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Comments on TensorFlow Talk

Most of the talk focused on large-scale issues, which I won’t cover:

Synchronous vs. asynchronous (540 course project topic in 2014).
Issues related to distributed data/parameters.

Some models were mentioned that I’m plannning to get to:

Word2vec.
RNNs.
LSTMs.
Sequence-to-sequence.
Neural machine translation.
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Last Time: Mixture of Gaussians

The classic mixture of Gaussians model uses a PDF of the form

p(xi|Θ) =

k∑
c=1

p(zi = c|Θ)︸ ︷︷ ︸
prob(cluster)

p(xi|zi = c,Θ)︸ ︷︷ ︸
prob(x) given cluster

,

where each mixture component is a multivariate Gaussian,

p(xi|zi = c,Θ) =
1

(2π)
d
2 |Σc|

1
2

exp

(
−1

2
(xi − µc)TΣ−1

c (xi − µc)
)
,

and we model the mixture probabilities as categorical,

p(zi = c|Θ) = πc.

Finding the optimal parameter Θ = {πc, µc,Σc}kc=1 is NP-hard.
But EM updates for improving parameters use analytic form of Gaussian MLE.
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Expectation Maximization for Mixture of Gaussians
EM update for mixture models is often written in terms of responsibilitites,

ric , p(zi = c|xi,Θt) =
p(xi|zi = c,Θt)p(zi = c|Θt)∑k

c′=1 p(x
i|zi = c′,Θt)p(zi = c′|Θt)

,

the probability that cluster c generated xi.
For mixture of Gaussian, EM updates takes the form

πt+1
c =

1

n

n∑
i=1

ric (proportion of examples soft-assigned to cluster c)

µt+1
c =

∑n
i=1 r

i
cx

i

nπt+1
c

(mean of examples soft-assigned to cluster c)

Σt+1
c =

∑n
i=1 r

i
c(x

i − µt+1
c )(xi − µt+1

c )T

nπt+1
c

(covariance of examples soft-assigned to c).

Derivation is tedious (see notes on webpage).
Uses distributive law, probabilities sum to one, Lagrangian, weighted Gaussian MLE.

We get k-means if ric = 1 for most likely cluster, and Σc is constant across c.
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Expectation Maximization for Mixture of Gaussians

EM for fitting mixture of Gaussians in action:
https://www.youtube.com/watch?v=B36fzChfyGU

https://www.youtube.com/watch?v=B36fzChfyGU
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K-Means vs. Mixture of Gaussians

K-means is special case of “hard EM” for mixture of Gaussians (common Σc).

But EM allows points to be assigned to be multiple clusters
General Σc in mixture of Gaussians allow non-convex clusters.



Monotonicity of EM Kernel Density Estimation Factor Analysis

K-Means vs. Mixture of Gaussians

K-means is special case of “hard EM” for mixture of Gaussians (common Σc).

But EM allows points to be assigned to be multiple clusters
General Σc in mixture of Gaussians allow non-convex clusters.



Monotonicity of EM Kernel Density Estimation Factor Analysis

K-Means vs. Mixture of Gaussians
K-means is special case of “hard EM” for mixture of Gaussians (common Σc).

But EM allows points to be assigned to be multiple clusters
General Σc in mixture of Gaussians allow non-convex clusters.



Monotonicity of EM Kernel Density Estimation Factor Analysis

K-Means vs. Mixture of Gaussians
K-means is special case of “hard EM” for mixture of Gaussians (common Σc).

But EM allows points to be assigned to be multiple clusters
General Σc in mixture of Gaussians allow non-convex clusters.



Monotonicity of EM Kernel Density Estimation Factor Analysis

K-Means vs. Mixture of Gaussians

K-means is special case of “hard EM” for mixture of Gaussians (common Σc).

But EM allows points to be assigned to be multiple clusters
General Σc in mixture of Gaussians allow non-convex clusters.

https://en.wikipedia.org/wiki/K-means_clustering

https://en.wikipedia.org/wiki/K-means_clustering
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Expectation Maximization

EM considers learning with observed variables O and hidden variables H.

In this case the “observed” marginal log-liklihooed has a nasty form,

log p(O|Θ) = log

(∑
H

p(O,H|Θ)

)
.

EM applies when “complete” likelihood, p(O,H|Θ), has a nice form.

