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Admin

Assignment 3:

2 late days to hand in today.

Assignment 4:

Due March 20.

For graduate students planning to graduate in May:

Send me a private message on Piazza ASAP.



D-Separation and Plate Notation Learning and Inference in DAGs Undirected Graphical Models

Last Time: Directed Acyclic Graphical (DAG) Models

DAG models use a factorization of the joint distribution,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)),

where pa(j) are the parents of node j.

This assumes a Markov property,

p(xj |x1:j−1) = p(xj |xpa(j)),

which generalizes the Markov property in Markov chains,

p(xj |x1:j−1) = p(xj |xj−1).
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Last Time: Directed Acyclic Graphical (DAG) Models

DAG models use a factorization of the joint distribution,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)),

where pa(j) are the parents of node j.

We visualize the assumptions made by the model as a graph:

Structure determines conditional independences and computational tractability.
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D-Separation

We say that A and B are d-separated (conditionally independent) if all paths P
from A to B are “blocked” because at least one of the following holds:

1 P includes a “chain” with an observed middle node (e.g., Markov chain):

2 P includes a “fork” with an observed parent node (e.g., mixture model):

3 P includes a “v-structure” or “collider” (e.g., factor analysis):

where “child” and all its descendants are unobserved.
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Alarm Example

Earthquake 6⊥ Call.

Earthquake ⊥ Call | Alarm.

Alarm 6⊥ Stuff Missing.

Alarm ⊥ Stuff Missing | Burglary.
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Alarm Example

Earthquake ⊥ Burglary.

Earthquake 6⊥ Burglary | Alarm.
Explaining away: Knowing Earthquake would make Burglary is less likely.

Call 6⊥ Stuff Missing.

Earthquake ⊥ Stuff Missing.

Earthquake 6⊥ Stuff Missing | Call.
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Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given E)⇒ A ⊥ B | E.

However, there might be extra conditional independences in the distribution:

These would depend on specific choices of the p(xj |xpa(j)).
Or some orderings may reveal extra independences....

Instead of restricting to {1, 2, . . . , j − 1}, consider general parent choices.

x2 could be a parent of x1.

As long the graph is acyclic, there exists a valid ordering.
(all DAGs have a “topological order” of variables where parents are before children)



D-Separation and Plate Notation Learning and Inference in DAGs Undirected Graphical Models

Non-Uniqueness of Graph and Equivalent Graphs

Note that some graphs imply same conditional independences:

Equivalent graphs: same v-structures and other (undirected) edges are the same.
Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):
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Discussion of D-Separation

So the graph is not necessarily unique and is not the whole story.

But, we can do a lot with d-separation:

Implies every independence/conditional-independence we’ve used in 340/540.

Here we start blurring distinction between data/parameters/hyper-parameters...
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IID Assumption as a DAG

On Day 2, our first independence assumption was the IID assumption:

Training/test examples come independently from data-generating process D.

If we knew D, then there would be no need to learn.

But D is unobserved, so knowing about some xi tells us about the others.

We’ll use this understanding later to relax the IID assumption.
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Plate Notation

Graphical representation of the IID assumption:

We can concisely represent repeated parts of graphs using plate notation:
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Tilde Notation as a DAG

When we write
yi ∼ N (wTxi, 1),

we can interpret it as the DAG model:

If the xi are IID then we can represent supervised learning as

or

From d-separation on this graph we have p(y|X,w) =
∏n

i=1 p(y
i|xi, w).
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Tilde Notation as a DAG
When we do MAP estimation under the assumptions

yi ∼ N (wTxi, 1), wj ∼ N (0, 1/λ),

we can interpret it as the DAG model:

Or introducing a second plate using:
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Other Models in DAG/Plate Notation
For naive Bayes or Gaussian discriminant analysis with diagonal Σc we have

yi ∼ Cat(θ), xi|yi = c ∼ D(θc).

