CPSC 540: Machine Learning

Convex Functions, Gradient Descent, Convergence Rates
Winter 2016



Admin

Auditing/enrollment forms:
— Drop-off/pickup your forms at the end of class.

* |t will be easier to argue for larger classroom if people are officially enrolled/auditing.

— Remaining forms can be picked up at the tutorials tomorrow.
CPSC and EECE graduate students: prereqg forms due now.

Assignment 1: due Tuesday.
— Hand in one assignment for the group (of 1-3).

Add/Drop deadline: Monday.
— Last chance before you are locked in/out.



The ‘Best” Machine Learning Model

What is the ‘best’” machine learning model?
— SVMs? Random forests? Deep learning?
No free lunch theorem:

— There is no ‘best” model that achieves the best test error for every problem.

— If model A works better than model B on one dataset,
there is another dataset where model B works better.

Asking what is the ‘best’ machine learning model is like asking which is
‘best’ among “rock”, “paper”, and “scissors”.

Caveat of no free lunch (NFL) theorem:
— The world is very structured, some datasets are more likely than others.
— Model A could be better than model B on a huge variety of practical applications.

Machine learning emphasizes models useful across applications.



Last Time: Logistic Regression

* We considered binary labels y,, and classifying with sign(wx).
— Squared error (Ww'x. —y.)? is not ideal: penalizes model for “too right”.
— Minimizing number of errors is also not ideal: NP-hard.
— Tractable upper bounds are hinge loss and logistic loss.
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Last Time: Maximum Likelihood and MAP

* Minimizing a loss function often equivalent to maximum likelihood.
— For example, least squares is equivalent to using a Gaussian likelihood:
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* With a regularizer, often equivalent to MAP estimation:

— For example, L2-regularization is equivalent to using a Gaussian prior:
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* Gives probabilistic perspective on regularization: prior on ‘wW’.



Last Time: Maximum Likelihood and MAP

* Logistic loss is equivalent to maximum Iikelihood logistic regression:
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* L2-regularized logistic is MAP estimate with Gaussian prior:
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* Advantage of likelihood/MAP perspective:
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— Allows us to define objectives for other distributions of y..



Multi-Class Logistic Regression

* Supposed y, takes values from an unordered discrete set of classes.
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e Standard model:
— Use a ‘d’-dimensional weight vector ‘w_’ for each class ‘c’.
— Try to make inner-product w_'x. big when c’ is the true label ‘y/".
— Classify by finding largest inner-product: 2
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Multi-Class Logistic Regression
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Ordinal Labels

* Ordinal data: categorical data where the order matters:
— Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.
— Softmax would ignore order.

* ‘Proportional odds’ or ‘ordinal logistic regression’:
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Count Labels

Count data: predict the number of times something happens.

— For example, y. = “602” Facebok likes.

Softmax/ordinal require finite number of categories.

We probably don’t want separate parameter for ‘654’ and ‘655’.
Poisson regression: use probability from Poisson count distribution.

— Many variations exist.



Last Time: Robust Regression

 We said that squared error is sensitive to outliers:

— Absolute error is less sensitive: can be solved as a linear program.
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‘Brittle’ Regression

 What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* In this case you can use something like the infinity-norm:
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* Very sensitive to outliers (brittle), but worst case will be better.



Last Time: Robust Regression

 We said that squared error is sensitive to outliers:
— Absolute error is less sensitive: can be solved as a linear program.

is more sensitive: can also be solved as linear program.
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Very Robust Regression

e Can we be more robust?
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. eventually “gives up” on large errors.
e But finding optimal ‘w’ is NP-hard.
— Absolute value is the most robust that is not NP-hard.
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Course Roadmap

* Topics we discussed in part 1:
— Linear models: change of basis, regularization, loss functions.

— Basics of learning theory: Training vs. test error, bias-variance,
fundamental trade-off, no free lunch.

