
CPSC 540: Machine Learning
Matrix Notation

Mark Schmidt

University of British Columbia

Winter 2017

Admin

Auditting/registration forms:

Submit them at end of class, pick them up end of next class.
I need your prereq form before I’ll sign registration forms.

Website/Piazza:

https://www.cs.ubc.ca/~schmidtm/Courses/540-W17.
https://piazza.com/ubc.ca/winterterm22016/cpsc540.

No tutorial this week.

Assignment 1 posted, due January 16.

Viewing lecture slides:

Course slides will (mostly) be done in Beamer.
Beamer outputs PDFs, and simulates “transitions” by making new slides.
Don’t freak out when you see 100+ slides lectures.
To review lectures, find PDF viewer that doesn’t have transitions between slides.

https://www.cs.ubc.ca/~schmidtm/Courses/540-W17
https://piazza.com/ubc.ca/winterterm22016/cpsc540

Motivating Problem: E-Mail Spam Filtering

We want to build a system that filters spam e-mails:

We have a big collection of e-mails, labeled by users.

We can formulate this as supervised learning.

Supervised Learning Notation

Supervised learning input is a set of n training examples.

Each training example usually consists of:

A set of features xi.
A label yi

For e-mail spam filtering:

Features could indicate words, phrases, regular expressions, etc.
Label could be (+1) for “spam” and (−1) for “not spam”.
Supervised learning has been dominant approach for ∼ 20 years.

Supervised learning output is a model:

Given new inputs x̂i, model makes a prediction ŷi.
Goal is to maximize accuracy on new examples (test error).

Fundamental Trade-off of Learning Theory

Learning theory says we must trade-off between two factors:

How low we can make the training error.
How well the training error approximates the test error.

With complex models:

We can make the training error low, but it’s a poor test error approximation.

With simple models:

Training error is a good approximation of test error, but training error might be large.

Loss Plus Regularizer Framework

We usually try to find the “best” model by solving an optimization problem.

Typically this involves minimizing a function f of the form

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

.

Loss function fi measures how well we fit example i with parameters w.

Regularizer g measures how complicated the model is with parameters w.

Regularization parameter λ > 0 controls strength of regularization:

Controls complexity of model, with large λ leading to less overfitting.
Usually set by optimizing error on a validation set or with cross-validation.

L2-Regularized Least Squares
“Loss plus regularizer” framework:

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

.

We often consider linear models where

ŷi = wT x̂i.

A common choice for f is L2-regularized least squares where

f(w) =
1

2

n∑
i=1

(wTxi − yi)2 + λ

2

d∑
j=1

w2
j ,

so we have

fi(w) =
1

2
(wTxi − yi)2, g(w) =

1

2

d∑
j=1

w2
j .

Other Loss Functions and Regularizers

“Loss plus regularizer” framework:

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

.

Other choices of loss function:
Absolute error |wTxi − yi| is more robust to outliers.
Hinge loss max{0, 1− yiwTxi} is better for binary yi.
Logistic loss log(1 + exp(−yiwTxi)) is better for binary and is smooth.

Softmax loss −wT
yixi + log(

∑k
c=1 exp(w

T
c x

i)) for discrete yi.

Another common regularizer is L1-regularization,

g(w) =
d∑

j=1

|wj |,

which encourages sparsity in w (many wj are set to zero for large λ).

Other Loss Functions and Regularizers

“Loss plus regularizer” framework:

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

.

To model non-linear effects we can use:

Non-linear features transformations (“change of basis” and kernel trick).
Unsupervised learning methods like sparse matrix factorization.
Neural networks which try to learn good features.

(pause)

Column-Vector Notation

In this course we’ll assume that all vectors are column-vectors,

w =


w1

w2
...
wd

 , y =


y1

y2

...
yn

 , xi =


xi1
xi2
...
xid

 .
Note: in some cases we use superscripts to index based on training example.

I’m using wj as the scalar parameter j.
I’m using yi as the label of example i (currently a scalar).
I’m using xi as the column-vector of features for example i.
I’m using xij to denote feature j in training example i.

Matrix and Norm Notation

Instead of writing L2-regularized least squares as

f(w) =
1

2

n∑
i=1

(wTxi − yi)2 + λ

2

d∑
j=1

w2
j ,

in this course we’ll use matrix and norm notation,

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

Further, instead of just focusing on gradients,

∇f(x) = XT (Xw − y) + λw,

we’re going to also use Hessians

∇2f(x) = XTXw + λI,

and use eigenvalues in our arguments.

