CPSC 540: Machine Learning

Conditional Random Fields, Latent Dynamics
Winter 2016



Admin

Assignment 5:
— Due in 1 week.

Project:

— Due date moved again to April 26 (so that undergrads can graduate).
— Graduate students graduating in May must submit by April 21.

No tutorial Friday (or in subsequent weeks).
Final help session Monday.
Thursday class may go long.



Motivation: Automatic Brain Tumor Segmentation

e Task: segmentation tumors and normal tissue in multi-modal MRI data.
Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.

e Challenges:

— Variety of tumor appearances, similarity to normal tissue.
— “You are never going to solve this problem.”



Naive Approach: Voxel-Level Classifier

* We could treat classifying a voxel as supervised learning:
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* “Learn” model that predicts y' given x': model can classify new voxels.

* Advantage: we can apply machine learning, and ML is cool.
* Disadvantage: it doesn’t work at all.
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Naive Approach: Voxel-Level Classifier

* Even in “nice” cases, significant overlap between tissues:
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— Mixture of Gaussians and “outlier” class:
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* Problems with naive approach:
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— Intensities not standardized.

— Location and texture matter.



Improvement 1: Intensity Standardization

* Want x' =<98,187,246> to mean same thing in different places.
* Pre-processing to normalize intensities:

Within Images: Between slices: Between people:




Improvement 2: Template Alignment

* Location matters:
— Seeing xi =<98,187,246> in one area of head is different than in other areas.

* Alignment to standard coordinates system:




Improvement 2: Template Alignment

* Add spatial features that take into account location information:

Aligned input images: Bilateral symmetry based on known axis:
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Improvement 3: Convolutions

e Use convolutions to incorporate neighborhood information.
— We used fixed convolutions, now you would try to learn them.
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Performance of Final System




Challenges

* Final system used linear classifer, and typically worked well.

* But several ML challenges arose:
1. Time: 14 hours to train logistic regression on 10 images.
* Lead to quasi-Newton, stochastic gradient, and SAG work.

2. Overfitting: using all features hurt, so we used manual feature selection.

e Lead to regularization, L1-regularization, and structured sparsity work.

3. Relaxation: post-processing by filtering and "hole-filling of labels.

* Lead to conditional random fields, shape priors, and structure learning work.




Outline

* Conditional Random Fields Clean Up



Multi-Class Logistic Regression: View 1

Recall that multi-class logistic regression makes decisions using:
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Here, f(x) are features and we have a vector w, for each class ‘y".
Normally fit w, using regularized maximum likelihood assuming:
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This softmax function yields a differentiable and convex NLL.



Multi-Class Logistic Regression: View 2

* Recall that multi-class logistic regression makes decisions using:
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e Claim: can be written using a single ‘w” and features of x” and ‘y’.
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* To do this, we can use the construction:
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Multi-Class Logistic Regression: View 2

* So multi-class logistic regression with new notation uses:
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* And softmax probabilities gives:
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* View 2 gives extra flexibility in defining features:

— For example, we might have different features for class 1 than 2:
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Multi-Class Logistic Regression for Segmentation

* |n brain tumor example, each x' is the features for one voxel:
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 But we want to label the whole image:
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* Probability of segmentation Y given image X with independent model:

P(\( | X,w)z ﬁ |>(yi W)W).



Conditional Random Fields

* Unfortunately, independent model gives silly results:

* This model of p(Y|X,w) misses the “guilt by association”:

— Neighbouring voxels are likely to receive the same values.

* The key ingredients of conditional random fields (CRFs):
— Define features of entire image and labelling F(X,Y):
— We can model dependencies using



Conditional Random Fields

* Interpretation of independent model as CRF:

F( YI X)w> 32;‘-,{)(/[/)(;)“/) X 'Ii exF(wT'F(X;)/‘))
= exp(£ WT‘C(X;Y »

,:I

= exlo< WT F (X> \07

[

| W

J T

—




Conditional Random Fields

 Example of modeling dependencies between neighbours as a CRF:
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Conditional Random Fields for Segmentation

* Recall the performance with the independent classifier:
— Features of the form f(X,y').

