CPSC 540: Machine Learning Proximal-Gradient and Stochastic Subgradient

Mark Schmidt

University of British Columbia

Winter 2016

- Room: We'll be in CHEM B150 starting today.
- Assignment 1:
 - You can use 3 of your 3 late days to hand it in before Thursday.
- Assignment 2:
 - Due in one week.
 - Please look at updated version: some typos fixed and Q4.3 removed.
- Switch to Beamer?
 - Microsoft PowerPoint TM patience is reaching 0.
 - I'll post both versions to Piazza for comment.

Last Time: Regularization Paths

\bullet The regularization path is the set of w values as λ varies,

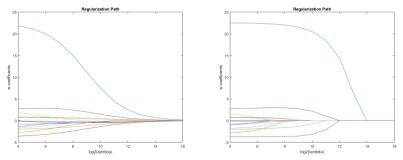
$$w^{\lambda} = \operatorname*{argmin}_{w \in \mathbb{R}^d} f(w) + \lambda r(w),$$

Last Time: Regularization Paths

• The regularization path is the set of w values as λ varies,

$$w^{\lambda} = \operatorname*{argmin}_{w \in \mathbb{R}^d} f(w) + \lambda r(w),$$

• Squared L2-regularization path vs. L1-regularization path:



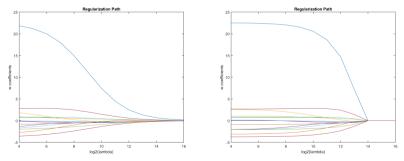
- With $r(w) = ||w||^2$, w_j get close to 0 but not exactly 0.
- With $r(w) = ||w||_1$, w_j get set to exactly zero for finite λ .

Last Time: Regularization Paths

• The regularization path is the set of w values as λ varies,

$$w^{\lambda} = \operatorname*{argmin}_{w \in \mathbb{R}^d} f(w) + \lambda r(w),$$

• Squared L2-regularization path vs. non-squared path:



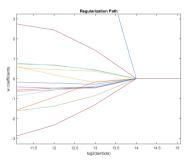
- With $r(w) = ||w||^2$, w_j get close to 0 but not exactly 0.
- With $r(w) = ||w||_2$, all w_j get set to exactly zero for finite λ .

Last Time: Regularization Paths

 \bullet The regularization path is the set of w values as λ varies,

$$w^{\lambda} = \operatorname*{argmin}_{w \in \mathbb{R}^d} f(w) + \lambda r(w),$$

• Non-squared L2-regularization path:



• You tend to get all or none among regularized variables.

Last Time: Group L1-Regularization

• Last time we discussed group L1-regularization:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} \|x_g\|_2.$$

- Encourages sparsity in terms of groups g.
 - For example, if $G = \{\{1, 2\}, \{3, 4\}\}$ then we have:

$$\sum_{g \in G} \|x_g\|_2 = \sqrt{x_1^2 + x_2^2} + \sqrt{x_3^2 + x_4^2}.$$

Variables x_1 and x_2 will either be both zero or both non-zero. Variables x_3 and x_4 will either be both zero or both non-zero.

Last Time: Group L1-Regularization

• Last time we discussed group L1-regularization:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} \|x_g\|_2.$$

- Encourages sparsity in terms of groups g.
 - For example, if $G = \{\{1, 2\}, \{3, 4\}\}$ then we have:

$$\sum_{g \in G} \|x_g\|_2 = \sqrt{x_1^2 + x_2^2} + \sqrt{x_3^2 + x_4^2}.$$

Variables x_1 and x_2 will either be both zero or both non-zero. Variables x_3 and x_4 will either be both zero or both non-zero.

- Why is it called group L1-regularization?
 - If vector \boldsymbol{v} contains the group norms, it's the L1-norm of \boldsymbol{v} :

If
$$v \triangleq \begin{bmatrix} \|x_{12}\|_2 \\ \|x_{34}\|_2 \end{bmatrix} = \begin{bmatrix} \sqrt{x_1^2 + x_2^2} \\ \sqrt{x_3^2 + x_4^2} \end{bmatrix}$$
 then $\sum_{g \in G} \|x_g\|_2 = \|x_{12}\|_2 + \|x_{34}\|_2 = v_1 + v_2 = |v_1| + |v_2| = \|v\|_1$.

Last Time: Projected-Gradient

• We can convert the non-smooth problem

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} \|x_g\|_2,$$

into a smooth problem with simple constraints:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} r_g, \text{ subject to } r_g \ge \|x_g\|_2 \text{ for all } g.$$

Last Time: Projected-Gradient

• We can convert the non-smooth problem

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} \|x_g\|_2,$$

into a smooth problem with simple constraints:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} r_g, \text{ subject to } r_g \ge \|x_g\|_2 \text{ for all } g.$$

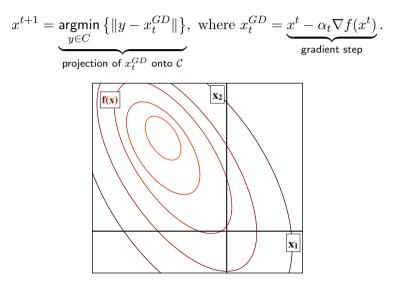
• With simple constraints, we can use projected-gradient:

