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Admin

Assignment 3:

Due tonight.
1 late day to hand in Wednesday, 2 for Monday.

Assignment 4:

Due March 20.

For graduate students planning to graduate in May:

Send me a private message on Piazza ASAP.
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Last Time: Kernel Density Estimation

We discussed kernel density estimation,

p(x) =
1

n

n∑
i=1

kR(x− xi),

a mixture of simple densities kR centered on each example.

Flexible class of density models, though sensitive to bandwidth R.
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Last Time: Probabilistic PCA and Factor Analysis

PCA is limit of a continuous mixture model under Gaussian assumptions,

x|z ∼ N (W T z, σ2I), z ∼ N (0, I),

as σ → 0.

Factor analysis (FA) generalizes to diagonal covariance D,

x|z ∼ N (W T z,D), z ∼ N (0, I),

where W and D are estimated from data.

Both are 100+ years old with tons of applications.
Classic tools for dividing data into “parts” and visualizing high-dimensional data.

Probabilistic perspective allows us to do things like mixture of factor analyses.



Independent Component Analysis Markov Chains Monte Carlo Methods

Orthogonality and Sequential Fitting

The PCA and FA solutions are not unique.

Common heuristic:
1 Enforce that rows of W have a norm of 1.
2 Enforce that rows of W are orthogonal.
3 Fit the rows of W sequentially.

This leads to a unique solution up to sign changes.

But there are other ways to resolve non-uniqueness (Murphy’s Section 12.1.3):

Force W to be lower-triangular.
Choose an informative rotation.
Use a non-Gaussian prior.
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Motivation for Independent Component Analysis (ICA)

Factor analysis has found an enormous number of applications.

People really want to find the “factors” that make up their data.

But factor analysis can’t even identify factor directions.

We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach (≈ 30 years).

Under certain assumptions, it can identify factors.

The canonical application of ICA is blind source separation.
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Blind Source Separation

In blind source separation we have microphones recording multiple sources.

http://music.eecs.northwestern.edu/research.php

Goal is to reconstruct sources (factors) from the measurements.

http://music.eecs.northwestern.edu/research.php
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Independent Component Analysis Applications

ICA is replacing PCA/FA in many applications.

Recent work shows that ICA can often resolve direction of causality.
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Limitations of Matrix Factorization

As in PCA/FA, ICA is a matrix factorization method,

X ≈ ZW.

Let’s assume that X = ZW for a “true” W with k = d.

The 3 issues stopping us from finding “true” W :
1 Label switching: get same model if we permute rows of W .

We can exchange row 1 and 2 of W (and same columns of Z).
Not a problem because we don’t care about order of factors.

2 Scaling: get same model if multiply rows of W by constant.

If we multiply row 1 of W by α, could multiply column 1 of Z by 1/α.
Can’t identify scale/sign, but might hope to identify direction.

3 Rotataion: we the get same model if we pre-multiply W by orthogonal Q.

Because PCA/FA only depend on WTW , which equals (QW )T (QW ).

If we could address rotation, we could identify the directions.
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Another Unique Gaussian Property

Consider density written as a product of independent factors,

p(z) =

k∏
c=1

pc(zc).

If p(z) is rotation-invariant, p(Qz) = p(z), then it must be Gaussian.

The (non-intuitive) magic behind ICA:

If product of independent factors is non-Gaussian, it isn’t rotationally symmetric.

Implication: if at most 1 factor is Gaussian, we can identify them.

Up to permutation/sign/scaling (other rotations change distribution).
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Independent Component Analysis

In ICA we use the approximation,

X ≈ ZW

where we want zj to be non-Gaussian.

A common strategy is maximum likelihood ICA assuming a heavy-tailed zj like

p(zj) =
1

π(exp(zj) + exp(−zj))
.

Another common strategy fits data while maximizing measure of non-Gaussianity:
Maximize kurtosis, which is 0 for Gaussians.
Minimimize entropy, which is maximized with Gaussians.