EM iterations take the form

Θt+1 = argmax
Θ

{∑
H

αH log p(O,H|Θ)

}
,

where αH = p(H|O,Θt).
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

Proof:
− log p(O|Θ) = − log

(∑
h

p(O,H|Θ)

)

= − log

(∑
H

αH
p(O,H|Θ)

αH

)
(for αH 6= 0)

≤ −
∑
H

αH log

(
p(O,H|Θ)

αH

)
,

becuase − log(z) is convex.
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

Using that log turns multiplication into addition we get

− log p(O|Θ) ≤ −
∑
H

αH log

(
p(O,H|Θ)

αH

)
= −

∑
H

αH log p(O,H|Θ)︸ ︷︷ ︸
Q(Θ|Θt)

+
∑
H

αH logαH︸ ︷︷ ︸
negative entropy

= −Q(Θ|Θt)− entropy(α),

which we can use to bound log p(O|Θt+1).
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

To bound p(O|Θt) we use definition of conditional,

p(H|O,Θt) =
p(O,H|Θt)

p(O|Θt)
or log p(O|Θt) = log p(O,H|Θt)− log p(H|O,Θt).

Multiply by αH and sum equality over H values,∑
H

αH log p(O|Θt) =
∑
H

αH log p(O,H|Θt)−
∑
H

αH log p(H|O,Θt).

Using the EM definition of αh we have

log p(O|Θt)
∑
H

αH︸ ︷︷ ︸
=1

= Q(Θt|Θt) + entropy(α).
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Bound on Progress of Expectation Maximization

The iterations of the EM algorithm satisfy

log p(O|Θt+1)− log p(O|Θt) ≥ Q(Θt+1|Θt)−Q(Θt|Θt),

Thus we have the two bounds

log p(O|Θ) ≥ Q(Θ|Θt) + entropy(α)

log p(O|Θt) = Q(Θt|Θt) + entropy(α).

Subtracting these and using Θ = Θt+1 gives the result.

Inequality holds for any choice of Θt+1.
Approximate M-steps are ok: we just need to decrease Q to improve likelihood.

Implies entropy of αH gives tightness of bound.
If variables are “predictable” then the bound is tight and we get “hard” EM.
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Discussing of EM for Mixtures of Gaussians

EM and mixture models are used in a ton of applications.

One of the default unsupervised learning methods.

EM usually doesn’t reach global optimum.

Classic solution: restart the algorithm from different initializations.

MLE for some clusters may not exist (e.g., only responsible for one point).

Use MAP estimates or remove these clusters.

How do you choose number of mixtures k?

Use cross-validation or other model selection criteria.

Can you make it robust?

Use mixture of Laplace of student t distributions.

Are there alternatives to EM?

Could use gradient descent on NLL.
Spectral and other recent methods have some global guarantees.
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A Non-Parametric Mixture Model
The classic parametric mixture model has the form

p(x) =

k∑
c=1

p(z = c)p(x|z = c).

A natural way to define a non-parametric mixture model is

p(x) =

n∑
i=1

p(z = i)p(x|z = i),

where we have one mixture for every training example i.

Common example: z is uniform and x|z is Gaussian with mean xi,

p(x) =
1

n

n∑
i=1

N (x|xi, σ2I),

and we use a shared covariance σ2I (with σ estimated by cross-validation).

This is a special case of kernel density estimation or Parzen window.
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Histogram vs. Kernel Density Estimator

Think of kernel density estimator as a smooth version of histogram:

https://en.wikipedia.org/wiki/Kernel_density_estimation

https://en.wikipedia.org/wiki/Kernel_density_estimation
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Parzen Window vs. Gaussian and Mixture of Gaussian
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Parzen Window vs. Gaussian and Mixture of Gaussian
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Kernel Density Estimation

The 1D kernel density estimation (KDE) model uses

p(x) =
1

n

n∑
i=1

kσ(x− xi),

where the PDF k is the “kernel” and the parameter σ is the “bandwidth”.

In the previous slide we used the (normalized) Gaussian kernel,

k1(x) =
1√
2π

exp

(
−x

2

2

)
, kσ(x) =

1

σ
√

2π
exp

(
− x2

2σ2

)
.

Note that we can add a bandwith σ to any PDF k1, using

kσ(x) =
1

σ
k1

(x
σ

)
,

which follows from the change of variables formula for probabilities.

Under common choices of kernels, KDEs can model any continuous density.
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Efficient Kernel Density Estimation

KDE with the Gaussian kernel is slow at test time:

We need to compute distance of test point to every training point.

A common alternative is the Epanechnikov kernel,

k1(x) =
3

4

(
1− x2

)
I [|x| ≤ 1] .