* Consider a CRF that also has pairwise features:
— Features f(X,y',y)) for all (i,j) corresponding to adjacent voxels.
— Model “guilt by association”:




Conditional Random Fields as Graphical Models

 Seems great: we can now model dependencies in the labels.
— Why not model threeway interactions with F(X,y!,y},y¥)?
— How about adding things like shape priors F(X,Y,) for some region r’?

* Challenge is that inference and decoding can become hard.
 We can view CRFs as undirected graphical models:
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* If the graph is too complicated (and we don’t have special ‘F’):

— Intractable since we need inference (computing Z/marginals) for training.



Overview of Exact Methods for Graphical Models

* We can do exact decoding/inference/sampling for:
— Small number of variables (enumeration).
— Chains (Viterbi, forward-backward, forward-filter backward-sample).

— Trees (belief propagation). / Vari a fions on Vqriq/o//f
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* Other cases where exact computation is possible:
— Semi-Markov chains (allow dependence on time you spend in a state).
— Context-free grammars (allows potentials on recursively-nested parts of sequence).
— Binary 'k’ and “attractive” potentials (exact decoding via graph cuts).
— Sum-product networks (restrict potentials to allow exact computation).



Overview of Approximate Methods for Graphical Models

Approximate decoding with local search:
— Coordinate descent is called iterated conditional mode (ICM).

Approximate sampling with MCMC:
— We saw Gibbs sampling last week.

Approximate inference with variational methods:
— Mean field, loopy belief propagation, tree-reweighted belief propagation.

Approximate decoding with convex relaxations:

— Linear programming approximation.

Block versions of all of the above:

— Variant is alpha-expansions: block moves involving classes.



Overview of Methods for Fitting Graphical Models

* |finference is intractable, there are some alternatives for learning:
— Variational inference to approximate Z and marginals.
— Pseudo-likelihood: fast and cheap convex approximation for learning.
— Structured SVMs: generalization of SVMs that only requires decoding.
— Younes: alternate between Gibbs sampling and parameter update.

* Also known as “persistent contrastive divergence”.

* For more details on graphical models, see:
— UGM software: http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
— MLRG PGM crash course: http://www.cs.ubc.ca/labs/Ici/mlrg



http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
http://www.cs.ubc.ca/labs/lci/mlrg

Independent Logistic Regression
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Independent Logistic Regression
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Conditional Random Field (CRF)
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Conditional Random Field (CRF)
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Neural Network
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Deep Learning
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Conditional Neural Field (CNF)
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Outline

* Latent/Deep Graphical Models



Motivation: Gesture Recognition

* Want to recognize gestures from video:

-

* A gesture is composed of a sequence of parts:  XRERERIR
' . EV IEAPACAN ANy DB
— Some parts appear in different gestures. S

Hidden
States

Hidden
States

EH

* We have gesture (sequence) labels: SV * M
— But no part labels. 12909 239 9 X
— We don’t know what the parts should be. i {-A-A;«'m " s

States States



Hidden Markov Model (HMM)
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Generative HMM Classifier
We can use e HMM with
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Conditional Random Field (CRF)
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Hidden Conditional Random Field (HCRF)
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Graphical Models with Hidden Variables

* As before we deal with hidden variables by marginalizing:
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Motivation: Gesture Recognition

 What if we want to label video with multiple potential gestures?

— Assume we have labeled video sequences.
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Latent-Dynamic Conditional Random Field (LDCRF)
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Summary

Conditional random fields generalize logistic regression:
— Allows dependencies between labels.
— Requires inference in graphical model.

Conditional neural fields combine CRFs with deep learning.

— Could also replace CRF with conditional density estimators (e.g., DAGs).
UGMs with hidden variables have nice form: ratio of normalizers.
— Can do inference with same methods.

Latent dynamic conditional random/neural fields:
— Allow dependencies between hidden variables.

Next time: Boltzmann machines, LSTMs, and beyond CPSC 540.



