
CPSC 540: Machine Learning

Group L1-Regularization, Structured Sparsity,
Projected-Gradient

Admin

• Room: Next week, we will be moving to CHEM B150.

• Assignment 1:

– You can use 2 of your 3 late days to hand it in before Tuesday’s class.

• Assignment 2:

– Due February 2nd.

– Start early!

Last Time: Gradient Descent Theory and Practice

• We discussed further properties of gradient descent:

– “Strong-smoothness” weakened to “gradient is L-Lipschitz continuous”.

• And only along the line segments between xt and xt+1.

– No need to know ‘L’:

• Adaptive step-size, Armijo line-search, or exact step-size.

– “Strong-convexity” is implied if we have f(x) + λ||x||2 and ‘f’ is convex.

• If ‘f’ is not convex, convergence rate only holds near solution.

• We overviewed methods with better performance:

– Nesterov’s accelerated-gradient method.

– Approximations to Newton’s method.

Last Time: L1-Regularization

• We considered regularization by the L1-norm:

– Encourages solution x* to be sparse.

• Convex approach to regularization and pruning irrelevant features.

– Not perfect, but very fast.

– Could be used as filter, or to initialize NP-hard solver.

• Non-smooth, but “simple” regularizer allows special methods:

– Proximal-gradient methods for general differentiable ‘f’ (today).

– Coordinate optimization for some special cases of ‘f’.

Why not just threshold ‘w’?

• Why not just compute least squares ‘w’ and threshold?
– You can show some nice properties of this, but it does some silly things:

• Let feature 1 be an irrelevant feature, and assume feature 2 is a copy of feature 1.

• Without regularization, could have w1 = -w2 with both values arbitrarily large.

• Why not just compute L2-regularized ‘w’ and threshold?
– Fixes the above problem, but still does weird things:

• Let feature 1 is irrelevant and feature 2 is relevant.

• Assume feature 3 is also relevant, and features 4:d are copies of feature 3.

• For ‘d’ large enough, L2-regularization prefers irrelevant feature ‘1’ or relevant 3:d.
(L1-regularization should pick at least one among 3:d for any ‘d’.)

• (I’m not saying L1-regularization doesn’t do weird things, too.)

• If features are orthogonal, thresholding and L1 are equivalent.
– But feature selection is not interesting in this case.

Last Time: Coordinate Optimization

• For gradient descent we assume gradient is Lipschitz continuous:

• For coordinate optimization we assume coordinate-wise L-Lipschitz:

• Note that neither of these is stronger:
– If gradient is Lf-Lipschitz, then its coordinate-wise Lf-Lipschitz, so L ≤ Lf.

– If coordinate-wise L-Lipschitz, then gradient is dL-Lipschitz, so Lf ≤ dL.

• Gradient descent requires O((Lf/µ)log(1/ε)) iterations.

• Coordinate optimization requires O(d(L/µ)log(1/ε)) iterations.
– This is slower because Lf ≤ dL.

– But if iterations are ‘d’ times cheaper, this is faster because L ≤ Lf.

Gauss-Southwell Selection Rule

• Our bound for any coordinate:

• The “best” coordinate to update is:

– Called the ‘Gauss-Southwell’ or greedy rule.

– You can derive a convergence rate by using that

– Typically, this can’t be implemented ‘d’ times faster than gradient method.

Random Selection Rule

• Our bound for any coordinate:

• Let’s consider random selection of each ‘j’ with probability 1/d:

Analysis of Coordinate Optimization

• If ‘f’ is µ-strongly-convex, then we get a linear convergence rate:

Analysis of Coordinate Optimization

• If ‘f’ is µ-strongly-convex, then we get a linear convergence rate:

Analysis of Coordinate Optimization

• If ‘f’ is µ-strongly-convex, then we get a linear convergence rate:

Lipschitz Sampling and Gauss-Southwell-Lipschitz

• You can go even faster if you have an Lj for each coordinate:

• If you sample jt proportional to Lj, you can get a rate of:

– Depends on average Lj instead of maximum Lj.

• The Gauss-Southwell-Lipschitz rule:

– Even faster, and optimal for quadratic functions.

Comparison of Coordinate Selection Rules

Coordinate Optimization for Non-Smooth Objectives

• Consider an optimization problem of the form:

• Assume:

– ‘f’ is coordinate-wise L-Lipschitz continuous and μ-strongly convex.

– ‘hi’ are general convex functions (could be non-smooth).

– You do exact coordinate optimization.

• For example, L1-regularized least squares:

• Linear convergence rate still holds (proof more complicated):

• We can solve these non-smooth problems much faster than O(1/ε).