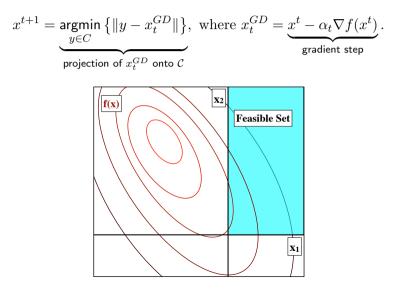
$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 \right\},$$

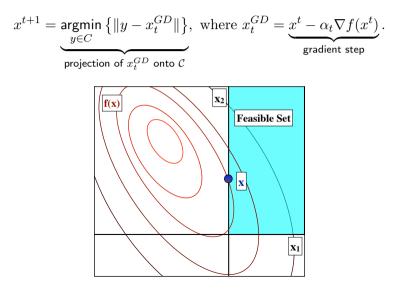
or equivalently projection applied to gradient step:

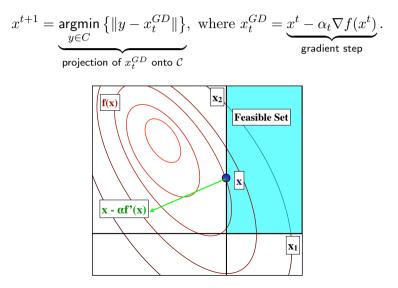
$$x^{t+1} = \underbrace{\underset{y \in C}{\operatorname{argmin}} \left\{ \|y - x_t^{GD}\| \right\}}_{\text{projection of } x_t^{GD} \text{ onto } \mathcal{C}}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$

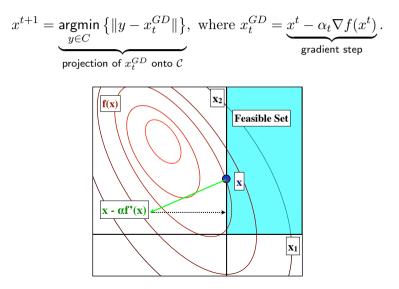
$$x^{t+1} = \underset{y \in C}{\operatorname{argmin}} \{ \|y - x_t^{GD}\| \}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$

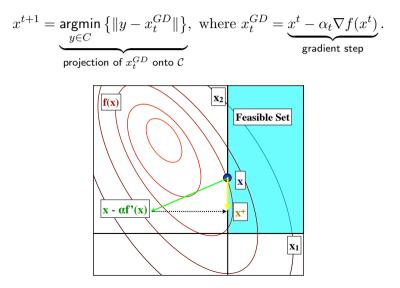












- We can convert non-smooth problem into smooth problems with simple constraints:
- But transforming might make problem harder:
 - E.g., transformed problems often lose strong-convexity.
- Can we apply a method like projected-gradient to the original problem?

Gradient Method

• We want to solve a smooth optimization problem:

$\mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x).$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$f(y) \approx f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{L}{2} \|y - x^{t}\|^{2},$$
$$x^{t+1} = \underset{y \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{L}{2} \|y - x^{t}\|^{2} \right\}.$$

Gradient Method

• We want to solve a smooth optimization problem:

$\mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x).$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$f(y) \approx f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{L}{2} \|y - x^{t}\|^{2},$$
$$x^{t+1} = \underset{y \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{L}{2} \|y - x^{t}\|^{2} \right\}.$$

We can equivalently write this as the quadratic optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

Proximal-Gradient Method

• We want to solve a smooth plus non-smooth optimization problem:

 $\mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) + r(x).$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$f(y) \approx f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{L}{2} ||y - x^{t}||^{2},$$
$$x^{t+1} = \underset{y \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ f(x^{t}) + \nabla f(x^{t})^{T}(y - x^{t}) + \frac{L}{2} ||y - x^{t}||^{2} \right\}.$$

We can equivalently write this as the quadratic optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

Proximal-Gradient Method

• We want to solve a smooth plus non-smooth optimization problem:

 $\mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) + r(x).$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) + r(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y) \right\}. \end{split}$$

We can equivalently write this as the quadratic optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

Proximal-Gradient Method

• We want to solve a smooth plus non-smooth optimization problem:

 $\mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) + r(x).$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) + r(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y) \right\}. \end{split}$$

We can equivalently write this as the proximal optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 + \alpha_t r(y) \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

Proximal-Gradient Method

• We want to solve a smooth plus non-smooth optimization problem:

 $\mathop{\rm argmin}_{x\in \mathbb{R}^d} f(x) + r(x).$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) + r(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y) \right\}. \end{split}$$

We can equivalently write this as the proximal optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 + \alpha_t r(y) \right\},$$

$$x^{t+1} = \operatorname{prox}_{\alpha r}[x^t - \alpha_t \nabla f(x^t)].$$

Proximal-Gradient Method

• So proximal-gradient step takes the form:

$$\begin{split} x_t^{GD} &= x^t - \alpha_t \nabla f(x^t), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - x_t^{GD}\|^2 + \alpha_t r(y) \right\}. \end{split}$$

- Second part is called the proximal operator with respect to $\alpha_t r$.
- Convergence rates are still the same as for minimizing f alone:
 - E.g, if ∇f is *L*-Lipschitz, f is μ -strongly convex.and g is convex, then

$$F(x^t) - F(x^*) \le \left(1 - \frac{\mu}{L}\right)^t \left[F(x^0) - F(x^*)\right],$$

where F(x) = f(x) + r(x).

