CPSC 540: Machine Learning
Independent Component Analysis, Markov Chains

Mark Schmidt
University of British Columbia

Winter 2017
Assignment 3:
- Due tonight.
- 1 late day to hand in Wednesday, 2 for Monday.

Assignment 4:
- Due March 20.

For graduate students planning to graduate in May:
- Send me a private message on Piazza ASAP.
Last Time: Kernel Density Estimation

- We discussed kernel density estimation,

\[p(x) = \frac{1}{n} \sum_{i=1}^{n} k_R(x - x^i), \]

a mixture of simple densities \(k_R \) centered on each example.

- Flexible class of density models, though sensitive to bandwidth \(R \).
Last Time: Probabilistic PCA and Factor Analysis

- **PCA** is limit of a continuous mixture model under Gaussian assumptions,
 \[
 x|z \sim \mathcal{N}(W^T z, \sigma^2 I), \quad z \sim \mathcal{N}(0, I),
 \]
 as \(\sigma \to 0 \).

- **Factor analysis** (FA) generalizes to diagonal covariance \(D \),
 \[
 x|z \sim \mathcal{N}(W^T z, D), \quad z \sim \mathcal{N}(0, I),
 \]
 where \(W \) and \(D \) are estimated from data.

- Both are 100+ years old with tons of applications.
 - Classic tools for dividing data into “parts” and visualizing high-dimensional data.

- Probabilistic perspective allows us to do things like mixture of factor analyses.
Orthogonality and Sequential Fitting

- The PCA and FA solutions are not unique.

- Common heuristic:
 1. Enforce that rows of W have a norm of 1.
 2. Enforce that rows of W are orthogonal.
 3. Fit the rows of W sequentially.

- This leads to a unique solution up to sign changes.

- But there are other ways to resolve non-uniqueness (Murphy’s Section 12.1.3):
 1. Force W to be lower-triangular.
 2. Choose an informative rotation.
 3. Use a non-Gaussian prior.
Outline

1. Independent Component Analysis
2. Markov Chains
3. Monte Carlo Methods
Motivation for Independent Component Analysis (ICA)

- Factor analysis has found an enormous number of applications.
 - People really want to find the “factors” that make up their data.

- But factor analysis can’t even identify factor directions.
 - We can rotate W and obtain the same model.

- Independent component analysis (ICA) is a more recent approach (≈ 30 years).
 - Under certain assumptions, it can identify factors.

- The canonical application of ICA is blind source separation.
In **blind source separation** we have microphones recording multiple sources.

Goal is to reconstruct sources (factors) from the measurements.
Independent Component Analysis Applications

- ICA is replacing PCA/FA in many applications.

Some ICA applications are listed below:\(^1\)
- optical imaging of neurons\(^{17}\)
- neuronal spike sorting\(^{18}\)
- face recognition\(^{19}\)
- modeling receptive fields of primary visual neurons\(^{20}\)
- predicting stock market prices\(^{21}\)
- mobile phone communications\(^{22}\)
- color-based detection of the ripeness of tomatoes\(^{23}\)
- removing artifacts, such as eye blinks, from EEG data\(^{24}\)

- Recent work shows that ICA can often resolve direction of causality.
Independent Component Analysis

Markov Chains

Monte Carlo Methods

Limitations of Matrix Factorization

- As in PCA/FA, ICA is a matrix factorization method,

\[X \approx ZW. \]

- Let’s assume that \(X = ZW \) for a “true” \(W \) with \(k = d \).

- The 3 issues stopping us from finding “true” \(W \):
 1. **Label switching**: get same model if we permute rows of \(W \).
 - We can exchange row 1 and 2 of \(W \) (and same columns of \(Z \)).
 - Not a problem because we don’t care about order of factors.
 2. **Scaling**: get same model if multiply rows of \(W \) by constant.
 - If we multiply row 1 of \(W \) by \(\alpha \), could multiply column 1 of \(Z \) by \(1/\alpha \).
 - Can’t identify scale/sign, but might hope to identify direction.
 3. **Rotation**: we the get same model if we pre-multiply \(W \) by orthogonal \(Q \).
 - Because PCA/FA only depend on \(W^T W \), which equals \((QW)^T (QW) \).