Motivation: Group Sparsity

• More general case: we want sparsity in ‘groups’ of variables.

– E.g., we represent categorical/numeric variables as set of binary variables,

and we want to select original variables (“city” and “age”)

• We can address this problem with group L1-regularization:

– ‘Group’ is all binary variables that came from same original variable.

Vancouver Burnaby Surrey Age ≤ 20 20 < Age ≤ 30 Age > 30

1 0 0 0 1 0

0 1 0 0 0 1

1 0 0 0 1 0

City Age

Vancouver 22

Burnaby 35

Vancouver 28

Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

• Think of this as L1-regularization of the group norms:

– Encourages group norms to be exactly zero: all group variables become 0.

– Sometimes written as ‘mixed’ norm:

• Typical choices of norm:

Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

Sparsity from the L2-norm?

• Didn’t we say that sparsity comes from L1-norm and not L2-norm?

– Yes, but we were using squared L2-norm.

Other Applications of Group Sparsity

• Recall that multi-class logistic regression uses:

• We can write our parameters as a matrix:

• To ‘select’ a feature ‘j’, we need ‘wcj = 0’ for all ‘j’.
– If any element of row is non-zero, we still use feature.

– We need a row of zeroes.

Other Applications of Group Sparsity

• In multiple regression we have multiple targets yic:

• We can write our parameters as a matrix:

• To ‘select’ a feature ‘j’, we need ‘wcj = 0’ for all ‘j’.

• Same pattern also arises in multi-label and multi-task classification.

(pause)

Structured Sparsity

• There are many other patterns that regularization can encourage:

– Total-variation regularization (‘fused’ LASSO):

– Encourages consecutive parameters to have same value.

– Often used for time-series data:

– 2D version is popular for image
denoising.

– Can also define for general
graphs between variables.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Structured Sparsity

• There are many other patterns that regularization can encourage:

– Nuclear-norm regularization:

– Encourages parameter matrix to have low-rank representation.

– E.g., consider multi-label classification with huge number of labels.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– Same as group L1-regularization, but groups overlap.

– Can be used to encourage any intersection-closed sparsity pattern.

http://arxiv.org/pdf/1109.2397v2.pdf

Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– How does this work?

• Consider the case of two groups {1} and {1,2}:

Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– Enforcing convex non-zero patterns:

http://arxiv.org/pdf/1109.2397v2.pdf

Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– Enforcing convex non-zero patterns:

http://arxiv.org/pdf/1109.2397v2.pdf

Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– Enforcing a hierarchy:

• We only allow wS non-zero is wS’ is non-zero for all subsets S’ of S.

• E.g., we only consider w123 ≠ 0 if we have w12 ≠ 0, w13 ≠ 0, and w23 ≠ 0.

• For certain bases, you can solve this problem in polynomial time.

http://arxiv.org/pdf/1109.2397v2.pdf

Fitting Models with Structured Sparsity

• These objectives typically have the form:

• It’s the non-differentiable regularizer that leads to the sparsity.

• We can’t always apply coordinate descent:

– ‘f’ might not allow cheap updates.

– ‘r’ might not be separable.

• But general non-smooth methods have slow O(1/ε) rate.

• Are there faster methods for the above structure?

Converting to Constrained Optimization

• Re-write non-smooth problem as constrained problem.

• The problem

is equivalent to the problem:

or the problems:

• These are a smooth objectives with ‘simple’ constraints.

Optimization with Simple Constraints

• Recall: gradient descent minimizes quadratic approximation:

• Consider minimizing subject to simple constraints:

• We can re-write this as:

Projected-Gradient

• This is called projected-gradient:

A set is ‘simple’ if we can efficiently compute projection.

Projection Onto Simple Sets

Projection Onto Simple Sets

Projection Onto Simple Sets

Discussion of Projected-Gradient

• Convergence rates are the same for projected versions:

• Having ‘simple’ constraints is as easy as having no constraints.

• We won’t prove these, but some simple properties proofs use:

Projected-Gradient for L1-Regularization

• We’ve considered writing our L1-regularization problem

as a problem with simple constraints:

and then applying projected-gradient.

• But this problem might be hard to solve.

– The transformed problem is never strongly-convex.

• Can we develop a method that works with the original problem?

Summary

• Coordinate optimization convergence rate analysis.

• Group L1-regularization encourages sparsity in variable groups.

• Structured sparsity encourages other patterns in variables.

• Projected-gradient allows optimization with simple constraints.

• Next time: what if the number of training examples ‘n’ is huge?