This kernel has two nice properties:

Epanechnikov showed that it is asymptotically optimal in terms of squared error.
It can be much faster to use since it only depends on nearby points.

You can use fast methods for computing nearest neighbours.

It is non-smooth at the boundaries but many smooth approximations exist.

Quartic, triweight, tricube, cosine, etc.
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Visualization of Common Kernel Functions
Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

https://en.wikipedia.org/wiki/Kernel_%28statistics%29

https://en.wikipedia.org/wiki/Kernel_%28statistics%29
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Multivariate Kernel Density Estimation

The multivariate kernel density estimation (KDE) model uses

p(x) =
1

n

n∑
i=1

kR(x− xi),

The most common kernel is again the Gaussian,

kI(x) =
1

(2π)
d
2

exp

(
−‖x‖

2

2

)
.

We can add a bandwith matrix R to any kernel using

kR(x) =
1

|R|
k1(R−1x) (generalizes kσ(x) =

1

σ
k1

(x
σ

)
),

and multivariate Gaussian with covariance Σ corresponds to R = Σ
1
2 .

To reduce number of parameters, we typically:
Use a product of independent distributions and use R = σI for some σ.
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Mean-Shift Clustering

Mean-shift clustering uses KDE for clustering:
Define a KDE on the training examples, and then for test example x̂:

Run gradient descent starting from x̂.

Clusters are points that reach same local minimum.

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering

Not sensitive to initialization, no need to choose k, can find non-convex clusters.

Similar to density-based clustering from 340.

But doesn’t require uniform density within cluster.
And can be used for vector quantization.

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
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Expectation Maximization with Many Discrete Variables

EM iterations take the form

Θt+1 = argmax
Θ

{∑
H

αH log p(O,H|Θ)

}
,

and with multiple MAR variables {H1, H2, . . . ,Hm} this means

Θt+1 = argmax
Θ

∑
H1

∑
H2

· · ·
∑
Hm

αH log p(O,H|Θ)

 ,

In mixture models, EM sums over all kn possible cluster assignments.

In binary semi-supervised learning, EM sums over all 2t assignments to ỹ.

But conditional independence allows efficient calculation in the above cases.
The H are independent given {O,Θ} which simplifies sums (see EM notes).
We’ll cover general case when we discuss probabilistic graphical models.
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Today: Continuous-Latent Variables

If H is continuous, the sums are replaceed by integrals,

log p(O|Θ) = log

(∫
H
p(O,H|Θ)dH

)
(log-likelihood)

Θt+1 = argmax
Θ

{∫
H
αH log p(O,H|Θ)dH

}
(EM update),

where if have 5 hidden varialbes
∫
H means

∫
H1

∫
H2

∫
H3

∫
H4

∫
H5

.

Even with conditional independence these might be hard.

Gaussian assumptions allow efficient calculation of these integrals.

We’ll cover general case when we get discuss Bayesian statistics.
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Today: Continuous-Latent Variables

In mixture models, we have a discrete latent variable z:

In mixture of Gaussians, if you know the cluster z then p(x|z) is a Gaussian.

In latent-factor models, we have continuous latent variables z:

In probabilistic PCA, if you know the latent-factors z then p(x|z) is a Gaussian.

But what would a continuous z be useful for?

Do we really need to start solving integrals?
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Today: Continuous-Latent Variables

Data may live in a low-dimensional manifold:

http://isomap.stanford.edu/handfig.html

Mixtures are inefficient at representing the 2D manifold.

http://isomap.stanford.edu/handfig.html
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Principal Component Analysis (PCA)
PCA replaces X with a lower-dimensional approximation Z.

Matrix Z has n rows, but typically far fewer columns.
PCA is used for:

Dimensionality reduction: replace X with a lower-dimensional Z.
Outlier detection: if PCA gives poor approximation of xi, could be outlier.
Basis for linear models: use Z as features in regression model.
Data visualization: display zi in a scatterplot.
Factor discovering: discover important hidden “factors” underlying data.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html
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PCA Notation

PCA approximates the original matrix by factor-loadings Z and latent-factors W ,

X ≈ ZW.

where Z ∈ Rn×k, W ∈ Rk×d, and we assume columns of X have mean 0.

We’re trying to split redundancy in X into its important “parts”.

We typically take k << d so this requires far fewer parameters:


︸ ︷︷ ︸
X∈Rn×d

≈




︸ ︷︷ ︸
Z∈Rn×k

[ ]
︸ ︷︷ ︸

W∈Rk×d

Also computationally convenient:
Xv costs O(nd) but Z(Wv) only costs O(nk + dk).



