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Admin

@ Assignment 3:
e 2 late days to hand in today.

@ Assignment 4:
e Due March 20.

@ For graduate students planning to graduate in May:
e Send me a private message on Piazza ASAP.
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Last Time: Directed Acyclic Graphical (DAG) Models

@ DAG models use a factorization of the joint distribution,
d
p(xla L2,. .. axd) = Hp(m]pjpa(]))?
j=1

where pa(j) are the parents of node j.

@ This assumes a Markov property,
p(xjlrr-1) = p(ajlTpags)),
which generalizes the Markov property in Markov chains,

p(zjlr15-1) = plajlri—1).
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Last Time: Directed Acyclic Graphical (DAG) Models

@ DAG models use a factorization of the joint distribution,

d

p(z1,22,...,7q) = Hp(f’:j‘xpa(j))7
j=1

where pa(j) are the parents of node j.

@ We visualize the assumptions made by the model as a graph:

@ Structure determines conditional independences and computational tractability.
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Outline

@ D-Separation and Plate Notation



D-Separation and Plate Notation

D-Separation

e We say that A and B are d-separated (conditionally independent) if all paths P
from A to B are "blocked” because at least one of the following holds:
@ P includes a “chain” with an observed middle node (e.g., Markov chain):

O@—CO

@ P includes a “fork” with an observed parent node (e.g., mixture model):

O@-0O

© P includes a “v-structure” or “collider” (e.g., factor analysis):

O QO

where “child” and all its descendants are unobserved.
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Alarm Example

Earﬂ\q\nhl\'! m

e Earthquake / Call.

e Earthquake L Call | Alarm.

e Alarm [ Stuff Missing.

e Alarm L Stuff Missing | Burglary.
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Alarm Example

Ear‘ﬂxq\nml\’! m

o Earthquake L Burglary.
e Earthquake [ Burglary | Alarm.
e Explaining away: Knowing Earthquake would make Burglary is less likely.
e Call [ Stuff Missing.
e Earthquake 1 Stuff Missing.
e Earthquake [ Stuff Missing | Call.
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Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given E) = A 1 B | E.

However, there might be extra conditional independences in the distribution:

o These would depend on specific choices of the p(z;|2pa())).
e Or some orderings may reveal extra independences....

Instead of restricting to {1,2,...,j — 1}, consider general parent choices.
@ x5 could be a parent of x;.

As long the graph is acyclic, there exists a valid ordering.

(all DAGs have a “topological order” of variables where parents are before children)
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Non-Uniqueness of Graph and Equivalent Graphs

@ Note that some graphs imply same conditional independences:
e Equivalent graphs: same v-structures and other (undirected) edges are the same.
o Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):
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Discussion of D-Separation

@ So the graph is not necessarily unique and is not the whole story.

@ But, we can do a lot with d-separation:
e Implies every independence/conditional-independence we've used in 340/540.

@ Here we start blurring distinction between data/parameters/hyper-parameters...
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[ID Assumption as a DAG

@ On Day 2, our first independence assumption was the [ID assumption:

@ Training/test examples come independently from data-generating process D.
o If we knew D, then there would be no need to learn.

@ But D is unobserved, so knowing about some z' tells us about the others.

@ We'll use this understanding later to relax the IID assumption.
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Plate Notation

o Graphical representation of the IID assumption:
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Tilde Notation as a DAG

@ When we write ' 4
yz ~ N(waz7 1)’

we can interpret it as the DAG model:
@

o If the z* are IID then we can represent supervised learning as

2

o From d-separation on this graph we have p(y| X, w) =[]\, p(y'|2", w).
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Tilde Notation as a DAG
@ When we do MAP estimation under the assumptions
Yt~ N (w2t 1), wj ~N(0,1/X),

we can interpret it as the DAG model:

/]

AN

@6 @)

@ Or introducing a second plate using:
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Other Models in DAG/Plate Notation

@ For naive Bayes or Gaussian discriminant analysis with diagonal ¥, we have
y' ~ Cat(d), z'|y' =c~ D(b.).

yt
D

-

N\
@

T
®

@~
@ >

QuE
&

@ Or in plate notation as

@ Q—@

-
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Other Models in DAG/Plate Notation

@ In a full Gaussian model for a single x we have

'~ N, X).
@ &

2t~ Cat(f), 2%z =c~ N (e, Ze).

