
CPSC 540: Machine Learning

Deep Graphical Models,
Recurrent Neural Networks

Winter 2016

Admin

• Assignment 5:

– Due on Tuesday (standard late day sequence applies).

– For Q2, don’t use inv(C) and set errorDet=inf.

• Project:

– Due date moved again to April 26 (so that undergrads can graduate).

• With some late “days” possible.

• Submission instructions will be posted on Piazza next week.

– Graduate students graduating in May must submit by April 21.

• Help session Monday, no more tutorials.

• Lecture may go long today.

Outline

1. Variational Inference

2. Unsupervised Deep Learning

3. Recurrent Neural Networks

4. What’s next?

Undirected Graphical Models

• Undirected graphical models (UGMs) for density estimation use:

• The conditional independencies summarized by undirected graph:

– Edge between node ‘i’ and ‘j’ if they appear together in at least one ‘c’.

Conditional Random Fields

• Last time we considered conditional random fields (CRFs):

• CRFs model conditional probability as a UGM.

– No need to model X.

– Independence properties given by UGM on Y variables.

• Usually, we use a log-linear parameterization:

CRFs for Part-of-Speech Tagging

• Part of speech tagging task: label sentence type for each word.

• Can get close to state of the art with CRFs.

– Features for each word and adjacent words:

• These don’t add edges to graph.

– Features on transitions between labels:

– Handles new test words (“OOV”) by context.
http://english.stackexchange.com/questions/93989/building-a-phrase-structure-of-on-the-weekend

Difficulty of Fitting CRFs

• CRF NLL requires involves normalizing constant Z(X):

– Different than DAGs where Z=1.

• Gradient of NLL has special form and requires inference:

• So optimizing NLL needs Z and marginals (“inference”).

• But exact inference is hard for general graphs.
– Also hard for Bayesian statistics.

Monte Carlo vs. Variational Inference

• Two main strategies for approximate inference:
1. Monte Carlo methods:

• Approximate p(x) with empirical distribution over samples:

• Turns inference into sampling.

2. Variational methods:
• Approximate p(x) with “closest” distribution ‘q’ from a tractable family:

• Could use Gaussian, independent Bernoulli, tree-structured graphical model:
– Or mixtures of these simple distributions.

• Turns inference into optimization.

Variational Inference Illustration

• Approximate non-Gaussian ‘p’ by Gaussian ‘q’:

• Approximate non-tree UGM by independent distribution:

Laplace Approximation

• Simple variational method is Laplace approximation:

– Find ‘x’ that maximizes p(x):

– Choose ‘q’ so that –log q(x) and –log p(x) have same Taylor expansion at x*:

Minimizing Reverse KL Divergence

• Most common variational method:

– Minimize (reverse) KL divergence between q and p:

– KL divergence is common measure of similarity between distributions.

– Only needs unnormalized distribution and gives lower bound on log(Z):

Mean Field and Variational Bayes

• As an example, consider minimize KL with independent ‘q’:

• Optimization of functional ‘qj’ yields:

• Applying this update is called:

– Mean field method (graphical models).

– Variational Bayes (Bayesian inference).

Variational Bayes in Action

Loopy Belief Propagation

• Other main variational method is loopy belief propagation:

– Does not require ‘q’ to be a probability, just requires “local consistency”:

• Expectations of neighbouring nodes agree.

– Locally minimizes KL, typically gives better marginal approximations.

– Only has closed-form for Gaussian/discrete UGMs:

• Can approximating non-Gaussian/discrete using “expectation propagation”.

– Not convex and does not give bound on Z.

• TRBP variant is convex and gives upper bound on Z.

Variational Methods Discussion
• Monte Carlo vs. variational methods:

– Variational methods are typically more complicated.
– Variational methods are not consistent:

• ‘q’ does not converge to ‘p’.

– But variational typically gives better approximation for same time.
• Although MCMC is easier to parallelize.

– Variational methods typically have similar cost to MAP.

• Related approach is convex relaxations:

– Approximate non-convex decoding by convex optimization.

