CPSC 540: Machine Learning

Group L1-Regularization, Structured Sparsity,
Projected-Gradient



Admin

e Room: Next week, we will be moving to CHEM B150.

* Assignment 1:
— You can use 2 of your 3 late days to hand it in before Tuesday’s class.

* Assignment 2:
— Due February 29,
— Start early!



Last Time: Gradient Descent Theory and Practice

* We discussed further properties of gradient descent:
— “Strong-smoothness” weakened to “gradient is L-Lipschitz continuous”.

* And only along the line segments between x' and x'*2.

— No need to know ‘L’:

* Adaptive step-size, Armijo line-search, or exact step-size.
— “Strong-convexity” is implied if we have f(x) + A| | x| |2 and ‘f” is convex.
* If ‘f" is not convex, convergence rate only holds near solution.
* We overviewed methods with better performance:
— Nesterov’s accelerated-gradient method.
— Approximations to Newton’s method.



Last Time: L1-Regularization

* We considered regularization by the L1-norm:
O gmin (T(X> + QIL(N,

x € R®

— Encourages solution x* to be sparse.

e Convex approach to regularization and pruning irrelevant features.
— Not perfect, but very fast.
— Could be used as filter, or to initialize NP-hard solver.

* Non-smooth, but “simple” regularizer allows special methods:

— Proximal-gradient methods for general differentiable ‘' (today).
— Coordinate optimization for some special cases of f’.



Why not just threshold ‘w’?

Why not just compute least squares ‘w’ and threshold?

— You can show some nice properties of this, but it does some silly things:
* Let feature 1 be an irrelevant feature, and assume feature 2 is a copy of feature 1.
* Without regularization, could have w, = -w, with both values arbitrarily large.

Why not just compute L2-regularized ‘w’ and threshold?

— Fixes the above problem, but still does weird things:
e Let feature 1 is irrelevant and feature 2 is relevant.
* Assume feature 3 is also relevant, and features 4:d are copies of feature 3.

* For ‘d’ large enough, L2-regularization prefers irrelevant feature ‘1’ or relevant 3:d.
(L1-regularization should pick at least one among 3:d for any ‘d’.)

(I'm not saying L1-regularization doesn’t do weird things, too.)

If features are orthogonal, thresholding and L1 are equivalent.
— But feature selection is not interesting in this case.



Last Time: Coordinate Optimization

For gradient descent we assume gradient is Lipschitz continuous:

VG =V < el =yl VA S T
For coordinate optimization we assume coordinate—wise2L-Lipschitz:
[U}F(X*M&Q“’%Rﬁ/g L’o(f VL} ][\{X> Sl

Note that neither of these is stronger:

— If gradient is Li-Lipschitz, then its coordinate-wise Li-Lipschitz, so L < L.
— If coordinate-wise L-Lipschitz, then gradient is dL-Lipschitz, so L; < dL.
Gradient descent requires O((Ic_éfr/u)log(l/s)) iterations.
Coordinate optimization requires O(d(L/p)log(1/¢)) iterations.

— This is slower because L; < dL.
— But if iterations are ‘d’” times cheaper, this is faster because L < L.
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Gauss-Southwell Selection Rule

 Our bound for any coordinate: {(,t*) < £(,¢) — *2'[1 th‘c(xé)lg

* The “best” coordinate to update is:
j, € W%gw RN

— Called the ‘Gauss-Southwell’ or greedy rule.

I\ Gauss-Southwell

— You can derive a convergence rate by using that | V% (%) 5= | Vf(f)//é
— Typically, this can’t be implemented ‘d’ times faster than gradient method.



Random Selection Rule

 Our bound for any coordinate: {(,t*) < £(,¢) —

* Let’s consider random selection of each j
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Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
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Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
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Analysis of Coordinate Optimization

e If f" is pu-strongly-convex, then we get a linear convergence rate:
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Lipschitz Sampling and Gauss-Southwell-Lipschitz

* You can go even faster if you have an L, for each coordinate:
| Bl aey) =V L€ Lol
* If you sample j; proportional to L, you can get a rate of: J
|

ELAGE) - PG S (1= £ LE-F)) whoe =45,
Ld =
— Depends on average L; instead of maximum L.

° - _11 1 . . ot )O)‘wt(xt))l
The Gauss-Southwell-Lipschitz rulel. i, ¢ qu V% 5 ;

— Even faster, and optimal for quadratic functions.