- If we could address rotation, we could identify the directions.
Another Unique Gaussian Property

- Consider density written as a product of independent factors,
 \[p(z) = \prod_{c=1}^{k} p_c(z_c). \]

- If \(p(z) \) is rotation-invariant, \(p(Qz) = p(z) \), then it must be Gaussian.

- The (non-intuitive) magic behind ICA:
 - If product of independent factors is non-Gaussian, it isn’t rotationally symmetric.

- Implication: if at most 1 factor is Gaussian, we can identify them.
 - Up to permutation/sign/scaling (other rotations change distribution).
Independent Component Analysis

- In ICA we use the approximation,
 \[X \approx ZW \]
 where we want \(z_j \) to be non-Gaussian.

- A common strategy is maximum likelihood ICA assuming a heavy-tailed \(z_j \) like
 \[p(z_j) = \frac{1}{\pi \left(\exp(z_j) + \exp(-z_j) \right)} \]

- Another common strategy fits data while maximizing measure of non-Gaussianity:
 - Maximize kurtosis, which is 0 for Gaussians.
 - Minimize entropy, which is maximized with Gaussians.

- The fastICA method is a popular Newton-like method maximizing kurtosis.
ICA on Retail Purchase Data

- Cash flow from different stores over 3 years:

ICA on Retail Purchase Data

- Factors found using ICA:

1 Independent Component Analysis
2 Markov Chains
3 Monte Carlo Methods
Example: Vancouver Rain Data

- Consider density estimation on “Vancouver Rain” dataset (first 100 examples):

\[X = \begin{bmatrix}
\end{bmatrix}.

- Variable \(x_{ij} \) is whether or not it rained on day \(j \) in month \(i \).
 - Each row is a month, each column is a day of the month.
 - Data ranges from 1896-2004.

- The strongest signal in the data is the simple relationship:
 - If it rained yesterday, it’s likely to rain today (\(> 50\% \) chance of \(x_j = x_{j-1} \)).
Example: Vancouver Rain Data

- With independent Bernoullis, we get $p(x^i_j = \text{"rain"}) \approx 0.41$ (sadly).
- Real data vs. independent Bernoulli model:

 - Independent model misses correlations between days.
 - Mixture of Bernoullis could model correlation, but it’s inefficient:
 - “Position independence” of correlation would need lots of mixtures.
Markov Chains

- A better density model for this data is a Markov chain.

\[
p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2|x_1)p(x_3|x_2) \cdots p(x_d|x_{d-1})
\]

\[
= p(x_1) \prod_{j=2}^{d} p(x_j|x_{j-1}),
\]

where I’m using \(x_j\) as short for \(x_i^j\) for a generic \(i\).

- Models dependency of feature on previous feature.
 - Assuming a meaningful ordering of features.

- Makes a strong conditional independence assumption ("Markov property"),

\[
p(x_j|x_{j-1}, x_{j-2}, \ldots, x_1) = p(x_j|x_{j-1}),
\]

that the last “time” \(x_{j-1}\) tells us everything we need to know about the “past”.
 - What we want for the rain data.
Markov Chains

- Markov chains are ubiquitous in sequence/time-series models:

 9 Applications
 9.1 Physics
 9.2 Chemistry
 9.3 Testing
 9.4 Speech Recognition
 9.5 Information sciences
 9.6 Queueing theory
 9.7 Internet applications
 9.8 Statistics
 9.9 Economics and finance
 9.10 Social sciences
 9.11 Mathematical biology
 9.12 Genetics
 9.13 Games
 9.14 Music
 9.15 Baseball
 9.16 Markov text generators
Homogenous Markov Chains

- For rain data it makes sense to use a homogeneous Markov chain:
 - Transition probabilities $p(x_j | x_{j-1})$ are the same for all j.