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \operatorname*{argmin}_{y \in \mathbb{R}^d} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

Proximal Operator, Iterative Soft Thresholding

• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \operatorname*{argmin}_{y \in \mathbb{R}^d} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

• If $r(y) = \alpha_t \lambda ||y||_1$, proximal operator is soft-threshold:

• Apply $x_j = \operatorname{sign}(x_j) \max\{0, |x_j| - \alpha_t \lambda\}$ element-wise.

• E.g., if
$$\alpha_t \lambda = 1$$
:

Proximal Operator, Iterative Soft Thresholding

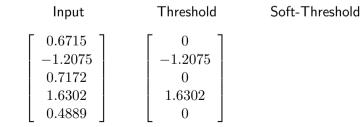
• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

• If $r(y) = \alpha_t \lambda ||y||_1$, proximal operator is soft-threshold:

• Apply $x_j = \operatorname{sign}(x_j) \max\{0, |x_j| - \alpha_t \lambda\}$ element-wise.

• E.g., if
$$\alpha_t \lambda = 1$$
:



Proximal Operator, Iterative Soft Thresholding

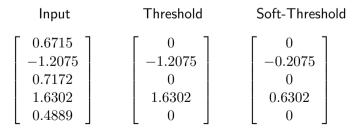
• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

• If $r(y) = \alpha_t \lambda ||y||_1$, proximal operator is soft-threshold:

• Apply $x_j = \operatorname{sign}(x_j) \max\{0, |x_j| - \alpha_t \lambda\}$ element-wise.

• E.g., if
$$\alpha_t \lambda = 1$$
:



Special case of Projected-Gradient Methods

• Projected-gradient methods are another special case:

$$r(y) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}, \quad (\text{indicator function for convex set } \mathcal{C}) \end{cases}$$

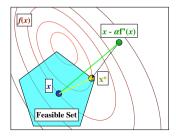
Special case of Projected-Gradient Methods

• Projected-gradient methods are another special case:

$$r(y) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}, \quad (\text{indicator function for convex set } \mathcal{C}) \end{cases}$$

gives

$$x^{t+1} = \mathop{\rm argmin}_{y \in \mathbb{R}^d} \ \frac{1}{2} \|y - x\|^2 + r(y) = \mathop{\rm argmin}_{y \in \mathcal{C}} \ \frac{1}{2} \|y - x\|^2 = \mathop{\rm argmin}_{y \in \mathcal{C}} \ \|y - x\|.$$



Proximal-Gradient for Group L1-Regularization

• The proximal operator for L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \|y\|_1 \right\},$$

applies soft-threshold element-wise,

$$x_j = \frac{x_j}{|x_j|} \max\{0, |x_j| - \alpha_t \lambda\}.$$

Proximal-Gradient for Group L1-Regularization

• The proximal operator for L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \|y\|_1 \right\},$$

applies soft-threshold element-wise,

$$x_j = \frac{x_j}{|x_j|} \max\{0, |x_j| - \alpha_t \lambda\}.$$

• The proximal operator for group L1-regularization,

$$\operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \sum_{g \in G} \|y\|_2 \right\},$$

applies a group soft-threshold group-wise,

$$x_g = \frac{x_g}{\|x_g\|_2} \max\{0, \|x_g\|_2 - \alpha_t \lambda\}.$$

Exact Proximal-Gradient Methods

- We can efficiently compute the proximity operator for:
 - L1-Regularization and most separable regularizers.
 - **2** Group ℓ_1 -Regularization (disjoint) and most group-separale regularizers.

Exact Proximal-Gradient Methods

- We can efficiently compute the proximity operator for:
 - L1-Regularization and most separable regularizers.
 - **2** Group ℓ_1 -Regularization (disjoint) and most group-separale regularizers.
 - Output States States
 - Small number of linear constraint.
 - Probability constraints.
 - Many norm balls and norm cones.
 - A few other simple regularizers/constraints.

Exact Proximal-Gradient Methods

- We can efficiently compute the proximity operator for:
 - L1-Regularization and most separable regularizers.
 - **2** Group ℓ_1 -Regularization (disjoint) and most group-separale regularizers.
 - Solution States Solution States Solution States Solution States States Solution States Solution States S
 - Small number of linear constraint.
 - 9 Probability constraints.
 - Many norm balls and norm cones.
 - A few other simple regularizers/constraints.
- Can solve these non-smooth problems as fast as smooth problems.
- But what if we can't efficiently compute proximal operator?

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximal operator for:
 - Overlapping group L1-regularization.
 - Total-variation regularization.
 - Nuclear-norm regularization.
 - Sums of 'simple' functions (proximal-Dykstra).

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximal operator for:
 - Overlapping group L1-regularization.
 - Total-variation regularization.
 - Nuclear-norm regularization.
 - Sums of 'simple' functions (proximal-Dykstra).
- Inexact proximal-gradient methods:
 - Use an approximation to the proximal operator.
 - If approximation error decreases fast enough, same convergence rate:
 - To get $O(\rho^t)$ rate, error must be in $o(\rho^t)$.

Discussion of Proximal-Gradient

• Solution x^* is a fixed-point:

$$x^* = \operatorname{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

Discussion of Proximal-Gradient

• Solution x^* is a fixed-point:

$$x^* = \operatorname{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

• With $\alpha_t < 2/L$, guaranteed to decrease objective.

• Can still use adaptive step-size to estimate 'L'.

Discussion of Proximal-Gradient

• Solution x^* is a fixed-point:

$$x^* = \operatorname{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

• With $\alpha_t < 2/L$, guaranteed to decrease objective.