— Probabilistic learning principles: Maximum likelihood, MAP estimation.
* Part 2: Large-scale machine learning.

— Why are SVMs/logistic easy while minimizing number of errors is hard?
— How do we fit these models to huge datasets?



Convex Functions

 We are first going to discuss convex functions:
— Minimizing convex functions is usually easy.
— Minimizing non-convex functions is usually hard.
{ ) .
 The ‘easy’ problems we have discussed are convex:

— Least squares, robust regression, logistic regression, support vector
machines, multi-class logistic, brittle regression, Poisson regression.

— All of the above with L2-regularization.

* The ‘hard’ problems we have discussed are non-convex:
— 0-1 loss, “very robust” regression.



Convex Sets

* First we need to define a convex set:
— A set is convex if the line between any two points stays in the set.
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Convex Sets

* Examples: Z///
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Showing a Set is Convex
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Intersection of Convex Sets

* Intersection of convex sets is convex: 5,5'7 Vclae=bl N\ T x| el <I0S

s a (onvex set
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Convex Functions u
* A function ‘f’ is convex if: o

1. The domain of ‘f’ is a convex set.
2. The function is always below ‘chord’ between two points.
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Convex Functions
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Differentiable Convex Functions

* Adifferentiable ‘t’ is convex iff ‘f’ is always above tangent:
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[
Twice-Differentiable Convex Functions //ﬂ//

* A twice-differentiable ‘t’ is convex iff it’s curved upwards ever yvhere.
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Showing Functions are Convex
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Showing Functions are Convex

 Examples:
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Strictly-Convex Functions

* A function is strictly-convex if these inequalities strictly hold:
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Operations that Preserve Convexity

* There are a few operations preserve convexity.
— Often lets us avoid calculating Hessian.
— Often lets us prove convexity of non-smooth functions. VQ[Q%?/»V//?]
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Current Hot Topics in Machine Learning

* Graph of most common keywords among ICML papers last year:

* Why is there so much focus on deep learning and optimization?



Why Study Optimization in CPSC 5407

* |n machine learning, training is typically written as optimization:
— Numerically optimize parameters of model, given data.

* There are some exceptions:

1. Counting- and distance-based methods (random forests, KNN).
* See CPSC 340.

2. Integration-based methods (Bayesian learning).

e Later in course.

Although you still need to tune parameters in those models.

e But why study optimization? Can’t | just use Matlab functions?
— V), linprog, quadprog, fmincon, CVX,...



The Effect of Big Data and Big Models

e Datasets are getting huge, we might want to train on:
— Entire medical image databases.
— Every webpage on the internet.
— Every product on Amazon.
— Every rating on Netflix.
— All flight data in history.

* With bigger datasets, we can build bigger models:
— This is where deep learning comes in.
— Complicated models can address complicated problems.

* Now optimization becomes a problem because of time/memory:
— We can’ afford O(d?) memory, or an O(d?) operation.

— Going through huge datasets 100s of times is too slow.
— Evaluating huge models too many times is too slow.



Fitting Logistic Regression Models

Recall the L2-regularized logistic regression objective function:
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This objective function is strictly-convex and differentiable.
But we can’t formulate as linear system or linear program.
Nevertheless, we can efficiently solve this problem.

There are many ways to do this, but we focus on gradient descent:
— Iteration cost is linear in ‘d” (not true of IRLS/Newton’s method).
— We can prove that we don’t need too many iterations:

 Number of iterations does not directly depend on ‘d’.



Gradient Descent

e Gradient descent is based on a simple observation:

— Given parameters ‘W%, direction of largest decrease is -Vf(w?)).
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Gradient Descent

e Gradient descent is based on a simple observation:

— Given parameters ‘W%, direction of largest decrease is -Vf(w?)).