@ For mixture of Gaussians we have
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© Learning and Inference in DAGs
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Parameter Learning in General DAG Models

@ The log-likelihood in DAG models is separable in the conditionals,

d
log p(z|©) = log H (2j]7pa(5), ;)

7j=1
d
ZIng 73]|$pa ])a® )

o If each p(xj|zpa(j)) has its own parameters ©;, we can fit them independently.
o We've done this before: naive Bayes, Gaussian discriminant analysis, etc.

@ Sometimes you want to have tied parameters (©; = ©;/)

e Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
o Still easy, but need to fit p(z;|2pa(;), ©;) and p(xj|zpa(jry, ©;) together.
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Tabular Parameterization in DAG Models

o To specify distribution, we need to decide on the form of p(x;|zpa(j), ©;)-

@ For discrete data a default choice is the tabular parameterization:
P(xj]Tpa(y), ©5) = 9Ij7xpa(j)’
as we did for Markov chains (but now with multiple parents).
@ Intuitive: just need conditional probabilities of children given parents like
p(“wet grass” =1 | “sprinkler" =1, “rain” = 0),

and MLE is just counting.
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Tabular Parameterization Example

SPRINKLER. RAIN
RAIN| T F

SPRINKLER @
04 06 02 o8
001 08¢

GRASS WET
SPRINKLER RAIN| T F
F F 0.0 1.0
F T 08 02
T F 09 01
T T 0.99 0.01

https://en.wikipedia.org/wiki/Bayesian_network
Some quantities can be directly read from the tables:
p(R=1)=0.2.

p(G=1S=0,R=1)=08.


https://en.wikipedia.org/wiki/Bayesian_network
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Tabular Parameterization Example

SPRINKLER RAIN
RAIN| T T F

SPRINKLER @
06 02 o8
oot ose

GRASS WET

SPRINKLER RAIN| T F
F 0.0 10

F 08 02

T 0.8 0.1
T 0.99 0.01

https://en.wikipedia.org/wiki/Bayesian_network
Can calculate any probabilities using marginalization/product-rule/Bayes-rule.

p(G=1R=1)=p(G=1,S=0R=1)+p(G=1,S=1R=1) (p(a|c) = Zp(a,b|c))
b

=p(G=1S=0,R=1)p(S=0R=1)+p(G=1S=1,R=1)p(S =1|R=1)
=0.8(0.99) + 0.99(0.01) = 0.81.


https://en.wikipedia.org/wiki/Bayesian_network
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Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

LIGHTS
Batiory ago ok FUEL PUMP FUEL LINE FUEL

0.0000 fault | TPTYR ok ok 1 57868 ok
1.5353 fault 30705 fault | 94.2131RET
BATTERY
100.0000 K73 wy
0.0000 fault
FUEL GAUGE
"“"3' 0.0000 ok
Rrei 100,0000 JRCTLY
Ehﬁnn
ENGINE STARTS
0.0000 ok
100.0000 IREEIS

http://www.hugin.com/index.php/technology


http://www.hugin.com/index.php/technology
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Fitting DAGs using Supervised Learning

@ But tabular parameterization requires too many parameters:
o With binary states and k parents, need 2°*! parameters.

@ One solution is letting users specify a “parsimonious” parameterization:

o Typically have a linear number of parameters.
o For example, the “noisy-or" model: p(z;|zpa(j)) =1 — [Ixepas) @

@ But if we have data, we can use supervised learning.

o Write fitting p(x|7pa(5)) as our usual p(y|x).
o We're predicting one column of X given the values of other columns.
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Fitting DAGs using Supervised Learning

o Fitting DAGs using supervised learning:
o Forj=1:d:
(1) Setg}i:xé and &' =z

pa(i) -
@ Solve a supervised learning problem using {X, §}.

o Use the d regression/classification models as the density estimator.

@ We can use our usual tricks:

o Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
e With least squares it's called a Gaussian belief network.

o With logistic regression it's called a sigmoid belief networks.

e Don't need Markov assumptions to tractably fit these models.



Learning and Inference in DAGs

MNIST Digits with Tabular DAG Model

@ Recall our latest MNIST model using a tabular DAG:

5 10 15 20 25

5 10 15 20 25

@ This model is pretty bad because you only see 8 parents.



Learning and Inference in DAGs

MNIST Digits with Sigmoid Belief Network

@ Samples from sigmoid belief network:

(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).
e Models long-range dependencies but has a linear assumption.
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Sampling in DAGs

Undirected Graphical Models

@ We can use ancestral sampling to generate samples from a DAG:
Q@ Sample z; from p(xy).
@ If 1 is a parent of xg, sample zo from p(z2|z1).
o Otherwise, sample z2 from p(z2).