- Can still use adaptive step-size to estimate 'L'.
- With any α_t , proximal-gradient generates a feasible descent direction:

• If $\bar{x}^t = \mathrm{prox}_{\alpha_t r} [x^t - \alpha_t \nabla f(x^t)]$, then the step

$$x^{t+1} = x^t + \gamma_t (\bar{x}^t - x^t),$$

decreases f and satisfies constraints for γ_t small enough.

Discussion of Proximal-Gradient

• Solution x^* is a fixed-point:

$$x^* = \operatorname{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

• With $\alpha_t < 2/L$, guaranteed to decrease objective.

- Can still use adaptive step-size to estimate 'L'.
- With any α_t , proximal-gradient generates a feasible descent direction:
 - If $\bar{x}^t = \mathrm{prox}_{\alpha_t r} [x^t \alpha_t \nabla f(x^t)]$, then the step

$$x^{t+1} = x^t + \gamma_t (\bar{x}^t - x^t),$$

decreases f and satisfies constraints for γ_t small enough.

- If proximal operator is expensive, can do Armijo line-search for γ_t instead of α_t :
 - Fix α_t and decrease γ_t : "backtracking along the feasible direction".
 - Iterations tend to be in interior.
 - Fix γ_t and decrease α_t : "backtracking along the projection arc".
 - Iterations tend to be at boundary.

Faster Proximal-Gradient Methods

• Accelerated proximal-gradient method:

$$\begin{aligned} x^{t+1} &= \operatorname{prox}_{\alpha_t r}[y^t - \alpha_t \nabla f(x^t)] \\ y^{t+1} &= x^t + \beta_t (x^{t+1} - x^t). \end{aligned}$$

• Convergence properties same as smooth version.

Faster Proximal-Gradient Methods

• Accelerated proximal-gradient method:

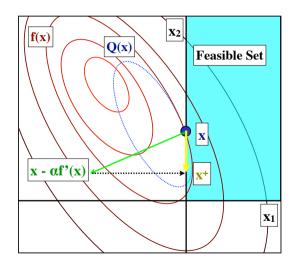
$$\begin{aligned} x^{t+1} &= \operatorname{prox}_{\alpha_t r} [y^t - \alpha_t \nabla f(x^t)] \\ y^{t+1} &= x^t + \beta_t (x^{t+1} - x^t). \end{aligned}$$

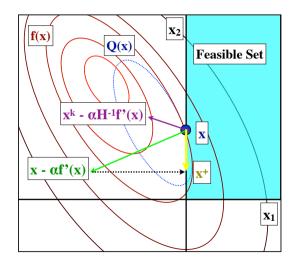
- Convergence properties same as smooth version.
- The naive Newton-like methods,

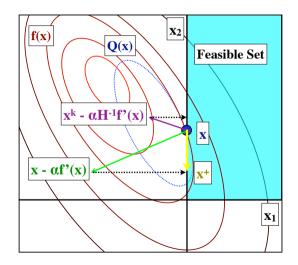
$$x^{t+1} = \operatorname{prox}_{\alpha r}[x^t - \alpha_t d^t], \text{ where } d^t \text{ solves } \nabla^2 f(x^t) d^t = \nabla f(x^t),$$

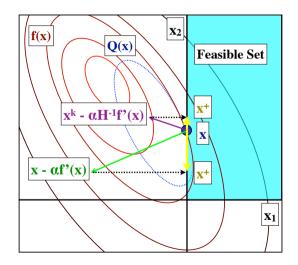
does NOT work.











• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth $H^t \approx \nabla^2 f(x^t)$):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H^t(y - x^t) \right\}.$$

• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth $H^t \approx \nabla^2 f(x^t)$):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H^t(y - x^t) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H^t(y - x^t) \right\}.$$

• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth $H^t \approx \nabla^2 f(x^t)$):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H^t(y - x^t) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H^t(y - x^t) \right\}.$$

• Equivalently, we project Newton step under different Hessian-defined norm,

$$x^{t+1} = \underset{y \in C}{\operatorname{argmin}} \|y - (x^t - \alpha_t [H^t]^{-1} \nabla f(x^t)]\|_{H^t},$$

where general "quadratic norm" is $||z||_A = \sqrt{z^T A z}$ for $A \succ 0$.

Discussion of Proximal-Newton

• Proximal-Newton is defined similarly,

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{L}{2}(y - x^t)H^t(y - x^t) + r(y) \right\}.$$

• But this is expensive even when r is simple.

Discussion of Proximal-Newton

• Proximal-Newton is defined similarly,

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{L}{2}(y - x^t)H^t(y - x^t) + r(y) \right\}.$$

- But this is expensive even when r is simple.
- There are a variety of practical ways to approximate this:
 - Use Barzilai-Borwein or diagonal H^t .
 - Two-metric projection: special method for separable r.
 - Inexact proximal-Newton: solve the above approximately.
 - Useful when f is very expensive but r is simple.
 - "Costly functions with simple regularizers".

(pause)

Big-N Problems

• We can write our standard regularized optimization problem as

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x) + r(x)$$

data fitting term + regularizer

Big-N Problems

• We can write our standard regularized optimization problem as

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x) + r(x)$$

data fitting term + regularizer

- \bullet Gradient methods are effective when d is very large.
- What if number of training examples n is very large?
 - E.g., ImageNet has more than 14 million annotated images.

