CPSC 540: Machine Learning

Convex Functions, Gradient Descent, Convergence Rates Winter 2016

Admin

- Auditing/enrollment forms:
 - Drop-off/pickup your forms at the end of class.
 - It will be easier to argue for larger classroom if people are officially enrolled/auditing.
 - Remaining forms can be picked up at the tutorials tomorrow.
- CPSC and EECE graduate students: prereq forms due now.
- Assignment 1: due Tuesday.
 - Hand in one assignment for the group (of 1-3).
- Add/Drop deadline: Monday.
 - Last chance before you are locked in/out.

The 'Best' Machine Learning Model

- What is the 'best' machine learning model?
 - SVMs? Random forests? Deep learning?
- No free lunch theorem:
 - There is no 'best' model that achieves the best test error for every problem.
 - If model A works better than model B on one dataset, there is another dataset where model B works better.
- Asking what is the 'best' machine learning model is like asking which is 'best' among "rock", "paper", and "scissors".
- Caveat of no free lunch (NFL) theorem:
 - The world is very structured, some datasets are more likely than others.
 - Model A could be better than model B on a huge variety of practical applications.
- Machine learning emphasizes models useful across applications.

Last Time: Logistic Regression

- We considered binary labels y_i, and classifying with sign(w^Tx_i).
 - Squared error $(w^Tx_i y_i)^2$ is not ideal: penalizes model for "too right".
 - Minimizing number of errors is also not ideal: NP-hard.
 - Tractable upper bounds are hinge loss and logistic loss.

Last Time: Maximum Likelihood and MAP

- Minimizing a loss function often equivalent to maximum likelihood.
 - For example, least squares is equivalent to using a Gaussian likelihood:

- With a regularizer, often equivalent to MAP estimation:
 - For example, L2-regularization is equivalent to using a Gaussian prior:

If
$$y_i \sim \mathcal{N}(w^T x_{ij} o^2)$$
 argmax $p(w|y_j X) \ll 7 \arg \max p(y|w_j X) p(w) \ll 7 \arg \min \frac{1}{2} ||Xw-y||^2 + \frac{1}{2} ||w||^2$
 $w \in \mathbb{R}^d$ $w \in \mathbb{R}^d$

• Gives probabilistic perspective on regularization: prior on 'w'.

Last Time: Maximum Likelihood and MAP

- Logistic loss is equivalent to maximum likelihood logistic regression: $p(y_i | w_y x_i) = \frac{1}{1 + exp(-y_i w^7 x_i)}$ Based on "sigmoid" function $O(z) = \frac{1}{1 + exp(-z)}$
- L2-regularized logistic is MAP estimate with Gaussian prior:

$$p(y_i | w_j x_i) = \frac{1}{|+exp(-y_i w^T x_i)|} \quad p(w_j | \lambda) \propto exp(-\frac{\lambda}{2} w_j^2)$$

- Advantage of likelihood/MAP perspective:
 - Allows us to define objectives for other distributions of y_i .

Multi-Class Logistic Regression

• Supposed y_i takes values from an unordered discrete set of classes.

- Standard model:
 - Use a 'd'-dimensional weight vector ' w_c ' for each class 'c'.
 - Try to make inner-product $w_c^T x_i$ big when 'c' is the true label ' y_i '.
 - Classify by finding largest inner-product: $\bigwedge_{i \in I} \mathcal{I}_{i}$