• Combinations of variational inference and stochastic methods:
– Stochastic variational inference: use stochastic gradient to speed up variational methods.
– Variational MCMC: use Metropolis-Hastings where variational ‘q’ sometimes makes proposals.

Outline

1. Variational Inference

2. Unsupervised Deep Learning

3. Recurrent Neural Networks

4. What’s next?

Deep Density Estimation

• We’ve previously discussed supervised deep learning.

– And autoencoders as a form of unsupervised learning.

• Does it make sense to talk about deep density estimation?

• Standard argument:

– Human learning seems to be mostly unsupervised.

– Could we learn unsupervised models with much less data?

• Deep belief networks started deep learning movement (2006).

– First non-convolutional deep network that people got working.

Cool Picture Motivation for Deep Learning

• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Mixture of Independent Models

• Recall the basic mixture model:

• Interpretation of joint p(x,z) as a graphical model:

– Data ‘x’ comes from some “nice” distribution given cluster ‘z’.

x

z

Mixture of Independent Models

• Recall the mixture of independent models:

• Given ‘z’, each variable ‘xj’ comes from some “nice” distribution.

x2 x3 x4 x5

z

x1

Latent DAG Model

• Consider the following model with binary z1 and z2:

• Have we gained anything?
– We have 4 clusters based on two hidden variables.

– Each cluster shares a parent/part with 2 of the other clusters.

x2 x3 x4 x5

z1

x1

z2

Latent DAG Model

• Consider the following model:

• Now we have 16 clusters, in general we’ll have 2k with ‘k’ hidden nodes.
– We have combinatorial number of mixtures.

– Let’s assume p(xj | z1, z2, z3, z4) is a linear model (Gaussian, logistic, etc.).
• Distributed representation where ‘x’ is made of parts ‘z’.

• We ‘d’ visible xj and ‘k’ hidden zj we only have dk parameters.

x2 x3 x4 x5

z1

x1

z2 z3 z4

Deep Belief Networks
• Deep belief networks add more binary hidden layers:

x2 x3 x4 x5

z

x1

z z z

z z z z

z z z z

Boltzmann Machine

• Boltzmann machines are UGMs with binary latent variables:

• Yet another latent-variable model for density estimation.

– Hidden variables again give a combinatorial latent representation.

• Hard to do anything in this model, even if you know all the ‘h’.

https://en.wikipedia.org/wiki/Boltzmann_machine

Restricted Boltzmann Machine

• By restricting graph structure, some things are easier:
– Restricted Boltzmann machines (RBMs): edges only between the xj and zc.

– Given visible x, decoding/inference/sampling of z is easy:
• Block Gibbs sampling is just sampling each zj independently.

– Given hidden h, decoding/inference/sampling of x is easy (independent).
• Block Gibbs sampling is just sampling each xj independently.

x2 x3 x4 x5

z1

x1

z2 z3 z4

Restricted Boltzmann Machine

• Restricted Boltzmann machines (RBMs):

z
1

z
2

z
3

z
4

Greedy Layerwise Training of Stacked RBMs

• Step 1: train an RBM.

x2 x3 x4 x5 x1

z z

Greedy Layerwise Training of Stacked RBMs

• Step 1: train an RBM.

• Step 2:

– Fix first hidden layer values.

– Train an RBM.

x2 x3 x4 x5

z

x1

z z z

z z z z

Greedy Layerwise Training of Stacked RBMs

• Step 1: train an RBM.

• Step 2:

– Fix first hidden layer.

– Train an RBM.

• Continue to add more layers.

x2 x3 x4 x5

z

x1

z z z

z z z z

z z z z

Deep Belief Networks

• Now treat stacked RBM parameters
as parameters of deep belief net.

• Usually the last layer is kept as RBM.

x2 x3 x4 x5

z

x1

z z z

z z z z

z z z z

z z z z

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Deep Belief Networks

• Can add a class label to last layer.

• Can use “fine-tuning” as
feedforward network to refine
weights.

https://www.youtube.com/watch?v=KuPai0ogiHk

x2 x3 x4 x5

z

x1

z z z

z z z z

z z z z

z z z z

y

Deep Boltzmann Machines

• Deep Boltzmann machines:
– Just keep as undirected model.
– Sampling is a nicer:

• No explaining away within layer.
• Variables in layer are independent

given variables in layers above and below.