The fastICA method is a popular Newton-like method maximizing kurtosis.
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ICA on Retail Purchase Data

Cash flow from different stores over 3 years:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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ICA on Retail Purchase Data

Factors found using ICA:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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Example: Vancouver Rain Data
Consider density estimation on “Vancouver Rain” dataset (first 100 examples):

X =




.

Variable xij is whether or not it rained on day j in month i.
Each row is a month, each column is a day of the month.
Data ranges from 1896-2004.

The strongest signal in the data is the simple relationship:
If it rained yesterday, it’s likely to rain today (> 50% chance of (xj == xj−1)).
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Example: Vancouver Rain Data

With independent Bernoullis, we get p(xij =“rain”) ≈ 0.41 (sadly).

Real data vs. independent Bernoulli model:

Independent model misses correlations between days.

Mixture of Bernoullis could model correlation, but it’s inefficient:

“Position independence” of correlation would need lots of mixtures.
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Markov Chains

A better density model for this data is a Markov chain.

p(x1, x2, . . . , xd) = p(x1)p(x2|x1)p(x3|x2) · · · p(xd|xd−1)

= p(x1)︸ ︷︷ ︸
initial prob.

d∏
j=2

p(xj |xj−1)︸ ︷︷ ︸
transition prob.

,

where I’m using xj as short for xij for a generic i.

Models dependency of feature on previous feature.
Assuming a meaningful ordering of features.

Makes a strong conditional independence assumption (“Markov property”),

p(xj |xj−1, xj−2, . . . , x1) = p(xj |xj−1),

that the last “time” xj−1 tells us everything we need to know about the “past”.
What we want for the rain data.
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Markov Chains

Markov chains are ubiquitous in sequence/time-series models:



Independent Component Analysis Markov Chains Monte Carlo Methods

Homogenous Markov Chains
For rain data it makes sense to use a homogeneous Markov chain:

Transition probabilities p(xj |xj−1) are the same for all j.

MLE for discrete xj values is given by

θxj ,xj−1 =
(number of transitions from xj−1 to xj)

(number of times we saw xj−1 for j > 1)
,

and we use the same θxj ,xj−1 for all j.

A special case of the general idea of parameter tieing:
“Making different parts of the model use the same parameters.”

Advantages:
1 You have more data available to estimate each parameter.

Don’t need to independently learn p(xj |xj−1) for days 14 and 15.
2 You can have models of different sizes.

Same model can be used for any number of days.
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Homogeneous Markov Chain for Rain Data

Real vs. independent vs. homogeneous Markov chain:
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Density Estimation for MNIST Digits

We’ve previously considered density estimation for images of digits.

We saw that independent Bernoullis do terrible
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Density Estimation for MNIST Digits

We can do a bit better with mixture of 10 Bernoullis:

The shape is looking better, but it’s missing correlation between adjacent pixels.

Could we capture this with a Markov chain?
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Density Estimation for MNIST Digits

Samples from a homogeneous Markov chain (putting rows into one long vector):

This captures correlations within rows, but misses dependencies between rows.

“Position independence” of homogeneity means it loses position information.



Independent Component Analysis Markov Chains Monte Carlo Methods

Inhomogeneous Markov Chains

Markov chains allow a different p(xj |xj−1) for each j.

MLE for discrete xj values is given by

θjxj ,xj−1
=

(number of transitions from xj−1 to xj starting at (j − 1))

(number of times we saw xj−1 at position (j − 1))
,

Such inhomogeneous Markov chains include independent models as special case:

We could set p(xj |xj−1) = p(xj).
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Density Estimation for MNIST Digits
Samples from an inhomogeneous Markov chain:

We now have correlations within rows and position information.
But Markov assumption isn’t capturing dependency between rows.
Next time we’ll discuss graphical models which address this.
You could alternately consider mixture of Markov chains.
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Fun with Markov Chains

Markov Chains from “Explained Visually”:
http://setosa.io/ev/markov-chains

Modeling Snakes and Ladders as a Markov chain:
http://datagenetics.com/blog/november12011/index.html

Modeling Candyland as Markov chain:
http://www.datagenetics.com/blog/december12011/index.html

Modeling Yahtzee as a Markov chain:
http://www.datagenetics.com/blog/january42012/

http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/index.html
http://www.datagenetics.com/blog/january42012/
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Sampling from a Markov Chains

Generating samples from a density model allows us to see what it’s learned.