Matrix and Norm Notation for L2-Regularization
Let’s first focus on the regularization term,

f(w) =
1

2

n∑
i=1

(wTxi − yi)2 + λ

2

d∑
j=1

w2
j ,

Recall the definitions of inner product and L2-norm of vectors,

‖v‖ =

√√√√ d∑
j=1

v2j , uT v =

d∑
j=1

ujvj ,

Using this we can write regularizer in various forms using

‖w‖2 =
d∑

j=1

w2
j

=

d∑
j=1

wjwj = wTw.

Matrix and Norm Notation for Least Squares

Let’s next focus on the least squares term,

f(w) =
1

2

n∑
i=1

(wTxi − yi)2 + λ

2
‖w‖2.

Let’s define the residual vector r with elements

ri = wTxi − yi.

We can write the least squares term as squared L2-norm of residual,

n∑
i=1

(wTxi − yi)2 =
n∑

i=1

r2i

= rT r

= ‖r‖2.

Matrix and Norm Notation for Least Squares
Let’s next focus on the least squares term,

f(w) =
1

2
‖r‖2 + λ

2
‖w‖2, with ri = wTxi − yi

We’ll use X to denote the data matrix containing the xi (transposed) in the rows:

X =


(x1)T

(x2)T

...
(xn)T


Using that wTxi = (xi)Tw and the definitions of r, y, and X we have

r =


r1
r2
...
rn

 =


wTx1 − y1
wTx2 − y2

...
wTxn − yn

 =


(x1)Tw
(x2)Tw

...
(xn)Tw

−

y1

y2

...
yn


︸ ︷︷ ︸

y

=


(x1)T

(x2)T

...
(xn)T


︸ ︷︷ ︸

X

w−y = Xw−y.

Solving L2-Regularized Least Squares

So we can write L2-regularized least squares objective as

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

We want to minimize this function.

Fortunately, minimizing “strictly-convex quadratic” functions is mechanical:

Solve for the unique w where ∇f(w) = 0.

This is easy to do by taking gradient in matrix notation.

Digression: Linear Functions and their Derivatives

A linear function is a function of the form

f(w) = aTw + β,

for a vector a and a scalar β.
Computing gradient of linear function in matrix notation:

1 Convert to summation notation:
f(w) =

d∑
k=1

akwk + β.

2 Take partial derivative of generic i: ∂

∂wi
f(w) = ai.

3 Assemble into a vector and convert to matrix notation:

∇f(w) =


∂

∂w1
f(w)

∂
∂w2

f(w)
...

∂
∂wd

f(w)

 =


a1
a2
...
ad

 = a.

Digression: Linear Functions and their Derivatives

A linear function is a function of the form

f(w) = aTw + β,

for a vector a and a scalar β.
We can do the same sequence to get the Hessian matrix ∇2f(w):

1 Convert to summation notation: ∂

∂wi
f(w) = ai.

2 Take partial derivative of generic j: ∂

∂wi∂wj
f(w) = 0.

3 Assemble into a matrix and convert to matrix notation:

∇2f(w) =


∂

∂w1∂w1
f(w) ∂

∂w1∂w2
f(w) · · · ∂

∂w1∂wd
f(w)

∂
∂w2∂w1

f(w) ∂
∂w2∂w2

f(w) · · · ∂
∂w2∂wd

f(w)
...

...
. . .

...
∂

∂wd∂w1
f(w) ∂

∂wd∂w2
f(w) · · · ∂

∂wd∂wd
f(w)

 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 = 0.

Digression: Quadratic Functions and their Derivatives

A quadratic function is a function of the form

f(w) =
1

2
wTAw + bTw + γ,

for a square matrix A, vector b, and scalar γ.

An example is the L2-regularizer:

f(w) =
λ

2
‖w‖2,

with A = λI, b = 0, γ = 0.

Digression: Quadratic Functions and their Derivatives
Another quadratic function is the squared error:

f(w) =
1

2
‖Xw − y‖2 least squares objective

=
1

2
(Xw − y)T (Xw − y) ‖v‖2 = vT v

=
1

2
((Xw)T − yT)(Xw − y) (A−B)T = AT −BT

=
1

2
(wTXT − yT)(Xw − y) (AB)T = BTAT

=
1

2
(wTXTXw − wTXT y − yTXw + yT y) distributive rule

=
1

2
(wTXTXw − 2wTXT y + yT y) wTXT y = yTXw (scalar)

=
1

2
wTXTXw − wTXT y +

1

2
yT y,

with A = XTX, b = XT y, γ = 1
2y

T y.