Stochastic vs. Deterministic Gradient Methods

• We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

- Iteration cost is linear in *n*.
- Convergence with constant α_t or line-search.

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

- Iteration cost is linear in *n*.
- Convergence with constant α_t or line-search.
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i_t from $\{1, 2, \ldots, n\}$.

$$x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).$$

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

- Iteration cost is linear in *n*.
- Convergence with constant α_t or line-search.
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i_t from $\{1, 2, \ldots, n\}$.

$$x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).$$

• Direction is an unbiased estimate of true gradient,

$$\mathbb{E}[f_{i_t}'(x)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x) = \nabla f(x).$$

• Iteration cost is independent of *n*.

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t) = x^t - \frac{\alpha_t}{n} \sum_{i=1}^n \nabla f_i(x^t).$$

- Iteration cost is linear in *n*.
- Convergence with constant α_t or line-search.
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i_t from $\{1, 2, \ldots, n\}$.

$$x^{t+1} = x^t - \alpha_t \nabla f_{i_t}(x^t).$$

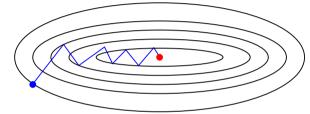
• Direction is an unbiased estimate of true gradient,

$$\mathbb{E}[f_{i_t}'(x)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x) = \nabla f(x).$$

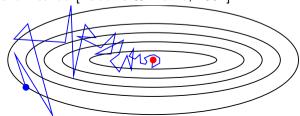
- Iteration cost is independent of n.
- Convergence requires $\alpha_t \to 0$.

Stochastic vs. Deterministic Gradient Methods

- We consider minimizing $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:



• Stochastic gradient method [Robbins & Monro, 1951]:



Stochastic vs. Deterministic Gradient Methods

Stochastic vs. Deterministic Gradient Methods

Assumption	Deterministic	Stochastic
Convex	$O(1/\sqrt{\epsilon})$	$O(1/\epsilon^2)$
Strongly	$O(\log(1/\epsilon))$	$O(1/\epsilon)$

Assumption	Deterministic	Stochastic
Convex	$O(1/\sqrt{\epsilon})$	$O(1/\epsilon^2)$
Strongly	$O(\log(1/\epsilon))$	$O(1/\epsilon)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable if only unbiased gradient available.

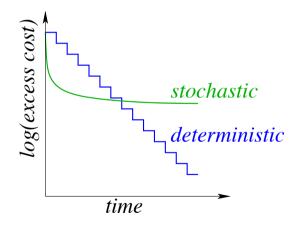
Stochastic vs. Deterministic Gradient Methods

Assumption	Deterministic	Stochastic
Convex	$O(1/\sqrt{\epsilon})$	$O(1/\epsilon^2)$
Strongly	$O(\log(1/\epsilon))$	$O(1/\epsilon)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable if only unbiased gradient available.
- Nesterov acceleration and momentum do not improve rate:
 - In fact, the momentum must go to zero for convergence.

Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:



Stochastic will be superior for low-accuracy/time situations.

Stochastic vs. Deterministic for Non-Smooth

- The story changes for non-smooth problems.
- Consider the binary support vector machine objective:

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} ||w||^2.$$

Stochastic vs. Deterministic for Non-Smooth

- The story changes for non-smooth problems.
- Consider the binary support vector machine objective:

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} ||w||^2.$$

• Rates for subgradient methods for non-smooth objectives:

Assumption	Deterministic	Stochastic
Convex	$O(1/\epsilon^2)$	$O(1/\epsilon^2)$
Strongly	$O(1/\epsilon)$	$O(1/\epsilon)$

• Other black-box methods (cutting plane) are not faster.

Stochastic vs. Deterministic for Non-Smooth

- The story changes for non-smooth problems.
- Consider the binary support vector machine objective:

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i)\} + \frac{\lambda}{2} ||w||^2.$$

• Rates for subgradient methods for non-smooth objectives:

Assumption	Deterministic	Stochastic
Convex	$O(1/\epsilon^2)$	$O(1/\epsilon^2)$
Strongly	$O(1/\epsilon)$	$O(1/\epsilon)$

- Other black-box methods (cutting plane) are not faster.
- For non-smooth problems:
 - Deterministic methods are not faster than stochastic method.
 - So use stochastic subgradient (iterations are *n* times faster).

Sub-Gradients and Sub-Differentials

Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

Sub-Gradients and Sub-Differentials

Recall that for *differentiable* convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

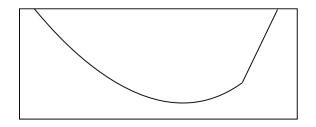
$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