To sample from a mixture model we used:

Sample cluster zi, then sample xi based on the cluster parameters.

To sample from a Markov chain we:
1 Sample x1 from initial probabilities p(x1).
2 Given x1, sample x2 from transition probabilities p(x2|x1).
3 Given x2, sample x3 from transition probabilities p(x3|x2).
4 . . .
5 Given xd−1, sample xd from transition probabilities p(xd|xd−1).

This is called ancestral sampling.

It’s easy if probabilities have nice form, and we know how to sample in 1D...
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Sampling from a 1D Discrete Distribution
Sampling methods assume we can sample uniformly over [0, 1].

Usually, a ”pseudo-random” number generator is good enough (like Matlab’s rand).

To sample from a discrete distribution like

p(X = 1) = 0.4, p(X = 2) = 0.1, p(X = 3) = 0.2, p(X = 4) = 0.3,

we can divide up the [0, 1] interval based on probability values:

If u ∼ U(0, 1), 40% of the time it lands in x1 region, 10% of time in x2, and so on.
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Sampling from a 1D Discrete Distribution
Sampling methods assume we can sample uniformly over [0, 1].

Usually, a ”pseudo-random” number generator is good enough (like Matlab’s rand).

To sample from a discrete distribution like

p(X = 1) = 0.4, p(X = 2) = 0.1, p(X = 3) = 0.2, p(X = 4) = 0.3,

we can use the following procedure (sampleDiscrete.m):
1 Generate u ∼ U(0, 1).
2 If u ≤ p(X ≤ 1), output 1.
3 If u ≤ p(X ≤ 2), output 2.
4 If u ≤ p(X ≤ 3), output 3.
5 Otherwise, output 4.

With k states, cost to generate a sample is O(k).
You can go faster if you’re generating multiple samples:

One-time O(k) cost to store the p(X ≤ c) for all c.
Per-sample O(log k) cost to do binary search for smallest u ≤ p(X ≤ c).
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Inverse Transform Method (Exact 1D Sampling)

Recall that the cumulative distribution function (CDF) F is p(X ≤ x).
F (x) is between 0 and 1 a gives proportion of times X is below x.

We can also use the CDF to sample from continuous variables.

https://en.wikipedia.org/wiki/Cumulative_distribution_function

The inverse CDF (or quantile function) F−1 is its inverse:

Given a number u between 0 and 1, gives x such that p(X ≤ x) = u.

Inverse transfrom method for exact sampling in 1D:
1 Sample u ∼ U(0, 1).
2 Compute x = F−1(u).

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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Sampling from a 1D Gaussian

Consider a Gaussian distribution,

x ∼ N (µ, σ2).

CDF has the form

F (x) = p(X ≤ x) = 1

2

[
1 + erf

(
x− µ
σ
√
2

)]
,

where erf the CDF of N (0, 1).

Inverse CDF has the form

F−1(u) = µ+ σ
√
2erf−1(2u− 1).

To sample from a Gaussian:
1 Generate u ∼ U(0, 1).
2 Compute F−1(u).
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Inference in Markov Chains

Given density esimator, we often want probabilistic inferences like computing

Marginals: what is the probability that xj = c?
Conditionals: if it rains today, what is the probability it will rain in 5 days?

Easy for independent models: we have marginals p(xj) and p(xj |xj′) = p(xj).

Also easy for mixtures of independent models.

For Markov chains, it’s more complicated...
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Inference by Sampling

Using samples from discrete Markov chain to compute marginals numerically:
1 Generate a large number of samples xi from the model.

X =


0 0 1 0
1 1 1 0
0 0 1 1
1 1 1 1

 .
2 Compute frequency that variable j was equal to c.

p(x2 = 1) =
2

4
= 0.5, p(x3 = 0) =

0

4
= 0.

This is a special case of a Monte Carlo method.

