this is P-space hard (not polynomial-time).
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Markov Chain Monte Carlo

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Monte Carlo vs. Variational Inference

Two main strategies for approximate inference:
1 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

E.g., Gaussian, independent Bernoulli, or tree UGM.
(or mixtures of these simple distributions)

Turns inference into optimization.
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Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Approximate loopy UGM by independent distribution or tree-structed UGM:
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Minimizing Reverse KL) Divergence
Most common variational method:

Minimize (reverse) Kullback-Leibler (KL) divergence between q and p,

KL(q||p) =
∑
x

q(x) log
q(x)

p(x)
.

KL divergence is a common measure of similarity between distributions.
Also called information gain: “information lost when q is approximated by p?”.

KL would be more natural, but reverse KL only needs unnormalized distribution p̃,

KL(q||p) =
∑
x

q(x) log q(x)−
∑
x

q(x) log p(x)

=
∑
x

q(x) log q(x)−
∑
x

q(x) log p̃(x) +
∑
x

q(x) log(Z)

=
∑
x

q(x) log
q(x)

p̃(x)
+ log(Z)︸ ︷︷ ︸

const. in q

,

which since KL is non-negative gives a lower bound on log(Z).
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Mean Field Variational Approximation

Consider minimizing reverse KL with independent q,

q(x) =

d∏
j=1

qj(xj).

If we fix q−j and optimize the functional qj we obtain (see Murphy’s book)

qj(xj) ∝ exp
(
Eq−j [log p̃(x)]

)
,

which we can use to update qj for a particular j.

This is called the mean field approximation.
We’re updating based on a mean of our neighbours.

Once you’ve fit q, you use the independent distribution instead of p.
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Summary

Markov blanket is set of nodes that make xj independent of all others.

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Iterated conditional mode is coordinate descent for decoding UGMs.

Gibbs sampling is coordinate-wise sampling.

Special case of Markov chain Monte Carlo method.

Variational methods approximate p with a simpler distribution q.

Mean field approximation minimizes KL divergence with independent q.

Next time: deep graphical models and finally being able to model digits.
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