Or in plate notation as
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Other Models in DAG/Plate Notation
In a full Gaussian model for a single x we have

xi ∼ N (µ,Σ).

For mixture of Gaussians we have

zi ∼ Cat(θ), xi|zi = c ∼ N (µc,Σc).
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Parameter Learning in General DAG Models

The log-likelihood in DAG models is separable in the conditionals,

log p(x|Θ) = log

d∏
j=1

p(xj |xpa(j),Θj)

=

d∑
j=1

log p(xj |xpa(j),Θj)

If each p(xj |xpa(j)) has its own parameters Θj , we can fit them independently.

We’ve done this before: naive Bayes, Gaussian discriminant analysis, etc.

Sometimes you want to have tied parameters (Θj = Θj′)

Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
Still easy, but need to fit p(xj |xpa(j),Θj) and p(xj′ |xpa(j′),Θj) together.
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Tabular Parameterization in DAG Models

To specify distribution, we need to decide on the form of p(xj |xpa(j),Θj).

For discrete data a default choice is the tabular parameterization:

p(xj |xpa(j),Θj) = θxj ,xpa(j)
,

as we did for Markov chains (but now with multiple parents).

Intuitive: just need conditional probabilities of children given parents like

p(“wet grass” = 1 | “sprinkler” = 1, “rain” = 0),

and MLE is just counting.
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

p(R = 1) = 0.2.

p(G = 1|S = 0, R = 1) = 0.8.

https://en.wikipedia.org/wiki/Bayesian_network
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule.

p(G = 1|R = 1) = p(G = 1, S = 0|R = 1) + p(G = 1, S = 1|R = 1)

(
p(a|c) =

∑
b

p(a, b|c)

)
= p(G = 1|S = 0, R = 1)p(S = 0|R = 1) + p(G = 1|S = 1, R = 1)p(S = 1|R = 1)

= 0.8(0.99) + 0.99(0.01) = 0.81.

https://en.wikipedia.org/wiki/Bayesian_network
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Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

http://www.hugin.com/index.php/technology

http://www.hugin.com/index.php/technology
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Fitting DAGs using Supervised Learning

But tabular parameterization requires too many parameters:

With binary states and k parents, need 2k+1 parameters.

One solution is letting users specify a “parsimonious” parameterization:

Typically have a linear number of parameters.
For example, the “noisy-or” model: p(xj |xpa(j)) = 1−

∏
k∈pa(j) qk.

But if we have data, we can use supervised learning.

Write fitting p(xj |xpa(j)) as our usual p(y|x).
We’re predicting one column of X given the values of other columns.
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Fitting DAGs using Supervised Learning

Fitting DAGs using supervised learning:
For j = 1 : d:

1 Set ỹi = xi
j and x̃i = xi

pa(j).

2 Solve a supervised learning problem using {X̃, ỹ}.
Use the d regression/classification models as the density estimator.

We can use our usual tricks:

Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
With least squares it’s called a Gaussian belief network.
With logistic regression it’s called a sigmoid belief networks.
Don’t need Markov assumptions to tractably fit these models.
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MNIST Digits with Tabular DAG Model

Recall our latest MNIST model using a tabular DAG:

This model is pretty bad because you only see 8 parents.
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MNIST Digits with Sigmoid Belief Network

Samples from sigmoid belief network:
(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).
Models long-range dependencies but has a linear assumption.
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Sampling in DAGs

We can use ancestral sampling to generate samples from a DAG:
1 Sample x1 from p(x1).
2 If x1 is a parent of x2, sample x2 from p(x2|x1).

Otherwise, sample x2 from p(x2).

3 Go through the subsequent j in order sampling xj from p(xj |xpa(j)).

We can use these samples within Monte Carlo methods.

How do sample from a multivariate Gaussian?

Write it as a Gaussian belief network, apply ancestral sampling.
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Inference in Forest DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

which works if each node has at most one parent.
Such graphs are called trees (connected), or forests (disconnected).