Digression: Quadratic Functions and their Derivatives
Let’s compute gradient of a simple quadratic,

f(w) = wTAw.

In summation notation:

wTAw = wT


∑d

k=1 a1kwk∑d
k=1 a2kwk

...∑d
k=1 adkwk


︸ ︷︷ ︸

Aw

=

d∑
l=1

d∑
k=1

wkaklwl.

Generic partial derivative:

∂

∂wi
f(w) = 2aiiwi+

∑
k 6=i

wkaki+
∑
l 6=i

ailwl =

d∑
k=1

wkaki+

d∑
l=1

ailwl = wTAi+A
T
i w,

where Ai is column i and AT
i is row i.

Digression: Quadratic Functions and their Derivatives

Assemble into a vector and convert to matrix notation:

∇f(w) =


wTA1 +AT

1 w
wTA2 +AT

2 w
...

wTAd +AT
dw

 = ATw +Aw.

Giving the final result

∇[wTAw] = (AT +A)w (general case)

∇[wTAw] = 2Aw (symmetric A).

Note that this generalizes the scalar result that d
dw [wαw] =

d
dw [αw

2] = 2αw.

By repeating the procedure we get that the Hessian is

∇2[wTAw] = AT +A,

or ∇2f(w) = 2A for symmetric A.

Solving L2-Regularized Least Squares

So we can write L2-regularized least squares objective as

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

or as a quadratic function,

f(w) =
1

2
wTXTXw − wTXT y +

1

2
yT y +

λ

2
wT Iw

=
1

2
wT (XTX + λI)w − wTXT y +

1

2
yT y,

where A = XTX + λI (symmetric), b = −XT y, and γ = 1
2y

T y.

Using our tedious matrix calculus exercises we have

∇f(w) = (XTX + λI)︸ ︷︷ ︸
A

w−XT y︸ ︷︷ ︸
b

.

Solving L2-Regularized Least Squares

Setting the gradient to 0 we have

(XTX + λI)w −XT y = 0,

or equivalently that
(XTX + λI)w = XT y.

We’ll show that A is invertible. We get solution by pre-multiplying by its inverse,

(XTX + λI)−1(XTX + λI)w = (XTX + λI)−1XT y

w= (XTX + λI)−1XT y.

In Matlab: w=(X’*X-lambda*eye(d))\(X’*y).

This is the unique w where ∇f(w) = 0, but is it a minimizer?

Yes, because A is positive-definite.

Positive-Definite Matrices

Equivalent definitions of a positive-definite matrix A:
1 All eigenvalues of A are positive.
2 The quadratic vTAv is positive for all non-zero v.

Because eigenvalues are positive, positive definite matrices are invertible.

To indicate that A is positive-definite we write A � 0.

Sufficient condition for w to be a minimizer: ∇f(w) = 0 and ∇2f(w) � 0.

Positive-Definite Matrices

The matrix A = (XTX + λI) is positive-definite for any X for any λ > 0:

vTAv = vT (XTX+λI)v = vTXTXv+vT (λI)v = (Xv)TXv+λvT v = ‖Xv‖2+λ‖v‖2.

Both terms are non-negative because they’re norms.

Second term ‖v‖ is positive because v 6= 0 and λ > 0.

If λ = 0 then it’s only positive semi-definite:

XTX � 0.

Replace “positive” with “non-negative” in definition of positive-definite.
XTX may not be invertible and we many have multiple solutions to ∇f(w) = 0.
The set of minimizers is the set of solutions to this linear system:

(XTX)︸ ︷︷ ︸
A

w = XT y︸︷︷︸
b

.

Summary

Machine learning: automatically detecting patterns in data to help make
predictions and/or decisions.

CPSC 540: advanced/difficult graduate-level 2nd or 3rd course on this topic.

Supervised learning: using data to learn input:output map.

Loss plus regularizer optimization is most common machine learning framework.

Matrix and norm notation are needed to describe several advanced topics.

Linear and quadratic functions arise frequently in machine learning.

L2-regularized least squares will be our “default” method that we’ll improve on.

Next time: solving non-quadratic problems.