• More recent generative models:
– Variational autoencoder.

• Variational ‘q’ parameters are
output of neural network.

– Generative adversarial networks.
• Adds discriminative model that tries

to tell if samples come from model.

– Bayesian dark knowledge.
• Represent posterior by neural net.

x2 x3 x4 x5

z

x1

z z z

z z z z

z z z z

z z z z

Deep Boltzmann Machines

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

Outline

1. Variational Inference

2. Unsupervised Deep Learning

3. Recurrent Neural Networks

4. What’s next?

This section takes a lot from these sources:
http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf

http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
http://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf
https://ift6266h15.files.wordpress.com/2015/04/21_rnn.pdf

Motivation: Sequence Modeling

• We want to predict the next words in a sequence:

– “I am studying to become a [???????????????????????????]”.

• Simple idea: supervised learning to predict the next word.

– Applying it repeatedly to generate the sequence.

• Simple approaches:

– Markov chain:

x1 x2 x3 x4 x5

Motivation: Sequence Modeling

• We want to predict the next words in a sequence:

– “I am studying to become a [???????????????????????????]”.

• Simple idea: supervised learning to predict the next word.

– Applying it repeatedly to generate the sequence.

• Simple approaches:

– Higher-order Markov chain:

x1 x2 x3 x4 x5

Motivation: Sequence Modeling

• We want to predict the next words in a sequence:

– “I am studying to become a [???????????????????????????]”.

• Simple idea: supervised learning to predict the next word.

– Applying it repeatedly to generate the sequence.

• Simple approaches:

– Neural network.

x1 x2 x3 x4 x5

z

State-Space Models

• Problem with simple approaches:

– All information about previous decision must be summarized by xt.

– We ‘forget’ why we predicted xt when we got to predict xt+1.

• More complex dynamics possible with state-space models:

– Add hidden states with their own dynamics.

x1

z1

x2

z2

x3

z3

x4

z4

x5

z5

Challenges of State-Space Models

• Problem 1: inference only has closed-form when.

– Markov blanket of each node must be conjugate to node.

– Only 2 cases: Gaussian z and x (Kalman filter) or Discrete z (HMMs).

– Otherwise, need to use approximate inference:

• Most common is sequential Monte Carlo (also known as particle filters).

• Problem 2: memory is very limited.

– You have to choose a zt at time ‘t’.

• More complicated dynamics but still need to compress information into a state.

• Want (deep) hidden representation with combinatorial structure.

– Obvious solution: have multiple hidden zt at time ‘t’, as we did before.

• But now inference becomes hard.

Recurrent Neural Networks

• Obvious solution (same as for mixtures):

– Have multiple hidden zt at time ‘t’, as we did before.

• But now inference becomes hard.

• Recurrent neural networks (RNNs) give solution to inference:

– At time ‘t’, hidden units are deterministic transformations of time ‘t-1’.

– Basically turns the problem into a big and structured neural network.

x1

z1

x2

z2

x3

z3

x4

z4

x5

z5 z0

Recurrent Neural Networks

• RNNs can be used to translate input sequence to output sequence:

– Similar to latent-dynamics model from last time (a bit less powerful).

– But deterministic transforms means hidden ‘z’ can be really complicated.

• But with easy inference.

x1

z1

x2

z2

x3

z3

x4

z4

x5

z5 z0

y1 y2 y3 y4 y5

Recurrent Neural Networks for Sequence

• An interesting variation on this for sequences of different lengths:

– Translate from French sentence ‘x’ to English sentence ‘y’.

– Turn video frames into a sentence.

x1

z1

x2

z2

x3

z3 z4 z5 z0

y1 y2

Discussion of Recurrent Neural Networks

• Train using stochastic gradient: gradient by backpropagation.

• Similar challenges/heuristics to training deep neural networks:
• “Exploding/vanishing gradient”, initialization is important, slow progress, etc.

• Interesting variations:

– Skip connections: connections from older ‘zt’ to current hidden state.

– Bi-directional RNNs: feedforward from past and future.