Comparison of Coordinate Selection Rules

S ¢5 -regularized sparse least squares
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Coordinate Optimization for Non-Smooth Objectives

* Consider an optimization problem of the form:

Grgmi Fx) + Z%M()
¥ €R o
e Assume: o de 1\4/\/

51"{) /r/l
— ‘t”is coordinate-wise L-Lipschitz continuous and p-strongly convex.

— ‘h.” are general convex functions (could be non-smooth). N, @(5,): %S{
— You do exact coordinate optimization. /\M [~

d

* For example, L1-regularized least squares: awﬁ Tl - ylF ﬂf— !

* Linear convergence rate still holds (proof more compllcated).
ELAGE) - T < ([ = ) LELD)- 469

* We can solve these non-smooth problems much faster than O(1/¢).



Motivation: Group Sparsity

 More general case: we want sparsity in ‘groups’ of variables.
— E.g., we represent categorical/numeric variables as set of binary variables,

Vancouver

1 0 0 0 1 0
Burnaby 35 0 1 0 0 0 1

Vancouver 28 1 0 0 0 1 0

and we want to select original variables (“city” and “age”)

We can address this problem with group L1-regularization:

— ‘Group’ is all binary variables that came from same original variable.
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* Minimizing a function ‘f" with group L1-regularization:
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* Think of this as L1-regularization of the group norms:

— Encourages group norms to be exactly zero: all group variables become 0.

=2 \(xll

— Sometimes written as ‘mixed’ norm: |l x l/, P
4€G

e Typical choices of norm:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Sparsity from the L2-norm?

* Didn’t we say that sparsity comes from L1-norm and not L2-norm?

—

et J ez Il

— Yes, but we were using squared L2-norm. r _ //v/
X




Other Applications of Group Sparsity
* Recall that multi-class logistic regression uses:
N —
R O\(\ W a X Wc/& |
i = Ot

* We can write our parameters as a matrix:

—

,/’

1 D<— all Wfavmﬁws [/ 7%;5 N

— )
. Jn . Covrres O\AJ‘f St
* To ‘select’ a feature J’, we need ‘w = 0" for all /J'. f Wi;;m/ foctur

— |f any element of row is non-zero, we still use feature.
— We need a row of zeroes.

|
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Other Applications of Group Sparsity

* In multiple regression we have multiple targets y._:

—

)/ﬂ: \’Vll’(i
5)}2: Wy %
ik = Wi,
* We can write our parameters as a matrix:
_ ) ) } q
W=l Wy wy owy
& l {L D<— all WWOIWTWS T4 7LL\£5 o
- | [ J C@rfejdoovd ‘f() St

( ) (:) ( ) (°) Om};”q{ WCE@ZW(’.
* To ‘select’ a feature J’, we need ‘w = 0" for all /J'.

* Same pattern also arises in multi-label and multi-task classification.



(pause)



Structured Sparsity

 There are many other patterns that regularization can encourage:
— Total-variation regularization (‘fused’ LASSO):
o]
a; 6%@ FOo)+ qjsi‘ ‘X3 RSN |
— Encourages consecutive parameters to have same value.
— Often used for time-series data: | - . . : . . . .
— 2D version is popular for image &

denoising. o ‘ “
o —

— Can also define for general

H -E.- i i i i i i i i
graphs between variables. 2000 4000 6000 8000 10000 12000 14000 16000
n




Structured Sparsity

 There are many other patterns that regularization can encourage:

— Nuclear-norm regularization:

Qr g miv Cox) + D1 Xy
X(;R‘i}ﬂf | L/WS&AW\ 6T €i/\7w{mf \/a(l/'fj
— Encourages parameter matrix to have low-rank representation.

— E.g., consider multi-label classification with huge number of labels.
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Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:

a4y P+ 59 gl

ﬁé&

— Same as group L1-regularization, but groups overlap.
— Can be used to encourage any intersection-closed sparsity pattern.
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ig 3: (Left) The set of blue groups to penalize in order to select contiguous
Fig 3: (Left ) _
patterns in a sequence. (Right) In red, an example of such a nonzero pattern
with its corresponding zero pattern (hatched area).



Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:

Q;ﬁfé? Flo+ 5 qS | w(j”,)
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— How does this work?
e Consider the case of two groups {1} and {1,2}:
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Structured Sparsity

* There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:

a4y P+ 59 gl
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— Enforcing convex non-zero patterns:
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Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:
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— Enforcing convex non-zero patterns
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Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:

a4y P+ 59 gl
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Fig 9: Power set of the set {1, ..., 4}: in blue, an authorized set of selected subsets.