$$\gamma_i = \operatorname{argmar}_{C} \{ w_c \ x_i \}$$

$$\begin{array}{l} \text{Multi-Class Logistic Regression} \\ \text{We have a parameter matrix } W = \left\{ \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \begin{array}{c} \left| \end{array}\right| \right| \\ \left| \begin{array}{c} \left| \end{array}\right| \\ \left| \end{array}\right| \\ \left| \begin{array}{c} \left| \end{array}\right| \\ \left| \end{array}\right| \\ \left| \end{array}\right| \\ \left| \begin{array}{c} \left| \end{array}\right| \\ \left| \end{array}\right| \\ \left| \end{array}\right| \\ \left| \end{array}\right| \\ \left| \begin{array}{c} \left| \end{array}\right| \\ \left| \\ \left| \end{array}\right| \\ \left| \\ \left| \right| \\ \left| \end{array}\right| \\ \left| \\ \left| \right| \\ \left| \left| \right| \\ \left| \right| \\ \left| \right| \\ \left| \right| \right| \\ \left| \right| \\ \left| \right| \\ \left| \right| \right| \\ \left| \right| \\ \left| \right| \right| \\ \left| \right| \\ \left| \right| \\ \left| \right| \\ \left| \right| \right| \\ \left| \right| \right| \left| \right| \\ \left| \right| \\ \left| \right| \right| \\ \left| \right| \right| \left| \right| \left| \right| \right| \\ \left|$$

Ordinal Labels

- Ordinal data: categorical data where the order matters:
 - Rating hotels as {'1 star', '2 stars', '3 stars', '4 stars', '5 stars'}.
 - Softmax would ignore order.
- 'Proportional odds' or 'ordinal logistic regression':

Count Labels

- Count data: predict the number of times something happens.
 - For example, $y_i = "602"$ Facebok likes.
- Softmax/ordinal require finite number of categories.
- We probably don't want separate parameter for '654' and '655'.
- Poisson regression: use probability from Poisson count distribution.
 - Many variations exist.

Last Time: Robust Regression

- We said that squared error is sensitive to outliers:
 - Absolute error is less sensitive: can be solved as a linear program.

'Brittle' Regression

- What if you really care about getting the outliers right?
 - You want best performance on worst training example.
 - For example, if in worst case the plane can crash.
- In this case you can use something like the infinity-norm:

• Very sensitive to outliers (brittle), but worst case will be better.

Last Time: Robust Regression

- We said that squared error is sensitive to outliers:
 - Absolute error is less sensitive: can be solved as a linear program.
 - Maximum error is more sensitive: can also be solved as linear program.

X

Very Robust Regression

• Can we be more robust?

- Very robust: eventually "gives up" on large errors.
- But finding optimal 'w' is NP-hard.
 - Absolute value is the most robust that is not NP-hard.

Course Roadmap

- Topics we discussed in part 1:
 - Linear models: change of basis, regularization, loss functions.
 - Basics of learning theory: Training vs. test error, bias-variance, fundamental trade-off, no free lunch.
 - Probabilistic learning principles: Maximum likelihood, MAP estimation.
- Part 2: Large-scale machine learning.
 - Why are SVMs/logistic easy while minimizing number of errors is hard?
 - How do we fit these models to huge datasets?

Convex Functions

- We are first going to discuss convex functions:
 - Minimizing convex functions is usually easy.
 - Minimizing non-convex functions is usually hard.
- The 'easy' problems we have discussed are convex:
 - Least squares, robust regression, logistic regression, support vector machines, multi-class logistic, brittle regression, Poisson regression.
 - All of the above with L2-regularization.
- The 'hard' problems we have discussed are non-convex:
 - 0-1 loss, "very robust" regression.

Convex Sets

- First we need to define a convex set:
 - A set is convex if the line between any two points stays in the set. For all $x \in C$ and $y \in C$ we have $\Theta x + (1 - \Theta)_y \in C$ for $0 \leq \Theta \leq 1$

Convex Sets

• Examples:

Real-space: \mathbb{R}^d Positive orthant \mathbb{R}^d_+ ; $\{x \mid x \ge 0\}$ Hyper-plane: $\{x \mid a^Tx = 6\}$ Half-space: $\{x \mid a^Tx \le 6\}$ Norm-ball: $\{x \mid \|x\| \le 7\}$ Norm-cone: $\{(x, \gamma) \mid \|x\| \le 7\}$