Also called “singly-connected”.

Forests allow efficient message-passing methods as in Markov chains.
In particular, decoding and univariate marginals/conditionals in O(dk2).
Message passing applied to tree-structured graphs is called belief propagation.
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Inference in General DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s|xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

What goes wrong if nodes have multiple parents?
The expression p(xpa(j)) is a joint distribution and is not given recursively.

Consider the non-tree graph:
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Inference in General DAGs

We can compute p(x4) in this non-tree using:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4)

=
∑
x3

∑
x2

∑
x1

p(x4|x2, x3)p(x3|x1)p(x2|x1)p(x1)

=
∑
x3

∑
x2

p(x4|x2, x3)
∑
x1

p(x3|x1)p(x2|x1)p(x1)︸ ︷︷ ︸
M23(x2,x3)

Dependencies between {x1, x2, x3} mean our message depends on two variables.

p(x4) =
∑
x3

∑
x2

p(x4|x2, x3)M23(x2, x3)

=
∑
x3

M34(x3, x4),
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Inference in General DAGs

With 2-variable messages, our cost increases to O(dk3).

If we add the edge x1− > x4, then the cost is O(dk4).
(the same cost as enumerating all possible assignments)

Unfortunately, cost is not as simple as counting number of parents.

Even if each node has 2 parents, we may need huge messages.
Decoding is NP-hard and marginals are #P-hard in general.

We’ll see later that maximum message is given by treewidth of a particular graph.

In general, we’ll need approximate inference methods to use general DAGs.
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Conditional Sampling in DAGs
What about conditional sampling in DAGs?

Could be easy or hard depending on what we condition on.
For example, still easy if we condition on the first variables in the order:

Just fix these and run ancestral sampling.

Hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.
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Directed vs. Undirected Models

In some applications we have a natural ordering of the xj .

In the “rain” data, the past affects the future.

In some applications we don’t have a natural order.

E.g., pixels in an image.

In these settings we often use undirected graphical models.

Also known as Markov random fields and originally from statistical physics.



D-Separation and Plate Notation Learning and Inference in DAGs Undirected Graphical Models

Undirected Graphical Models

Undirected graphical models (UGMs) assume p(x) factorizes over subsets c,

p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

from among a set of subsets of C.

The φc are called potential functions: can be any non-negative function.

Ordering doesn’t matter: more natural for things like pixels of an image.
Theoretically, only need φc for maximal subsets in C.

Important special case is pairwise undirected graphical model:

p(x) ∝

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 ,

where E are a set of undirected edges.
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Undirected Graphical Models

Pairwise UGMs are a classic way to model dependencies in images:

Can model dependency between neighbouring pixels, without imposing ordering.
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From Probability Factorization to Graphs

For a pairwise UGM,

p(x) ∝

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 ,

we visualize independence assumptions as an undirected graph:

We have edge i to j if (i, j) ∈ E.

For general UGMs,

p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

we have the edge (i, j) if i and j are together in at least one c.
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Conditional Independence in Undirected Graphical Models

It’s easy to check conditional independence in UGMs:

A ⊥ B|C if C blocks all paths from any A to any B.

Example:

A 6⊥ C.
A 6⊥ C|B.
A ⊥ C|B,E.
A,B 6⊥ F |C
A,B ⊥ F |C,E.
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Multivariate Gaussian and Pairwise Graphical Models

Multivarate Gaussian is a special case of a pairwise UGM.

Edges of the graph are (i, j) values where Σ−1
ij 6= 0.

Unconditional independence of (i, j) corresponds to having Σij = 0.

Can be seen from block Gaussian formula.
Corresponds to reachability in the graph.

We use the term Gaussian graphical model (GGM) in this context.