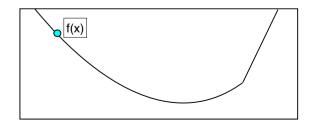


Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

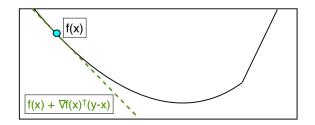


Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

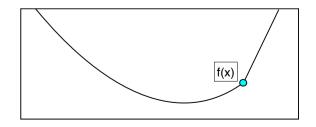


Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

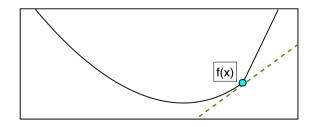


Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

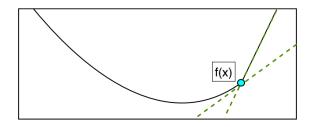


Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

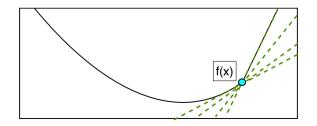


Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

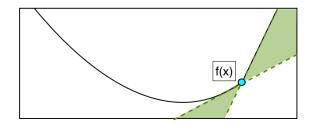


Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$



Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall x, y.$$

$$f(y) \ge f(x) + d^T(y - x), \forall y.$$

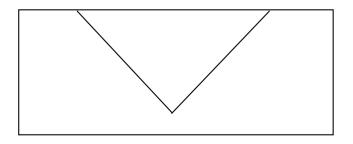
- At differentiable *x*:
 - Only subgradient is $\nabla f(x)$.
- At non-differentiable x:
 - We have a set of subgradients.
 - Called the sub-differential, $\partial f(x)$.
 - Sub-differential is always non-empty for (almost) all convex functions.
- Note that $0 \in \partial f(x)$ iff x is a global minimum (generalizes $\nabla f(x) = 0$).

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

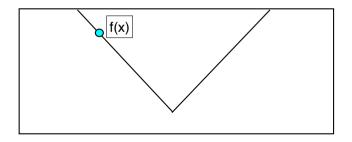
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



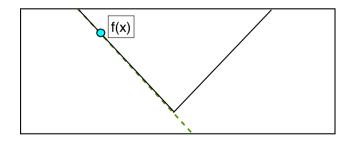
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



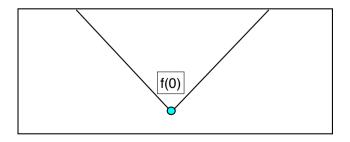
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



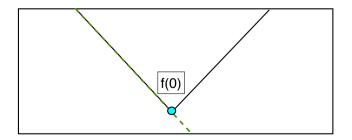
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



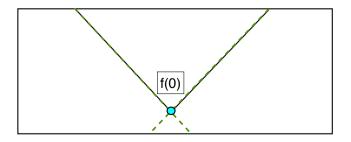
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



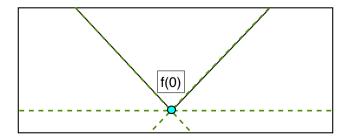
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



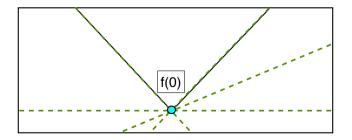
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



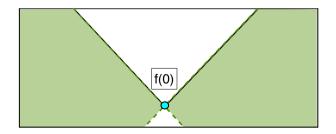
• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$



• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

(sign of the variable if non-zero, anything in [-1,1] at 0)

• Sub-differential of sum of convex f_1 and f_2 :

 $\partial(f_1(x) + f_2(x)) = \partial f_1(x) + \partial f_2(x).$

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

(sign of the variable if non-zero, anything in [-1,1] at 0)

• Sub-differential of sum of convex f_1 and f_2 :

$$\partial(f_1(x) + f_2(x)) = \partial f_1(x) + \partial f_2(x).$$

• Sub-differential of max of convex f_1 and f_2 :

 $\partial \max\{f_1(x), f_2(x)\} =$

• Sub-differential of absolute value function:

$$\partial |x| = \begin{cases} 1 & x > 0\\ -1 & x < 0\\ [-1, 1] & x = 0 \end{cases}$$

(sign of the variable if non-zero, anything in [-1,1] at 0)

• Sub-differential of sum of convex f_1 and f_2 :

 $\partial(f_1(x) + f_2(x)) = \partial f_1(x) + \partial f_2(x).$

• Sub-differential of max of convex f_1 and f_2 :

$$\partial \max\{f_1(x), f_2(x)\} = \begin{cases} \nabla f_1(x) & f_1(x) > f_2(x) \\ \nabla f_2(x) & f_2(x) > f_1(x) \\ \theta \nabla f_1(x) + (1-\theta) \nabla f_2(x) & f_1(x) = f_2(x) \end{cases}$$

(any "convex combination" of the gradients of the argmax)

Subgradient Method

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

Subgradient Method

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

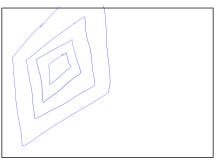
- Unfortunately, may increase the objective even for small α_t .
- But, distance to solution decreases:
 - $\|x^{t+1} x^*\| < \|x^t x^*\|$ for small enough α .

Subgradient Method

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

- Unfortunately, may increase the objective even for small α_t .
- But, distance to solution decreases:
 - $\|x^{t+1} x^*\| < \|x^t x^*\|$ for small enough α .

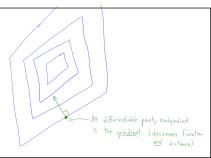


Subgradient Method

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

- Unfortunately, may increase the objective even for small α_t .
- But, distance to solution decreases:
 - $\|x^{t+1} x^*\| < \|x^t x^*\|$ for small enough α .

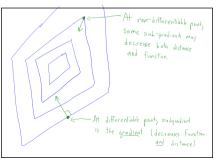


Subgradient Method

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

- Unfortunately, may increase the objective even for small α_t .
- But, distance to solution decreases:
 - $||x^{t+1} x^*|| < ||x^t x^*||$ for small enough α .