- MLE for discrete x_j values is given by
 $$
 \theta_{x_j, x_{j-1}} = \frac{\text{(number of transitions from } x_{j-1} \text{ to } x_j)}{\text{(number of times we saw } x_{j-1} \text{ for } j > 1)},
 $$
 and we use the same $\theta_{x_j, x_{j-1}}$ for all j.

- A special case of the general idea of parameter tying:
 - “Making different parts of the model use the same parameters.”

- Advantages:
 1. You have more data available to estimate each parameter.
 - Don’t need to independently learn $p(x_j | x_{j-1})$ for days 14 and 15.
 2. You can have models of different sizes.
 - Same model can be used for any number of days.
Homogeneous Markov Chain for Rain Data

- Real vs. independent vs. homogeneous Markov chain:
We’ve previously considered density estimation for images of digits. We saw that independent Bernoullis do terrible
Density Estimation for MNIST Digits

- We can do a bit better with mixture of 10 Bernoullis:

- The shape is looking better, but it’s missing correlation between adjacent pixels.
 - Could we capture this with a Markov chain?
Density Estimation for MNIST Digits

- Samples from a homogeneous Markov chain (putting rows into one long vector):

- This captures correlations within rows, but misses dependencies between rows.
- “Position independence” of homogeneity means it loses position information.
Inhomogeneous Markov Chains

- **Markov chains** allow a different $p(x_j | x_{j-1})$ for each j.

- MLE for discrete x_j values is given by

$$\theta_{x_j, x_{j-1}}^j = \frac{\text{(number of transitions from } x_{j-1} \text{ to } x_j \text{ starting at } (j-1))}{\text{(number of times we saw } x_{j-1} \text{ at position } (j-1))},$$

- Such **inhomogeneous Markov chains** include **independent models** as special case:
 - We could set $p(x_j | x_{j-1}) = p(x_j)$.

Samples from an inhomogeneous Markov chain:

- We now have correlations within rows and position information.
- But Markov assumption isn't capturing dependency between rows.
- Next time we'll discuss graphical models which address this.
- You could alternately consider mixture of Markov chains.
Fun with Markov Chains

- Markov Chains from “Explained Visually”:
 http://setosa.io/ev/markov-chains

- Modeling Snakes and Ladders as a Markov chain:
 http://datagenetics.com/blog/november12011/index.html

- Modeling Candyland as Markov chain:
 http://www.datagenetics.com/blog/december12011/index.html

- Modeling Yahtzee as a Markov chain:
 http://www.datagenetics.com/blog/january42012/
Outline

1. Independent Component Analysis
2. Markov Chains
3. Monte Carlo Methods
Generating **samples** from a density model allows us to see what it’s learned.

To **sample from a mixture model** we used:
- Sample cluster z^i, then sample x^i based on the cluster parameters.

To **sample from a Markov chain** we:
1. Sample x_1 from initial probabilities $p(x_1)$.
2. Given x_1, sample x_2 from transition probabilities $p(x_2|x_1)$.
3. Given x_2, sample x_3 from transition probabilities $p(x_3|x_2)$.
4. ...
5. Given x_{d-1}, sample x_d from transition probabilities $p(x_d|x_{d-1})$.

This is called **ancestral sampling**.
- It’s easy if probabilities have nice form, and we know how to sample in 1D...
Sampling from a 1D Discrete Distribution

- Sampling methods assume we can sample uniformly over $[0, 1]$.
 - Usually, a "pseudo-random" number generator is good enough (like Matlab's `rand`).

- To sample from a **discrete distribution** like

 \[p(X = 1) = 0.4, \quad p(X = 2) = 0.1, \quad p(X = 3) = 0.2, \quad p(X = 4) = 0.3, \]

 we can divide up the $[0, 1]$ interval based on probability values:

 ![Interval Division Diagram]

 - If $u \sim \mathcal{U}(0, 1)$, 40% of the time it lands in x_1 region, 10% of time in x_2, and so on.
Sampling from a 1D Discrete Distribution

- Sampling methods assume we can sample uniformly over $[0, 1]$.
 - Usually, a "pseudo-random" number generator is good enough (like Matlab’s `rand`).