£




Gradient Descent

e Gradient descent is based on a simple observation:

— Given parameters ‘W%, direction of largest decrease is -Vf(w?)).
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Gradient Descent

* Gradient descent is an iterative algorithm:
— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w'= W oy, VW)

(The scalar a, is the “step size’.)

fol = o VAT

— Repeat to successively refine the guess: /= W
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Gradient Descent in 2D




Gradient Descent

* If a, is small enough and Vf(w?') # 0, guaranteed to decrease ‘f’:

‘P(b\/t—H) < }C(wo)
* Under weak conditions, procedure converges to a stationary point.
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* Least squares via linear system vs. gradient descent: Ol d]

— Solving linear system cost O(nd? + d3). T -
-8 y ( ) | X/J/w)*)(’\/
— Gradient descent costs O(ndt) to run for ‘t’ iterations.
* Will be faster if t < d.



Convergence Rate of Gradient Descent

e How many iterations do we need?
— Let x* be the optimal solution and € be the accuracy we want.
— What is the smallest number of iterations ‘t” such that: /Vofah‘om:
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Bonus Slide: Constants for Least Squares

* Consider least squares: [(,)= A<~
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Convergence Rate of Gradient Descent

. . ] £ — 1% = < t)
 The gradient descent iteration: RO~ i) = ¢ e

Mean < t e
= (b= o, VFGO) M A
* Assumptions: .ty ) = loye H;L 4(¢)
— Function ‘f’ is L-strongly smooth and p-strongly convex. %f) e
— We set the step-size to a, = 1/L. or t 2 O O}C/g))
* Then gradient descent has a linear convergence rate: (sine p</)

7C()(5> - f(xk) < OCpt) {for P< |
— It follows that we need t = O(log(1/¢)) iterations.

* This is good! We want ‘t’ to grow slowly in accuracy 1/¢. {Q)(ﬂxth*‘))

— Also called ‘exponential’ convergence rate.



Convergence Rate of Gradient Descent

* One version of Taylor expansion:
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Using Strong-Smoothness

* One version of Taylor expansion:
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Using Strong-Smoothness

* One version of Taylor expansion:
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Using Strong-Smoothness

 We’'ve derived a bound on guaranteed progress at iteration ‘t’:
FOED < £ =L v o) |2

— |f gradient is non-zero, guaranteed to decrease objective.
— Amount we decrease grows with the size of the gradient.
— Note: bound involves for any strongly-smooth function (e.g., non-convex)
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Using Strong-Convexity

* One version of Taylor expansion:
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Using Strong-Convexity

* One version of Taylor expansion:
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Combining Strong-Smoothness and Convexity

e Our bound on guaranteed progress

POEIS P(E) - ZL lvu/\

* Our bound on ‘distance to go’:
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* Use ‘distance to go’ bound in guaranteed progress bound:
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. Subtract f(x”) from both sides and simplify:
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Combining Strong-Smoothness and Convexity

e We’ve shown that:
L8 -FeP < (1= %)Eﬁ(xﬁ-)) "WD(K#")]

* Applying this recursively:
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e Since u <L, we've shown linear convergence rate.



Discussion of Linear Convergence Rate

We’ve shown that gradient descent under certain settings has:

qf(xf)~wp(ﬁ>§ (] *%)fzf(ﬂ)“”ﬁ)]

The number L/p is called the ‘condition number’ of ‘f’.
Connection to matrix condition number:
— For least squares, condition number of ‘f’ is condition number of X"X.

This rate is dimension-independent:

— It does not directly depend on dimensions ‘d’.

— In principle, applies to infinite-dimensional problem:s.
— But, L and p may be larger in high-dimensional spaces.
In practice, typically you don’t have ‘L.

— We'll discuss practical issues next time.



Summary

No free lunch: there is no ‘best” machine learning model.
Softmax loss to model discrete yi, other losses can be derived.
Convex functions: all stationary points are global minima.

Show functions are convex.

Gradient descent finds stationary point of differentiable function.
Rate of convergence of gradient descent is linear.

Next time:
— What if we don’t know which features are relevant or which basis to use?