Showing a Set is Convex

E.g. if $C = \{x \mid a^T x = b\}$ How to prove a set is convex. then for x EC and y EC and 05051 - One way: choose two we have $q^{T}(\theta_{X} + (1 - \theta_{Y}))$ generic x and y in the set, $= \Theta(a^{7}x) + (1 - \theta)(a^{7}y)$ Show that generic 2 between $= \Theta b + (1 - \theta) b = b$ them is also in the set. E.g., if $C = \{x \mid ||x|| \leq 10\}$ - Another way: Show then for x EC and yEC and 05651 that set is intersection we have 11 Gx + (1-G)y11 GF sets that you know (triangle inguality) $\leq ||\Theta_X|| + ||(|-\Theta_Y||$ 912 Convex. $a \le \max\{a,b\} = |\Theta| \cdot ||x|| + ||-\Theta| \cdot ||y|| + (homogeno) + ||x|| + (1-\Theta) ||y|| = |\Theta| \cdot ||x|| + (1-\Theta) ||y|| = ||x||, ||y|| = \max\{1|x||, ||y||| \le 10$ (homogen of ty)

Intersection of Convex Sets

Convex Functions

- A function 'f' is convex if:
 - 1. The domain of 'f' is a convex set.
 - 2. The function is always below 'chord' between two points.

 $f(\Theta_X + (1 - \Theta)_Y) \leq \Theta f(x) + (1 - \Theta)f(y)$ for all $x \in C, y \in G$ and $0 \leq \Theta \leq 1$ Implication: all local minima are global minima. We can minimize a convex function by finding any stationary point.

Convex Functions

• Examples:

Quadratic functions: $F(x) = ax^2 + bx + c$, a > 0. Linear functions $f(x) = a^T x + b$ Exponential: f(x) = exp(ax)Negative loyarithm: $f(x) = -\log(x)$ Absolute value: f(x) = |x|Max function: $f(x) = \max \{x_i\}$ Negative entropy: f(x) = x log(x), x>0 Logistic loss: f(x) = log(l + exp(-z))Log-sum-exp: f(x) = log(z + exp(-z))

Differentiable Convex Functions

• A *differentiable* 'f' is convex iff 'f' is always above tangent:

$$f(y) \ge f(x) + \nabla f(x)^{T}(y - x) \text{ for all } x \in C \text{ and } y \in C$$

If
$$\nabla f(x) = 0_7$$
 this implies $f(y) \neq f(x)$ for all y so x is
a global minimizer

Twice-Differentiable Convex Functions

Showing Functions are Convex

• Examples:

If
$$f(x) = x^2$$

then $f'(x) = 2x$
and $f''(x) = 2$.
Since $2 \ge 0$ we've
shown x^2 is convex.

If $f(x) = \frac{1}{2} x^T A x + b^T x + c$ with $A \gtrsim 0$ then $\nabla f(x) = Ax + b$ and $\nabla^2 F(x) = A$ Since $\nabla^2 f(x) \gtrsim 0$ we've shown f(x)is convex.

Showing Functions are Convex

• Examples:

$$f(w) = \frac{1}{2} |(Xw - y)|^2$$

$$\nabla f(w) = X^T (Xw - y)$$

$$\nabla^2 f(w) = X^T X$$

Want to show that $\nabla^2 f(w) \xi_0$, or equivalently $y^T \nabla^2 f(w) y \neq 0$.

We have $y^T \nabla^2 f(w)_y = y^T \chi^T \chi_y$ $= (\chi_y)'(\chi_y)$ $= \|\chi_{\chi}\|^2 \geq 0$ So least squares is Convex and setting Nf(w)=0 gives global minimum

Strictly-Convex Functions

• A function is strictly-convex if these inequalities strictly hold:

 $\begin{aligned} f(\Theta x + (I - \Theta)y) &\leq \Theta f(x) + (I - \Theta) f(y) & \text{for } G \leq \Theta \leq I. \\ f(y) &\geq f(x) + \nabla f(x)^{\top} (y - x) \\ \nabla^2 f(x) &\geq O \quad (y^{\top} \nabla^2 f(x)y) \geq O \text{ for all } y \neq 0) \end{aligned}$

• Strict convexity implies at most one global minimum: Points 'x' and 'y' can't both be global minima if $x \neq y_7$ since this would imply $f(\theta x + (1 - \theta)_7)$ is below global min.