- E nfo rCI ng a h Iera rC hy: In red, an example of a group used within the norm (a subset and all of its

descendants in the DAG).
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* We only allow w¢ non-zero is w is non-zero for all subsets S’ of S.
* E.g., we only consider w,,; # 0 if we have w;, 20, w53 20, and w,; # 0.
* For certain bases, you can solve this problem in polynomial time.



Fitting Models with Structured Sparsity

These objectives typically have the form:

Argmin L)+ 1)
R e
Smosthh non—smosl

It’s the non-differentiable regularizer that leads to the sparsity.

We can’t always apply coordinate descent:
— ‘" might not allow cheap updates.
— r" might not be separable.

But general non-smooth methods have slow O(1/¢) rate.
Are there faster methods for the above structure?



Converting to Constrained Optimization

* Re-write non-smooth problem as constrained problem.

 The problem
min f(x)+ Allx]|1.

is equivalent to the problem:

min  f(xT—xT)+AY (X" +x7), < nle becanse oy
xT>0,x— >0 - ,

>0,x~> f (onstramts are Thet
Variahles are mm‘/\f’c/aﬁ/ﬂ

or the problems min  f(x) + )\Zy;. min  f(x)+ My

(omes Krem —y<x<y [ x])1 <

Wswal \qu\ P J N
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* These are a smooth objectives with ‘simple’ constraints.
min f(x).
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Optimization with Simple Constraints

* Recall: gradient descent minimizes quadratic approximation:

1
x‘T = argmin {f(xf) + VI (y = x) + 5y — xfIIQ} -
! 2 J Fraints
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* Consider minimizing subject to simple constraints: are salishel,
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Projected-Gradient

ﬁﬂ ) 0(%: L
* This is called projected-gradient: G0 %t _ A VF(xY).
. \ t+1 : GD
g X — argmin — X .
o g {1y — xC1 }

x -af’(x)

A set is ‘simple’ if we can efficiently compute projection.
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Projection Onto Simple Sets

Projections onto simple sets:

@ argmin, g ||y — x|| = max{x,0}



Projection Onto Simple Sets

Projections onto simple sets:

@ argmin, g ||y — x|| = max{x,0}

o argmin,<, <, [y — x| = max{/, min{x, u}} COI/\'C( have

o argmin,r,_|ly — x| = x+ (b — a x)a/lal|?. (4 secall puufer
; T m@ar‘
X a'x>b CO/\§7L/0(LM7€§

o argmin,r, ||y — x|| = <

x+(b—a'x)a/|al* a'x <b



Projection Onto Simple Sets

Projections onto simple sets:

arg min,~g ||y — x|| = max{x,0}
arg min,<, <, ||y — x| = max{/, min{x, u}} CM({ hae
arg min,r,_p ||y — x|| = x + (b — a x)a/lal|?. (4 sevall pusaher
; T )Vlfa/‘
Aaro min - Hy - XH — X d X 2 b CO/\S%/O(WWE(
oeyzb x+(b—a’x)a/l|al]? a'x < b
‘.
arg miny, i<, ||y — x|| = 7x/|[|x||. ﬁ Possibly
_inear-time algorithm for (1-norm ||y|[; < 7. wany  olher
Novrm Lalls and

_inear-time algorithm for probability simplex y >0,y = 1.
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ntersection of simple sets: Dykstra’'s algorithm.



Discussion of Projected-Gradient

* Convergence rates are the same for projected versions:
j: (onbex and ron~ Snugth ot l/€2>
F convee and OF Lipeitz %)
]f S{}-N\C}\\/\(/w\v{x ind norsaogin O(l/g)
£oshenglyconver and 9F Ljpsintz OU"‘) Wf»

* Having ‘simple’ constraints is as easy as having no constraints.
* We won’t prove these, but some simple properties proofs use:
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Projected-Gradient for L1-Regularization

We've considered writing our L1-regularization problem

min f(x)+ Al[x||1.
1+ .
as a problem with simple constraints: f(x*)[): =)+ 1z (X; w)f)
jel

+%€A
o0 o) Z(X? ) N )= V) V)
~VH(i~) VH-y)

M/%\Ch has @iL\fffﬁf Cl

But this problem might be hard to solve. cigenalues of 0
Never Serr\ley‘(OwWy,

and then applying projected-gradient.

— The transformed problem is never strongly-convex.

Can we develop a method that works with the original problem?



Summary

Coordinate optimization convergence rate analysis.

Group L1-regularization encourages sparsity in variable groups.
Structured sparsity encourages other patterns in variables.
Projected-gradient allows optimization with simple constraints.

Next time: what if the number of training examples ‘n’ is huge?