– Recursive neural networks: consider sequences through non-chain data.

Long Short Term Memory (LSTM)

• Long short term memory (LSTM) models are special case of RNNs:

– Designed so that model can remember things for a long time.

• LSTMs are the analogy of convolutional neural networks for RNNs:

– The trick that makes them work in applications.

• LSTMs are getting impressive performance in various settings:

– Cursive handwriting recognition.

• https://www.youtube.com/watch?v=mLxsbWAYIpw

– Speech recognition.

– Machine translation.

– Image and video captioning.

https://www.youtube.com/watch?v=mLxsbWAYIpw
https://www.youtube.com/watch?v=mLxsbWAYIpw

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

LSTMs for Video Captioning

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf

Long Short Term Memory

• In addition to usual hidden values ‘z’, LSTMs have memory cells ‘c’:

– Purpose of memory cells is to remember things for a long time.

• Pieces of LSTM model:

– Forget function: should we keep or forget value in a memory cell?

– Candidate value: new value based on inputs.

– Input function: should we take the new value?

– Output function: should we output a value?

• Three of the above are “gate” functions:

– Binary variables, which are approximated by sigmoids.

Vanilla RNN vs. LSTM

http://arxiv.org/pdf/1506.02078v2.pdf

LSTM Structure

Beyond LSTMs

• Many interesting recent variations on readable/writeable memory:

– Memory networks and neural Turing machines.

https://www.facebook.com/FBAIResearch/posts/362517620591864

Outline

1. Variational Inference

2. Unsupervised Deep Learning

3. Recurrent Neural Networks

4. What’s next?

My Original Plan

• CPSC 340:

1. Data representation/summarization.

2. Supervised learning (counting/distances)

3. Unsupervised learning (counting/distances)

4. Supervised learning (linear models).

5. Unsupervised learning (latent-factor).

6. Deep Learning.

7. Sequences, time-series, and graphs.

• CPSC 540:

1. Linear models.

2. Large-Scale Learning.

3. Density Estimation (latent-factor).

4. Graphical Models.

5. Deep Learning.

6. Bayesian Methods.

7. Causal, active, and online learning.

8. Reinforcement learning.

9. Learning theory.

Topics we didn’t cover

• For a preview of the red topics, see the last lecture of CPSC 340:

– http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf

• Other major topics we didn’t cover:

– Topic models (latent Dirichlet allocation).

– Source separation (independent component analysis).

– Relational models (Markov logic networks).

– Sub-modularity (discrete version of convexity).

– Spectral methods (consistent HMMs).

http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf
http://www.cs.ubc.ca/~schmidtm/Courses/340-F15/L35.pdf

Machine Learning Reading Group

• If you want to keep going over the summer, join the MLRG:
– http://www.cs.ubc.ca/labs/lci/mlrg

• Previous topics:
– Summer 2015: graphical models.

– Fall 2015: convex optimization.

– Winter 2016: Bayesian learning.

• Future topics:
– Summer 2016: undecided.

– Fall 2016: deep learning.

– Winter 2017: reinforcement learning.

http://www.cs.ubc.ca/labs/lci/mlrg
http://www.cs.ubc.ca/labs/lci/mlrg

Next Year

• CPSC 340 may require multivariate calculus.
– Some material will be moved to that course.

• CPSC 5xx Courses (very tentative, check back in summer):
– Optimization?
– Game theory?
– 2 ML courses?
– Vision with deep learning emphasis?
– Learning theory?
– Approximate dynamic programming (= reinforcement learning)?

• Courses from other departments:
– STAT 560/561 (~ Stats version of this material).
– Advanced Bayesian stats (Alexandre Bouchard-Côté).
– ML for biostatistics (Sara Mostafavi).
– EECE 592: deep learning and reinforcement learning.

Data Science Job Board

• Many local companies are looking for people with CPSC 540 skills.

• If you are looking for local jobs, go here and make a profile.

– http://makedatasense.ca/jobs

• Thank you for your patience, I’m still learning to teach!

http://makedatasense.ca/jobs
http://makedatasense.ca/jobs
http://makedatasense.ca/jobs