• This implies L2-regularized least squares has unique solution: $\int_{1}^{\sqrt{\gamma}} \nabla^2 f(w)_{\gamma} = \sqrt{\gamma} (\chi^{\gamma} \chi + \lambda I)_{\gamma} = \sqrt{\gamma} \chi^{\gamma} \chi_{\gamma} + \gamma^{\gamma} (\lambda I)_{\gamma} = (\chi_{\gamma})^{\gamma} (\chi_{\gamma}) + \lambda_{\gamma}^{\gamma} y = ||\chi_{\gamma}||^2 + \lambda ||y||^2 > O.$

Operations that Preserve Convexity

- There are a few operations preserve convexity.
 - Often lets us avoid calculating Hessian.
 - Often lets us prove convexity of non-smooth functions.
- If f₁ and f₂ are convex, then convexity is preserved under:
 - 1. Non-negative weighted sum:

 $f(x) = zf_1(x) + z_2f_2(x)$ is convex if $z_1 = 70$ and $z_2 = 70$

- 2. Composition with affine function: $f(x) = f_1(Ax+b)$ is convex.
- 3. Pointwise maximum:

 $f(x) = \max \{f_1(x), f_2(x)\}$ is convex.

 $\nabla^{2} \frac{2}{2} ||h||^{2}$ $=\lambda I \geq 0$ SO CONVEX $E_{xample: SVMs}$ $f(x) = \sum_{i=1}^{n} \max_{j=1}^{20} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum$ 50 CONVEN (ONVEX.

(pause)

Current Hot Topics in Machine Learning

• Graph of most common keywords among ICML papers last year:

• Why is there so much focus on deep learning and optimization?

Why Study Optimization in CPSC 540?

- In machine learning, training is typically written as optimization:
 Numerically optimize parameters of model, given data.
- There are some exceptions:
 - 1. Counting- and distance-based methods (random forests, KNN).
 - See CPSC 340.
 - 2. Integration-based methods (Bayesian learning).
 - Later in course.

Although you still need to tune parameters in those models.

- But why study optimization? Can't I just use Matlab functions?
 - '\', linprog, quadprog, fmincon, CVX,...

The Effect of Big Data and Big Models

- Datasets are getting huge, we might want to train on:
 - Entire medical image databases.
 - Every webpage on the internet.
 - Every product on Amazon.
 - Every rating on Netflix.
 - All flight data in history.
- With bigger datasets, we can build bigger models:
 - This is where deep learning comes in.
 - Complicated models can address complicated problems.
- Now optimization becomes a problem because of time/memory:
 - We can' afford $O(d^2)$ memory, or an $O(d^2)$ operation.
 - Going through huge datasets 100s of times is too slow.
 - Evaluating huge models too many times is too slow.

Fitting Logistic Regression Models

• Recall the L2-regularized logistic regression objective function:

$$\frac{drqmin}{w \in \mathbb{R}^{d}} \sum_{i=1}^{d} \log(1 + \exp(-\gamma_{i}w^{T}x_{i})) + \frac{\lambda}{2} ||w||^{2}$$

- This objective function is strictly-convex and differentiable.
- But we can't formulate as linear system or linear program.
- Nevertheless, we can efficiently solve this problem.
- There are many ways to do this, but we focus on gradient descent:
 - Iteration cost is linear in 'd' (not true of IRLS/Newton's method).
 - We can prove that we don't need too many iterations:
 - Number of iterations does not directly depend on 'd'.

Gradient Descent

- Gradient descent is based on a simple observation:
 - Given parameters ' w^{0} ', direction of largest decrease is - $\nabla f(w^{0})$).