Or Gaussian Markov random field.
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Digression: Gaussian Graphical Models

Multivariate Gaussian can be written as

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
∝ exp

−1

2
xTΣ−1x+ xT Σ−1µ︸ ︷︷ ︸

v

 ,

and from here we can see that it’s a pairwise UGM:

p(x) ∝ exp(

−1

2

d∑
i=1

d∑
j=1

xixjΣ
−1
ij +

d∑
i=1

xivi



=


d∏
i=1

d∏
j=1

exp

(
−1

2
xixjΣ

−1
ij

)
︸ ︷︷ ︸

φij(xi,xj)


 d∏
i=1

exp (xivi)︸ ︷︷ ︸
φi(xi)


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Independence in GGMs

So Gaussians are pairwise UGMs with φij(xi, xj) = exp
(
−1

2xixjΘij

)
,

Where Θij is element (i, j) of Σ−1.

Connection between precision matrix Θ = Σ−1 and conditional independence:

Setting Θij = 0 is equivalent to removing φij(xi, xj) from the UGM.

Θij 6= 0⇒ xi 6⊥ xj |x−ij .

Gaussian conditional independencies corresponds to sparsity in precision matrix.

Diagonal Θ gives disconnected graph: all variables are indpendent.
Full Θ gives fully-connected graph: there are no independences.
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Independence in GGMs

Consider Gaussian with tri-diagonal precision Θ:

Σ−1 =


32.0897 13.1740 0 0 0
13.1740 18.3444 −5.2602 0 0

0 −5.2602 7.7173 2.1597 0
0 0 2.1597 20.1232 1.1670
0 0 0 1.1670 3.8644



Σ =


0.0494 −0.0444 −0.0312 0.0034 −0.0010
−0.0444 0.1083 0.0761 −0.0083 0.0025
−0.0312 0.0761 0.1872 −0.0204 0.0062
0.0034 −0.0083 −0.0204 0.0528 −0.0159
−0.0010 0.0025 0.0062 −0.0159 0.2636


Σij 6= 0 so all variables are dependent: x1 6⊥ x2, x1 6⊥ x5, and so on.

But conditional independence is described by a Markov chain:

p(x1|x2, x3, x4, x5) = p(x1|x2).
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Graphical Lasso

Conditional independence in GGMs is described by sparsity in Θ.

Recall fitting multivariate Gaussian with L1-regularization,

argmin
Θ�0

Tr(SΘ)− log |Θ|+ λ‖Θ‖1,

which is called the graphical Lasso because it encourages a sparse graph.

Special case of graph structure learning.

Consider instead fitting DAG model with Gaussian probabilities:

DAG structure corresponds to sparsity in Cholesky of covariance.
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Tractability of UGMs

In UGMs we assume that

p(x) =
1

Z

∏
c∈C

φc(xc),

where Z is the constant such that∑
x1

∑
x2

· · ·
∑
xd

p(x) = 1 (discrete),

∫
x1

∫
x2

· · ·
∫
xd

p(x)dxddxd−1 . . . dx1 = 1 (cont).

So Z is

Z =
∑
x

∏
c∈C

φc(xc) (discrete),

∫
x

∏
c∈C

φc(xc)dx (cont)

Whether you can compute Z depends on the choice of φc:

Gaussian case: O(d3) in general, but O(d) for forests (no loops).
Discrete case: #P-hard in general, but O(dk2) for forests (no loops).
Continuous non-Gaussian: usually requires numerical integration.
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Summary

Plate Notation lets compactly draw graphs with repeated patterns.

There are fancier versions of plate notation called “probabilistic programming”.

Parameter learning in DAGs:

Can fit each p(xj |xpa(j)) independently.
Tabular parameterization, or treat as supervised learning.

Inference in DAGs:

Ancestral sampling and Monte Carlo methods work as faster.
Message-passing message sizes depend on graph structure.

Undirected graphical models factorize probability into non-negative potentials.

Simple conditional independence properties.
Include Gaussians as special case.

Next time: our first visit to the wild world of approximate inference.
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