Monotonicity of EM Kernel Density Estimation Factor Analysis

PCA Notation

Using X ≈ ZW , PCA approximates each examples xi as

xi ≈W T zi.

Usually we only need to estimate W :

If using least squares, then given W we can find zi from xi using

zi = argmin
z
‖xi −WT z‖2 = (WWT )−1Wxi.

We often assume that W T is orthogonal:

This means that WWT = I.
In this case we have zi = Wxi.

In standard formulations, solution only unique up to rotation:

Usually, we fit the rows of W sequentially for uniqueness.
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Two Classic Views on PCA

PCA approximates the original matrix by latent-variables Z and latent-factors W ,

X ≈ ZW.

where Z ∈ Rn×k, W ∈ Rk×d.
Two classical interpretations/derivations of PCA:

1 Choose latent-factors W to minimize error (“synthesis view”):

argmin
Z∈Rn×k,W∈Rk×d

‖X − ZW‖2F =

n∑
i=1

d∑
j=1

(xij − (wj)
T zi)2.

2 Choose orthogonal latent-factors WT to maximize variance (“analysis view”):

argmax
W∈Rk×d

=
n∑

i=1

‖zi − µz‖2 =
n∑

i=1

‖Wxi‖2 (zi = Wxi and µz = 0)

=
n∑

i=1

Tr((xi)TWTWxi) = Tr(WTW
n∑

i=1

xi(xi)T ) = Tr(WTWXTX),

and we note that XTX is n times sample covariance S because data is centered.
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Probabilistic PCA

With zero-mean (“centered”) data, in PCA we assume that

x ≈W T z.

In probabilistic PCA we assume that

x ∼ N (W T z, σ2I), z ∼ N (0, I).

(we can actually use any Gaussian density for z)

Since z is hidden, our observed likelihood integrates over z,

p(x|W ) =

∫
z
p(x, z|W )dz.

Looks ugly, but can be computed due to the Gaussians assumptions:

This marginal distribution is Gaussian.
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Manipulating Gaussians

From the assumptions of the previous slide we have

p(x|z,W ) ∝ exp

(
−(x−W T z)T (x−W T z)

2σ2

)
, p(z) ∝ exp

(
−z

T z

2

)
.

Multiplying and expanding we get

p(x, z|W ) = p(x|z,W )p(z|W )

= p(x|z,W )p(z) (z ⊥W )

∝ exp

(
−(x−W T z)T (x−W T z)

2σ2
− zT z

2

)
= exp

(
−x

Tx− xTW T z − zTWx+ zTWW T z

2σ2
+
zT z

2

)
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Manipulating Gaussians
So the “complete” likelihood satsifies

p(x, z|W ) ∝ exp

(
−
xT x− xTWT z − zTWx+ zTWWT z

2σ2
+
zT z

2

)
= exp

(
−

1

2

(
xT
(

1

σ2
I

)
x+ xT

(
1

σ2
WT

)
z + zT

(
1

σ2
W

)
x+ zT

(
1

σ2
WWT + I

)
z

))
,

We can re-write the exponent as a quadratic form,

p(x, z|W ) ∝ exp

(
−1

2

[
xT zT

] [ 1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

] [
x
z

])
,

This has the form of a Gaussian distribution,

p(v|W ) ∝ exp

(
−1

2
(v − µ)TΣ−1(v − µ)

)
,

with v =

[
x
z

]
, µ = 0, and Σ−1 =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

]
.
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Manipulating Gaussians

Remember that if we write multivariate Gaussian in partitioned form,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

then the marginal distribution p(x) (integrating over z) is given by

x ∼ N (µx,Σxx).

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Manipulating Gaussians

Remember that if we write multivariate Gaussian in partitioned form,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

then the marginal distribution p(x) (integrating over z) is given by

x ∼ N (µx,Σxx).

For probabilistic PCA we assume µx = 0, but we partitioned Σ−1 instead of Σ.

To get Σ we can use a partitioned matrix inversion formula,

Σ =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

]−1

=

[
W TW + σ2I W T

W I

]
,

which gives that solution to integrating over z is

x|W ∼ N (0,W TW + σ2I).
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Notes on Probabilistic PCA

Negative log-likelihood of observed data has the form

− log p(x|W ) =
n

2
Tr(SC) +

n

2
log |C|+ const.,

where C = W TW + σ2I and S = XTX.

Not convex, but non-global stationary points are saddle points.