Gradient Descent

- Gradient descent is based on a simple observation:
 - Given parameters ' w^{0} ', direction of largest decrease is - $\nabla f(w^{0})$).

Gradient Descent

- Gradient descent is based on a simple observation:
 - Given parameters ' w^{0} ', direction of largest decrease is - $\nabla f(w^{0})$).

Gradient Descent

- Gradient descent is an iterative algorithm:
 - We start with some initial guess, w^0 .
 - Generate new guess by moving in the negative gradient direction:

$$W' = W' - X_0 \nabla f(w').$$

(The scalar α_0 is the `step size'.)

- Repeat to successively refine the guess: $w^{t+1} = w^t - \varkappa_t \nabla f(w^t)$

Generate $w_{j}w_{j}w_{j}r_{an}$ - Stop if not making progress or $||\nabla f(v^{E})|| \leq 5$ (some small number)

Gradient Descent in 2D

Gradient Descent

- If α_t is small enough and $\nabla f(w^t) \neq 0$, guaranteed to decrease 'f': $f(w^{t+i}) < f(w^t)$
- Under weak conditions, procedure converges to a stationary point.

- Least squares via linear system vs. gradient descent:
 - Solving linear system cost O(nd² + d³).
 - Gradient descent costs O(ndt) to run for 't' iterations.
 - Will be faster if t < d.

Convergence Rate of Gradient Descent

- How many iterations do we need?
 - Let x^* be the optimal solution and ε be the accuracy we want.
 - Notation: – What is the smallest number of iterations 't' such that:

 $f(x^{t}) - f(x^{*}) \leq \varepsilon$

- In optimization, we usually talk about optimizing X. • To answer this question, need assumptions:

- Lets assume
$$MI \leq \nabla^2 f(x) \leq LI$$
 for all x and some $L \leq \infty$
Strongly - convex
=> strictly - convex
=> convex.
To convex.
 $T = \sum_{x = 1}^{n} \sum_{x = 1}^{n} \sum_{y = 1}^{n} \sum_{x = 1}^{n} \sum_{y = 1}^{n} \sum_{x = 1$

Bonus Slide: Constants for Least Squares

• Consider least squares: $f(x) = \frac{1}{2} ||A \times -b||^2$

What are 'L' and 'n' such that
$$mI \leq \nabla^2 f(x) \leq LI$$
?

Note that
$$\nabla^2 f(x) = A^T A_3$$
 and since it's symmetric we can spectral decomposition:
 $A^T A = \stackrel{d}{\underset{j=1}{\overset{d}{\Rightarrow}}} \lambda_j q_j q_j^T$ where $q_j^T q_j = 1$ and $q_i q_j = 0$ for $i \neq j$. (Assume $\lambda_1 \neq \lambda_2 \neq \dots \neq \lambda_d$)

We can write any as linear combination of orthogonal basis,
$$y = x_1q_1 + x_2q_2 + \cdots + x_4q_4$$
.
So we have $y^T \nabla^2 f(x)y = y^T A^T A y = y^T (\sum_{j=1}^d \lambda_j q_j q_j^T) = \sum_{j=1}^d \lambda_j y^T q_j q_j^T y = \sum_{j=1}^d \lambda_j x_j^2$
Note that we can assume $\|y\|=1$ So $y^T \nabla^2 f(x)y$ is maximized when $x_1^2 = 1$ and minimized when $x_2^2 = 1$,
 $y^T y = \sum_{j=1}^d x_j^2 = 1$.

Convergence Rate of Gradient Descent

• The gradient descent iteration:

$$x^{t+1} = x^{t} - \alpha_t \nabla f(x^{t})$$

- Assumptions:
 - Function 'f' is L-strongly smooth and μ -strongly convex.
 - We set the step-size to $\alpha_t = 1/L$.
- Then gradient descent has a linear convergence rate:

$$f(x^t) - f(x^*) \leq O(p^t) \text{ for } p \leq$$

- It follows that we need $t = O(log(1/\epsilon))$ iterations.
 - This is good! We want 't' to grow slowly in accuracy $1/\epsilon$.
- Also called 'exponential' convergence rate.