© Go through the subsequent j in order sampling z; from p(2;|xpa(;))-

@ We can use these samples within Monte Carlo methods.

@ How do sample from a multivariate Gaussian?
o Write it as a Gaussian belief network, apply ancestral sampling.
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Inference in Forest DAGs

o If we try to generalize the CK equations to DAGs we obtain

plaj=s)= > plr;=520) = > P = s|Tpa() P(Tpa(s))-
—_—

Tpa(j) Tpa(j) given

which works if each node has at most one parent.
o Such graphs are called trees (connected), or forests (disconnected).
@ Also called “singly-connected”.

o Forests allow efficient message-passing methods as in Markov chains.
o In particular, decoding and univariate marginals/conditionals in O(dk?).
@ Message passing applied to tree-structured graphs is called belief propagation.
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Inference in General DAGs
o If we try to generalize the CK equations to DAGs we obtain

plaj=s)= > plz;=520n1) = D P;= 7)) P(Tpag))-
——_— ———

Zpa(j) Tpa(j) given

@ What goes wrong if nodes have multiple parents?
o The expression p(zp,(;)) is a joint distribution and is not given recursively.

@ Consider the non-tree graph:
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Inference in General DAGs
e We can compute p(z4) in this non-tree using:

plaa) =YD plar, w2, 23, 74)

r3 T2 X1

=3 3 plaalws, v3)p(as|ar)p(azlz:)p(a)

3 T2 I1

=3 plaalra,x3) Y p(aslar)p(walar)p(z1)

T3 T2 T

Ma3(w2,3)
@ Dependencies between {x1,x2,x3} mean our message depends on two variables.

plaa) =Y Y plaa|wa, v3) Mag (w2, 3)

T3 T2

— Z M34('T3a 'T4)7

x3
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Inference in General DAGs

e With 2-variable messages, our cost increases to O(dk?).

o If we add the edge 71— > x4, then the cost is O(dk™).

(the same cost as enumerating all possible assignments)

@ Unfortunately, cost is not as simple as counting number of parents.
e Even if each node has 2 parents, we may need huge messages.
e Decoding is NP-hard and marginals are #P-hard in general.

o We'll see later that maximum message is given by treewidth of a particular graph.

@ In general, we'll need approximate inference methods to use general DAGs.
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Conditional Sampling in DAGs

@ What about conditional sampling in DAGs?
e Could be easy or hard depending on what we condition on.

@ For example, still easy if we condition on the first variables in the order:
e Just fix these and run ancestral sampling.

w o © U

(WA
N

@ Hard to condition on the last variables in the order:
e Conditioning on descendent makes ancestors dependent.
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Outline

© Undirected Graphical Models
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Directed vs. Undirected Models

@ In some applications we have a natural ordering of the ;.
e In the “rain” data, the past affects the future.

@ In some applications we don't have a natural order.
e E.g., pixels in an image.

@ In these settings we often use undirected graphical models.
e Also known as Markov random fields and originally from statistical physics.
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Undirected Graphical Models

e Undirected graphical models (UGMs) assume p(x) factorizes over subsets c,

p(d?l,ﬂfg, ey :Ed) 08 H ¢c($c)a

ceC

from among a set of subsets of C.
@ The ¢, are called potential functions: can be any non-negative function.

o Ordering doesn’t matter: more natural for things like pixels of an image.
e Theoretically, only need ¢. for maximal subsets in C.

@ Important special case is pairwise undirected graphical model:

d
plx) o | [] 85(x)) I ¢tz ],
j=1

(i,J)eE

where E are a set of undirected edges.



Undirected Graphical Models

Undirected Graphical Models

@ Pairwise UGMs are a classic way to model dependencies in images:

O
O

() () ()
N
()
W/
()
\/
()
/ A /

O

@ Can model dependency between neighbouring pixels, without imposing ordering.
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From Probability Factorization to Graphs

@ For a pairwise UGM,

d
pla) oc | ] ¢s(x) I ¢tz ],
j=1

(i,5)EE

we visualize independence assumptions as an undirected graph:
o We have edge i to j if (i,5) € E.