- To sample from a discrete distribution like

$$p(X = 1) = 0.4, \quad p(X = 2) = 0.1, \quad p(X = 3) = 0.2, \quad p(X = 4) = 0.3,$$

we can use the following procedure (`sampleDiscrete.m`):

1. Generate $u \sim U(0, 1)$.
2. If $u \leq p(X \leq 1)$, output 1.
3. If $u \leq p(X \leq 2)$, output 2.
4. If $u \leq p(X \leq 3)$, output 3.
5. Otherwise, output 4.

- With k states, cost to generate a sample is $O(k)$.

- You can go faster if you’re generating multiple samples:
 - One-time $O(k)$ cost to store the $p(X \leq c)$ for all c.
 - Per-sample $O(\log k)$ cost to do binary search for smallest $u \leq p(X \leq c)$.

Inverse Transform Method (Exact 1D Sampling)

- Recall that the cumulative distribution function (CDF) F is $p(X \leq x)$.
 - $F(x)$ is between 0 and 1 a gives proportion of times X is below x.

- We can also use the CDF to sample from continuous variables.

- The inverse CDF (or quantile function) F^{-1} is its inverse:
 - Given a number u between 0 and 1, gives x such that $p(X \leq x) = u$.

- Inverse transform method for exact sampling in 1D:
 1. Sample $u \sim U(0, 1)$.
 2. Compute $x = F^{-1}(u)$.

https://en.wikipedia.org/wiki/Cumulative_distribution_function
Sampling from a 1D Gaussian

- Consider a Gaussian distribution,

\[x \sim \mathcal{N}(\mu, \sigma^2). \]

- CDF has the form

\[F(x) = p(X \leq x) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right) \right], \]

where \(\text{erf} \) the CDF of \(\mathcal{N}(0, 1) \).

- Inverse CDF has the form

\[F^{-1}(u) = \mu + \sigma \sqrt{2} \text{erf}^{-1}(2u - 1). \]

- To sample from a Gaussian:
 1. Generate \(u \sim \mathcal{U}(0, 1) \).
 2. Compute \(F^{-1}(u) \).
Inference in Markov Chains

- Given density estimator, we often want probabilistic inferences like computing
 - **Marginals**: what is the probability that $x_j = c$?
 - **Conditionals**: if it rains today, what is the probability it will rain in 5 days?

- Easy for independent models: we *have* marginals $p(x_j)$ and $p(x_j | x_{j'}) = p(x_j)$.
 - Also easy for mixtures of independent models.

- For Markov chains, it’s more complicated...
Inference by Sampling

- Using samples from discrete Markov chain to compute marginals numerically:
 1. Generate a large number of samples x^i from the model.

$$X = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}.$$

 2. Compute frequency that variable j was equal to c.

$$p(x_2 = 1) = \frac{2}{4} = 0.5, \quad p(x_3 = 0) = \frac{0}{4} = 0.$$

- This is a special case of a Monte Carlo method.
 - Second most important class of ML algorithms (after numerical optimization).
 - Originally developed to build better atomic bombs :(
Monte Carlo Methods

- **Monte Carlo** methods approximate expectations of random functions,

\[
\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x)p(x) \quad \text{or} \quad \mathbb{E}[g(X)] = \int_{x \in \mathcal{X}} g(x)p(x)\,dx.
\]

- Using \(n \) samples \(x^i \) from \(p(x) \) the Monte Carlo estimate is

\[
\mathbb{E}[g(X)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^i).
\]

- We often take \(g(X) \) as indicator function \(\mathcal{I}_A \) for some event \(A \) so that

\[
\mathbb{E}[g(X)] = \mathbb{E}[\mathcal{I}_A] = p(A), \quad \text{and} \quad p(A) \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{I}_{A_i},
\]

which is a very simple “mixture of indicators” or kernel density estimator model.
Monte Carlo Method for Rolling Dice