 $F(x^{t}) - f(x^{*}) = E \leq O(p^{t})$ means $E \leq c p^{t}$ for $t |_{angle}$ or $log(E) \leq log(cp^{t})$ $= log(c) + t |_{og(p)}$ or $t \geq log(E) - const$ log(p)or $t \geq O(log(l'E))$ (since $p \leq l$)

 $l_{\alpha}(f(x^{t})-f(x))$

Convergence Rate of Gradient Descent

• One version of Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \text{ for all } x \text{ and } y.$$

$$(\text{Incarization of 'f'at 'x'}) \quad (1) \quad (1)$$

Using Strong-Smoothness

• One version of Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \quad \text{for all } x \text{ and } y.$$
From strong-smoothness we have: $\nabla^{T} \nabla^{2} f(z) \vee \leq L \|v\|^{2}$ for any z and $v.$

$$f(y) \leq f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} \|y-x\|^{2} \quad \text{for all } x \text{ and } y.$$
If we set $x^{t+1} \in \int_{0}^{1} \frac{q_{\text{nadratic upper}}}{p_{\text{nadratic on } f'}} \quad f \quad \text{Let's find min of quadratic upper bound:}$

$$f(x) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} \|y-x\|^{2} \quad \text{for all } x \text{ and } y.$$
If we set $x^{t+1} \in \int_{0}^{1} \frac{q_{\text{nadratic upper}}}{p_{\text{nadratic on } f'}} \quad f \quad \text{Let's find min of quadratic upper bound:}$

$$f(x) = 0 + \nabla f(x) - 0 + L(y-x)$$

$$\text{we get } x^{t+1} = xt - \frac{1}{2} \nabla f(x)$$

Using Strong-Smoothness

• One version of Taylor expansion:

 $f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \\ \text{for all } x \text{ and } y.$ From strong smoothness we have: $\sqrt{T} \nabla^{2} f(z) \sqrt{\zeta} \leq L \|v\|^{2}$ for any z and v. $f(y) \leq f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} ||y-x||^2 \text{ for all } x \text{ and } y.$ Set $x = x^t$ and $y = x^{t+1}$: $f(x^{t+i}) \leq f(x^{t}) + \nabla f(x^{t})^{\mathsf{T}}(x^{t+i} - x^{t}) + \frac{||x^{t+i} - x^{t}||^{2}}{2} x^{t+i} = x^{t} - \frac{1}{L} \nabla f(x^{t})$ $= f(x^{t}) + \nabla f(x^{t})^{\mathsf{T}}(-\frac{1}{L} \nabla f(x^{t})) + \frac{1}{2L} ||\nabla f(x^{t})||^{2} \qquad (\text{minimum of upper bound})$ $= f(x^{t}) - \frac{1}{L} \nabla f(x^{t})^{\mathsf{T}} \nabla f(x^{t}) + \frac{1}{2L} ||\nabla f(x^{t})||^{2} \qquad \nabla f(x) = ||\nabla f(x)||^{2}$ $= f(x^{t}) - \frac{1}{2!} ||\nabla f(x^{t})||^{2}$

Using Strong-Smoothness

- We've derived a bound on guaranteed progress at iteration 't': $f(x^{t+1}) \leq f(x^t) - \frac{1}{2t} ||\nabla f(x^t)||^2$
 - If gradient is non-zero, guaranteed to decrease objective.
 - Amount we decrease grows with the size of the gradient.
 - Note: bound involves for any strongly-smooth function (e.g., non-convex)