Second most important class of ML algorthms (after numerical optimization).
Originally developed to build better atomic bombs :(
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Monte Carlo Methods

Monte Carlo methods approximate expectations of random functions,

E[g(X)] =
∑
x∈X

g(x)p(x)︸ ︷︷ ︸
discrete x

or E[g(X)] =

∫
x∈X

g(x)p(x)dx︸ ︷︷ ︸
continuous x

.

Using n samples xi from p(x) the Monte Carlo estimate is

E[g(X)] ≈ 1

n

n∑
i=1

g(xi).

We often take g(X) as indicator function I{A} for some event A so that

E[g(X)] = E[I{A}] = p(A), and p(A) ≈ 1

n

n∑
i=1

I{Ai},

which is a very simple “mixture of indicators” or kernel density estimator model.
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Monte Carlo Method for Rolling Di

Probability of event: (number of samples consistent with event)/(number of samples)
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Monte Carlo Method for Inequalities

Monte Carlo estimate of probability that variable is above threshold,

g(x) = Ix≥τ .
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Monte Carlo Method for Mean
We could compute mean using g(x) = x.

E[x] ≈ 1

n

n∑
i=1

xi.

How could we sample from a 2D Gaussian?
Use product rule p(x, z) = p(z|x)p(x) and ancestral sampling:

Sample x from marginal p(x), sample z from conditional p(z|x) (both Gaussian).
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Monte Carlo Methods

Monte Carlo estimate is unbiased approximation of expectation,

E

[
1

n

n∑
i=1

g(xi)

]
=

1

n

n∑
i=1

E[g(xi)]

=
1

n

n∑
i=1

E[g(X)] = E[g(X)],

so by law of large numbers it converges (almost surely) to E[g(X)] as n→∞.

Allows computing expectations in Markov chains even if xj is continuous:

E[xj ] is approximated by average of xj in the samples.
p(xj ≤ 10) is approximate by frequency of xj being less than 10.
p(xj ≤ 10, xj+1 ≥ 10) is approximated by frequency of joint event.
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Exact Marginal Calculation

Rate of convergence of Monte Carlo measured by variance of estimator.

If all samples look the same, it converges quickly.
If samples look very different, it can be painfully slow.

We can sometimes avoid Monte Carlo and compute univariate marginals exactly:

Markov chains with discrete or Gaussian probabilities.

In the discrete case, this is given by the recursive Chapman-Kolmogorov equations,

p(xj) =
∑
xj−1

p(xj , xj−1)︸ ︷︷ ︸
marginalization rule

=
∑
xj−1

p(xj |xj−1)p(xj−1)︸ ︷︷ ︸
product rule

.

Simple equation that gives probability of all paths leading to xj = c for all c.
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Exact Marginal Calculation
Recursive Chapman-Kolmogorov (CK) equations:

p(xj) =
∑
xj−1

p(xj |xj−1)p(xj−1).

In Markov chains we’re given p(x1 = c) for all c.
CK equations give us p(x2 = c) for all c if we know p(x1 = c) for all c.
CK equations give us p(x3 = c) for all c if we know p(x2 = c) for all c.
. . .

Cost of computing all univarite marginals is O(dk2) if variable has k states.
We repeatedly multiply vector containing marginals by k by k transition matrix.

We can also define a continuous version:

p(xj) =

∫
xj−1

p(xj |xj−1)p(xj−1) =
∫
xj−1

p(xj , xj−1)

If p(xj−1) and p(xj |xj−1) are Gaussian, then p(xj , xj−1) is Gaussian.
Implies p(xj) is a Gaussian marginal.
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Summary

Independent componenet analysis: allows identifying non-Gaussian latent factors.

Markov chains model dependencies betwee adjacent features.

Parameter tieing uses same parameters in different parts of a model.

Allows models of different sizes and more data for parameter estimation.

Inverse Transform generates samples from simple 1D distributions.

Ancestral sampling generates samples from a Markov chain.

Monte Carlo methods approximate expectations using samples.

Chapman-Kolmogorov equations compute exact univariate marginals.

For discrete or Gaussian Markov chains.

Next time: weakening the Markov assumption.
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