Probability of event: (number of samples consistent with event)/(number of samples)
Monte Carlo Method for Inequalities

Monte Carlo estimate of probability that variable is above threshold,

\[g(x) = \mathbb{I}_{x \geq \tau}. \]
Monte Carlo Method for Mean

We could compute mean using \(g(x) = x \).

\[
E[x] \approx \frac{1}{n} \sum_{i=1}^{n} x^i.
\]

How could we sample from a 2D Gaussian?

- Use product rule \(p(x, z) = p(z|x)p(x) \) and ancestral sampling:
 - Sample \(x \) from marginal \(p(x) \), sample \(z \) from conditional \(p(z|x) \) (both Gaussian).
Monte Carlo Methods

- Monte Carlo estimate is **unbiased** approximation of expectation,

\[
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} g(x^i) \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[g(x^i)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[g(X)] = \mathbb{E}[g(X)],
\]

so by **law of large numbers** it converges (almost surely) to \(\mathbb{E}[g(X)]\) as \(n \to \infty\).

- Allows computing expectations in Markov chains even if \(x_j\) is continuous:
 - \(E[x_j]\) is approximated by average of \(x_j\) in the samples.
 - \(p(x_j \leq 10)\) is approximate by frequency of \(x_j\) being less than 10.
 - \(p(x_j \leq 10, x_{j+1} \geq 10)\) is approximated by frequency of joint event.
Exact Marginal Calculation

- Rate of convergence of Monte Carlo measured by variance of estimator.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.

- We can sometimes avoid Monte Carlo and compute univariate marginals exactly:
 - Markov chains with discrete or Gaussian probabilities.

- In the discrete case, this is given by the recursive Chapman-Kolmogorov equations,

 \[p(x_j) = \sum_{x_{j-1}} p(x_j, x_{j-1}) = \sum_{x_{j-1}} p(x_j | x_{j-1}) p(x_{j-1}). \]

 - Simple equation that gives probability of all paths leading to \(x_j = c \) for all \(c \).
Exact Marginal Calculation

- **Recursive Chapman-Kolmogorov (CK) equations:**
 \[p(x_j) = \sum_{x_{j-1}} p(x_j|x_{j-1})p(x_{j-1}). \]

- In Markov chains we're given \(p(x_1 = c) \) for all \(c \).
 - CK equations give us \(p(x_2 = c) \) for all \(c \) if we know \(p(x_1 = c) \) for all \(c \).
 - CK equations give us \(p(x_3 = c) \) for all \(c \) if we know \(p(x_2 = c) \) for all \(c \).
 - \(\ldots \)

- Cost of computing all univariate marginals is \(O(dk^2) \) if variable has \(k \) states.
 - We repeatedly multiply vector containing marginals by \(k \) by \(k \) transition matrix.

- We can also define a continuous version:
 \[p(x_j) = \int_{x_{j-1}} p(x_j|x_{j-1})p(x_{j-1}) = \int_{x_{j-1}} p(x_j, x_{j-1}) \]

- If \(p(x_{j-1}) \) and \(p(x_j|x_{j-1}) \) are Gaussian, then \(p(x_j, x_{j-1}) \) is Gaussian.
 - Implies \(p(x_j) \) is a Gaussian marginal.
Summary

- **Independent component analysis**: allows identifying non-Gaussian latent factors.
- **Markov chains** model dependencies between adjacent features.
- **Parameter tying** uses same parameters in different parts of a model.
 - Allows models of different sizes and more data for parameter estimation.
- **Inverse Transform** generates samples from simple 1D distributions.
- **Ancestral sampling** generates samples from a Markov chain.
- **Monte Carlo methods** approximate expectations using samples.
- **Chapman-Kolmogorov equations** compute exact univariate marginals.
 - For discrete or Gaussian Markov chains.

- Next time: weakening the Markov assumption.