@ For general UGMs,
p(x1,22,...,24) X H be(xe),

ceC

we have the edge (i, ) if ¢ and j are together in at least one c.
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Conditional Independence in Undirected Graphical Models

o It's easy to check conditional independence in UGMs:
e A 1 B|C if C blocks all paths from any A to any B.

o Example:

AJcC.

AL C|B.
A1 C|B,E.
A,B [ F|C
A,B 1 F|C,E.
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Multivariate Gaussian and Pairwise Graphical Models

@ Multivarate Gaussian is a special case of a pairwise UGM.
@ Edges of the graph are (i, ) values where Ei_jl #0.

@ Unconditional independence of (i, j) corresponds to having ¥;; = 0.

o Can be seen from block Gaussian formula.
o Corresponds to reachability in the graph.

@ We use the term Gaussian graphical model (GGM) in this context.
e Or Gaussian Markov random field.
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Digression: Gaussian Graphical Models

@ Multivariate Gaussian can be written as

1 1
px)ocexp | —=(x—p) 'S Nz —p) ) xexp | —z2"S e+ 2T 27 |,
2 2 S—~—

v

and from here we can see that it's a pairwise UGM:

p(a) o< exp( —fZZxxJZ —l—Zva

i=1 j=1

d d
H H exp (;xiiji_jl) H exp (x;v;)

i=1j=1 D orier)
dij(zi,xj)
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Independence in GGMs

e So Gaussians are pairwise UGMs with ¢;;(z;, ;) = exp (—32;7;0;;),
o Where O;; is element (i, j) of X1

e Connection between precision matrix © = X ~! and conditional independence:
e Setting ©;; = 0 is equivalent to removing ¢;;(x;, z;) from the UGM.
@ij 7é 0= x; 71/_ m]—|x,ij.

@ Gaussian conditional independencies corresponds to sparsity in precision matrix.

e Diagonal O gives disconnected graph: all variables are indpendent.
e Full © gives fully-connected graph: there are no independences.
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Independence in GGMs

@ Consider Gaussian with tri-diagonal precision O:

32.0897 13.1740 0 0 0 7

13.1740 18.3444 —5.2602 0 0

= 0 —5.2602  7.7173 2.1597 0
0 0 2.1597  20.1232 1.1670
0 0 0 1.1670  3.8644/]

0.0494 —0.0444 —0.0312 0.0034 —0.00107
—0.0444  0.1083 0.0761  —0.0083  0.0025
¥ =|-0.0312 0.0761 0.1872  —0.0204  0.0062
0.0034  —0.0083 —0.0204 0.0528  —0.0159

—0.0010  0.0025 0.0062 —0.0159  0.2636

@ X;; # 0 so all variables are dependent: x1 £ x2, 1 £ 5, and so on.

@ But conditional independence is described by a Markov chain:

p(x1|re, 23,24, 25) = p(x1]22).

Undirected Graphical Models
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Graphical Lasso

e Conditional independence in GGMs is described by sparsity in ©.

@ Recall fitting multivariate Gaussian with L1-regularization,

argmin Tr(S©) — log |©| + \||©]|1,
0>0

which is called the graphical Lasso because it encourages a sparse graph.
e Special case of graph structure learning.

@ Consider instead fitting DAG model with Gaussian probabilities:
e DAG structure corresponds to sparsity in Cholesky of covariance.
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Tractability of UGMs

@ In UGMs we assume that

1
= Z H ch(l‘c)»

ceC

where Z is the constant such that

ZZ ZP (discrete), / / / r)drgdry 1. ..dr; =1 (cont).

1 T2

@ SoZis

7 = ZH(]ﬁc (x.) (discrete), /Hgbc x.)dz (cont)

r ceC ceC

@ Whether you can compute Z depends on the choice of ¢.:
o Gaussian case: O(d?) in general, but O(d) for forests (no loops).
o Discrete case: #P-hard in general, but O(dk?) for forests (no loops).
e Continuous non-Gaussian: usually requires numerical integration.
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Summary

Plate Notation lets compactly draw graphs with repeated patterns.

e There are fancier versions of plate notation called “probabilistic programming”.
Parameter learning in DAGs:

o Can fit each p(x;|7p,(;)) independently.

e Tabular parameterization, or treat as supervised learning.
Inference in DAGs:

o Ancestral sampling and Monte Carlo methods work as faster.
o Message-passing message sizes depend on graph structure.

Undirected graphical models factorize probability into non-negative potentials.

e Simple conditional independence properties.
e Include Gaussians as special case.

Next time: our first visit to the wild world of approximate inference.
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