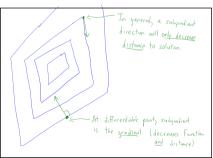


Subgradient Method

• The basic subgradient method:

$$x^{t+1} = x^t - \alpha_t g_t,$$

- Unfortunately, may increase the objective even for small α_t .
- But, distance to solution decreases:
 - $||x^{t+1} x^*|| < ||x^t x^*||$ for small enough α .



Strong-Convexity Inequalities for Non-Differentiable f

• A "first-oder" relationship between subgradient and strong-convexity:

 $\bullet~$ If f is $\mu\text{-strongly convex then for all }x$ and y we have

$$f(y) \ge f(x) + f'(y)^T (y - x) + \frac{\mu}{2} \|y - x\|^2,$$

for $f'(y) \in \partial f(x)$.

• The first-order definition of strong-convexity, but with subgradient replacing gradient.

Strong-Convexity Inequalities for Non-Differentiable f

• A "first-oder" relationship between subgradient and strong-convexity:

 $\bullet~$ If f is $\mu\text{-strongly convex then for all }x$ and y we have

$$f(y) \ge f(x) + f'(y)^T (y - x) + \frac{\mu}{2} \|y - x\|^2,$$

for $f'(y) \in \partial f(x)$.

- The first-order definition of strong-convexity, but with subgradient replacing gradient.
- Reversing y and x we can write

$$f(x) \ge f(y) + f'(x)^T (x - y) + \frac{\mu}{2} ||x - y||^2,$$

for $f'(x) \in \partial f(x)$.

• Adding the above together gives

$$(f'(y) - f'(x)^T(y - x)) \ge \mu ||y - x||^2.$$

Stochastic Subgradient Method

• The basic stochastic subgradient method:

$$x^{t+1} = x^t - \alpha g_{i_t},$$

for some $g_{i_t} \in \partial f_{i_t}(x^t)$ for some random $i_t \in \{1, 2, \dots, n\}$.

Stochastic Subgradient Method

• The basic stochastic subgradient method:

$$x^{t+1} = x^t - \alpha g_{i_t},$$

for some $g_{i_t} \in \partial f_{i_t}(x^t)$ for some random $i_t \in \{1, 2, \dots, n\}$.

- \bullet Stochastic subgradient is n times faster with similar convergence properties.
- We'll conisder it under the standard assumptions that
 - f is μ -strongly-convex:
 - $\mathbb{E}[||g_t||^2] \le B^2$ (finite variance and bounded subgradients).

Convergnece Rate of Stochastic Subgradient

• Since function value may not decrease, we analyze distance to x^* :

$$\begin{aligned} \|x^{t} - x^{*}\|^{2} &= \|(x^{t-1} - \alpha_{t}g_{i_{t}}) - x^{*}\|^{2} \\ &= \|(x^{t-1} - x^{*}) - \alpha_{t}g_{i_{t}}\|^{2} \\ &= \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}g_{i_{t}}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}\|g_{i_{t}}\|^{2}. \end{aligned}$$

Convergnece Rate of Stochastic Subgradient

• Since function value may not decrease, we analyze distance to x^* :

$$\begin{aligned} \|x^{t} - x^{*}\|^{2} &= \|(x^{t-1} - \alpha_{t}g_{i_{t}}) - x^{*}\|^{2} \\ &= \|(x^{t-1} - x^{*}) - \alpha_{t}g_{i_{t}}\|^{2} \\ &= \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}g_{i_{t}}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}\|g_{i_{t}}\|^{2}. \end{aligned}$$

- Many analyses of distance to x^* start this way.
- First term is we what we want, we need to bound the second/third terms.

Convergnece Rate of Stochastic Subgradient

• Expansion of distance:

$$\|x^{t} - x^{*}\|^{2} = \|x^{t-1} - x^{*}\| - 2\alpha_{t}g_{i_{t}}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}\|g_{i_{t}}\|^{2}.$$

Convergnece Rate of Stochastic Subgradient

• Expansion of distance:

$$\|x^{t} - x^{*}\|^{2} = \|x^{t-1} - x^{*}\| - 2\alpha_{t}g_{i_{t}}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}\|g_{i_{t}}\|^{2}.$$

• Take expectation with respect to *i_t*:

$$\mathbb{E}[\|x^{t} - x^{*}\|^{2}] = \mathbb{E}[\|x^{t-1} - x^{*}\|] - 2\alpha_{t}\mathbb{E}[g_{i_{t}}^{T}(x^{t-1} - x^{*})] + \alpha_{t}^{2}\mathbb{E}[\|g_{i_{t}}\|^{2}]$$
$$\|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}\mathbb{E}[g_{i_{t}}^{T}](x^{t-1} - x^{*}) + \alpha_{t}^{2}\mathbb{E}[\|g_{i_{t}}\|^{2}]$$
$$\leq \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}g_{t}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}B^{2}.$$

Convergnece Rate of Stochastic Subgradient

• Expansion of distance:

$$\|x^{t} - x^{*}\|^{2} = \|x^{t-1} - x^{*}\| - 2\alpha_{t}g_{i_{t}}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}\|g_{i_{t}}\|^{2}.$$

• Take expectation with respect to *i_t*:

$$\mathbb{E}[\|x^{t} - x^{*}\|^{2}] = \mathbb{E}[\|x^{t-1} - x^{*}\|] - 2\alpha_{t}\mathbb{E}[g_{i_{t}}^{T}(x^{t-1} - x^{*})] + \alpha_{t}^{2}\mathbb{E}[\|g_{i_{t}}\|^{2}]$$
$$\|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}\mathbb{E}[g_{i_{t}}^{T}](x^{t-1} - x^{*}) + \alpha_{t}^{2}\mathbb{E}[\|g_{i_{t}}\|^{2}]$$
$$\leq \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}g_{t}^{T}(x^{t-1} - x^{*}) + \alpha_{t}^{2}B^{2}.$$