Regular PCA is obtained as limit of σ → 0; for orthogonal W T we have

using matrix determinant lemma: |W TW + σ2I| = |I +
1

σ2
WW T | · |σ2I| → 1.

Can reduce cost from O(d3) to O(k3) with matrix inversion/determinant lemmas:
Allows us to work with WWT instead of WTW .

We can get p(z|x,W ) using that conditional of Gaussians is Gaussian.

We could consider different distribution for xi|zi (but integrals are ugly):
E.g., Laplace of student if you want it to be robust.
E.g., logistic or softmax if you have discrete xij .
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Generalizations of Probabilistic PCA
Why do we need a probabilistic interpretation of PCA?

Good excuse to play with Gaussian identities and matrix formulas?
We now understand that PCA fits a Gaussian with restricted covariance:

Hope is that WTW + σI is a good approximation of full covariance XTX.
We can do fancy things like mixtures of PCA models.

http://www.miketipping.com/papers/met-mppca.pdf

Lets us understand connection between PCA and factor analysis.

http://www.miketipping.com/papers/met-mppca.pdf
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Factor Analysis

Factor analysis (FA) is a method for discovering latent-factors.

Historical applications are measures of intelligence and personality traits.

Some controversy, like trying to find factors of intelligence due to race.
(without normalizing for socioeconomic factors)

https://new.edu/resources/big-5-personality-traits

But a standard tool and widely-used across science and engineering.

https://new.edu/resources/big-5-personality-traits
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Factor Analysis

FA approximates the original matrix by latent-variables Z and latent-factors W ,

X ≈ ZW.

Which should sound familiar...

Are PCA and FA the same?

Both are more than 100 years old.
People are still fighting about whether they are the same:

Doesn’t help that some software packages run PCA when you call FA.
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PCA vs. Factor Analysis

In probabilistic PCA we assume

x|z ∼ N (W T z, σ2I), z ∼ N (0, I),

and we obtain PCA as σ → 0.

In FA we assume
x|z ∼ N (W T z,D), z ∼ N (0, I),

where D is a diagonal matrix.

The difference is that you can have a noise variance for each dimension.

Repeating the previous exercise we get that

x ∼ N (0,W TW +D).
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PCA vs. Factor Analysis

We can write non-centered versions of both models:

Probabilistic PCA:

x|z ∼ N (WT z + µ, σ2I), z ∼ N (0, I),

Factor analysis:
x|z ∼ N (WT z + µ,D), z ∼ N (0, I),

where D is a diagonal matrix.

A different perspective is that these models assume

x = W T z + ε,

where PPCA has ε ∼ N (µ, σ2I) and FA has ε ∼ N (µ,D).

So in FA has extra degrees of freedom in variance of individual variables.
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PCA vs. Factor Analysis

http:

//stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi

Remember in 340 that difference with PCA and ISOMAP/t-SNE was huge.

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
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Factor Analysis Discussion

No closed-form solution for FA, and can find different local optima.

Unlike PCA, FA doesn’t change if you scale variables.

FA doesn’t chase large-noise features that are uncorrelated with other features.

Unlike PCA, FA changes if you rotate data.

Similar to PCA, objective only depends on W TW so you can rotate/mirror the
factors

W TW = W T QTQ︸ ︷︷ ︸
I

W = (WQ)T (WQ),

for an orthogonal matrix Q.

So you can’t interpret multiple factors as being unique.
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Summary

Monotonicity of EM: EM is guaranteed not to decrease likelihood.

Kernel density estimation: Non-parametric continuous density estimation method.

PCA is a classic method for dimensionality reduction.

Probabilistic PCA is a continuous latent-variable probabilistic generalization.

Factor analysis extends probabilistic PCA with different noise in each dimension.

Next time: the algorithm we didn’t cover in 340 from the list of
“The 10 Algorithms Machine Learning Engineers Need to Know”.
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Bonus Slide: Mixture of Experts

Classic generative model for supervised learning uses

p(yi|xi) ∝ p(xi|yi)p(yi),

and typically p(xi|yi) is assumed by Gaussian (LDA) or independent (naive Bayes).

But we could allow more flexibility by using a mixture model,

p(xi|yi) =

k∑
c=1

p(zi = c|yi)p(xi|zi = c, yi).

Instead of a generative model, we could also take a mixture of regression models,

p(yi|xi) =

k∑
c=1

p(zi = c|xi)p(yi|zi = c, xi).

Called a “mixture of experts” model:
Each regression model is an “expert” for certain values of xi.
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