Using Strong-Convexity

• One version of Taylor expansion:

$$f(y) = f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) \quad \text{for some } z \quad \text{for all } x \text{ and } y.$$
By strong-convexity we have $\sqrt{T} \nabla^{2} f(z) \sqrt{2} M$ for all y and z .
$$f(y) \ge f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} ||y-x||^{2}$$
quadratic lower bound on 'f'
$$f(x^{\pm})$$
bound on
$$f(x^{\pm}) \quad \text{We know that} \quad f(x^{\pm}) \quad \text{We know that} \quad f(x^{\pm}) \quad \text{we for all } y \text{ can be below minimum of bound}$$

Using Strong-Convexity

• One version of Taylor expansion:

$$\begin{split} f(y) &= f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x) & \text{for some } z \\ & \text{for all } x \text{ and } y. \\ By strong-convexity we have \ v^{T} \nabla^{2} f(z)v \geqslant u & \text{for all } y \text{ and } z. \\ f(y) \geqslant f(x) + \nabla f(x)^{T}(y-x) + \frac{u}{2} ||y-x||^{2} \\ & \text{Minimize both sides with respect to } y. \\ & f(x^{*}) \geqslant f(x) - \frac{1}{2u} ||\nabla f(x)||^{2} \end{split}$$

Combining Strong-Smoothness and Convexity

- Our bound on guaranteed progress:
- Our bound on 'distance to go': $f(x^{t+}) \ge f(x^{t}) - \frac{1}{2L} ||\nabla f(x^{t})||^{2} = \int_{2L} ||\nabla f(x^{t})||^{2} \le \int_{2L} ||\nabla f(x^{t})||^{2}$
- Use 'distance to go' bound in guaranteed progress bound: $f(x^{t+i}) \leq f(x^t) - \frac{1}{i} \left(-u(f(x^t) - f(x^t)) \right)$
- Subtract f(x*) from both sides and simplify: $f(x^{t+1}) - f(x^{*}) \leq f(x^{t}) - f(x^{*}) - \frac{u}{1}(f(x^{t}) - f(x^{*}))$

$$= \left(\left| -\frac{M}{L} \right) \left[f(x^{t}) - f(x^{*}) \right] \right]$$

Combining Strong-Smoothness and Convexity

• We've shown that:

$$f(x^{t}) - f(x^{*}) \leq (1 - \frac{1}{L}) [f(x^{t-1}) - f(x^{*})]$$

• Applying this recursively:

$$f(x^{t}) - f(x^{*}) \leq (1 - \frac{m}{L}) \Big[(1 - \frac{m}{L}) \Big[f(x^{t-2}) - f(x^{*}) \Big] \\= (1 - \frac{m}{L})^{2} \Big[f(x^{t-1}) - f(x^{*}) \Big] \\= (1 - \frac{m}{L})^{3} \Big[F(x^{t-2}) - f(x^{*}) \Big] \\\vdots \\= (1 - \frac{m}{L})^{t} \Big[f(x^{0}) - f(x^{*}) \Big] \\= (0 - \frac{m}{L})^{t} \Big[f(x^{0}) - f(x^{*}) \Big]$$

• Since $\mu \leq L$, we've shown linear convergence rate.

Discussion of Linear Convergence Rate

• We've shown that gradient descent under certain settings has:

$$f(x^{t}) - f(x^{*}) \leq (1 - \frac{m}{t})^{t} f(x^{0}) - f(x^{*})]$$

- The number L/ μ is called the 'condition number' of 'f'.
- Connection to matrix condition number:
 - For least squares, condition number of 'f' is condition number of $X^T X$.
- This rate is dimension-independent:
 - It does not directly depend on dimensions 'd'.
 - In principle, applies to infinite-dimensional problems.
 - But, L and μ may be larger in high-dimensional spaces.
- In practice, typically you don't have 'L'.
 - We'll discuss practical issues next time.

Summary

- No free lunch: there is no 'best' machine learning model.
- Softmax loss to model discrete yi, other losses can be derived.
- Convex functions: all stationary points are global minima.
- Show functions are convex.
- Gradient descent finds stationary point of differentiable function.
- Rate of convergence of gradient descent is linear.

• Next time:

– What if we don't know which features are relevant or which basis to use?