• Using strong-convexity inequality,

$$(g_t - 0)^T (x^{t-1} - x^*) \ge \mu ||y - x||^2,$$

gives

$$\mathbb{E}[\|x^{t} - x^{*}\|^{2}] \leq \|x^{t-1} - x^{*}\|^{2} - 2\alpha_{t}\mu\|x^{t-1} - x^{*}\|^{2} + \alpha_{t}^{2}B^{2}$$
$$= (1 - 2\alpha_{t}\mu)\|x^{t-1} - x^{*}\|^{2} + \alpha_{t}^{2}B^{2}.$$

Stochastic Gradient with Constant Step Size

• Our bound on expected distance:

$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha_t \mu) \|x^{t-1} - x^*\|^2 + \alpha_t^2 B^2.$$

• If α_t is *small* enough, shows distance to solution decreases.

Stochastic Gradient with Constant Step Size

• Our bound on expected distance:

$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha_t \mu) \|x^{t-1} - x^*\|^2 + \alpha_t^2 B^2.$$

- If α_t is small enough, shows distance to solution decreases.
- Taking full expectation and applying recursively with constant $\alpha_t = \alpha$ gives:

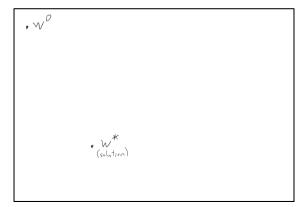
$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu},$$

after some of math (last term comes from bounding a geometric series).

Stochastic Gradient with Constant Step Size

• Our bound on expected distance:

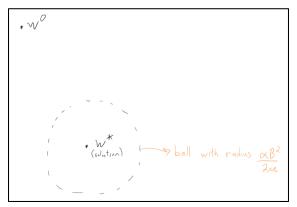
$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$



Stochastic Gradient with Constant Step Size

• Our bound on expected distance:

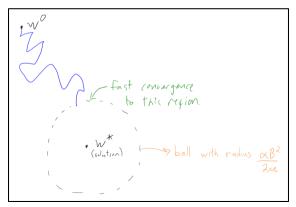
$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$



Stochastic Gradient with Constant Step Size

• Our bound on expected distance:

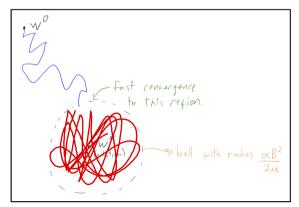
$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$



Stochastic Gradient with Constant Step Size

• Our bound on expected distance:

$$\mathbb{E}[\|x^t - x^*\|^2] \le (1 - 2\alpha\mu)^t \|x^0 - x^*\|^2 + \frac{\alpha B^2}{2\mu}.$$



Stochastic Gradient with Decreasing Step Size

- To get convergence, we need a decreasing step size.
 - Region that we converge to shrinks over time.
 - But it can't shrink too quickly or we may never reach x^* .

Stochastic Gradient with Decreasing Step Size

- To get convergence, we need a decreasing step size.
 - Region that we converge to shrinks over time.
 - But it can't shrink too quickly or we may never reach x^* .
 - Classic approach is to choose α_t such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty,$$

which suggests setting $\alpha_t = O(1/t)$.

Stochastic Gradient with Decreasing Step Size

- To get convergence, we need a decreasing step size.
 - Region that we converge to shrinks over time.
 - But it can't shrink too quickly or we may never reach x^* .
 - Classic approach is to choose α_t such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \quad \sum_{t=1}^{\infty} \alpha_t^2 < \infty,$$

which suggests setting $\alpha_t = O(1/t)$.

• We can obtain convergence rates with decreasing steps:

• If $\alpha_t = \frac{1}{\mu t}$ we can show

$$\mathbb{E}[f(\bar{x}^t) - f(x^*)] = O(\log(t)/t) \qquad (\text{non-smooth } f)$$
$$= O(1/t) \qquad (\text{smooth } f)$$

for the average iteration $\bar{x}^t = \frac{1}{k} \sum_{k=1}^T x_{k-1}$. • Note that O(1/t) error implies $O(1/\epsilon)$ iterations required.

- Proximal-gradient: linear rates for sum of smooth and non-smooth.
- Proximal-Newton: even faster rates in special cases.

- Proximal-gradient: linear rates for sum of smooth and non-smooth.
- Proximal-Newton: even faster rates in special cases.
- Subgradients: generalize gradients for non-smooth convex functions.
- Subgradient method: optimal but very-slow general non-smooth method.
- Stochastic subgadient method: same rate but n times cheaper.

- Proximal-gradient: linear rates for sum of smooth and non-smooth.
- Proximal-Newton: even faster rates in special cases.
- Subgradients: generalize gradients for non-smooth convex functions.
- Subgradient method: optimal but very-slow general non-smooth method.
- Stochastic subgadient method: same rate but n times cheaper.
- Constant step-size: subgradient quickly converges to approximate solution.
- Decreasing step-size: subgradient slowly converges to exact solution.
- Next time: faster stochastic methods, and kernels for exponential/infinite bases.