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Conditional Random Fields Variational Inference

Structured Prediction with Undirected Graphical Models

Recall the structured prediction problem:

We can view this as conditional density estimation,

p(Y |X) =
exp(−E(Y |X))

Z
,

where we’ve defined an energy function E(Y |X):

Want low energy for correct labels.
Energy will depend on features F (Y,X).
Usually energy is sum of parts, so we get a UGM
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Conditional Random Fields Variational Inference

Structured Prediction with Undirected Graphical Models

We might use an energy function with unary and pairwise terms,

E(Y |X) = −
d∑
j=1

log φj(yj , X)−
∑

(i,j)∈E

log φij(yi, yj , X),

giving us a pairwise conditional UGM

p(Y |X) =

∏d
j=1 φj(yj , X)

∏
ij φij(yi, yj , X)

Z
.

(we’re treating X as fixed observations, not random variables)

Previously we focused on inference in UGMs:

We’ve discussed decoding, inference, and sampling.

Today: learning the potential functions φ.

We’ll start with the unconditional case (no X).
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Conditional Random Fields Variational Inference

Example: Vancouver Rain Data

Vancouver Rain data:

1059 training examples xi each containing 28 variables.
Variable xij is whether or not it rained on day j in month i.
Data ranges from 1896-2004.

First 100 months (red means rain):

Sadly, p(xi = r) = 0.41.
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Conditional Random Fields Variational Inference

Example: Vancouver Rain Data
Real data vs. sampling day indepenedently with probability 0.41:

Independent model misses correlations between days.

We can do better with a UGM:

Assume we have a parameterization of our potentials.
Assume we use a chain-structured graph.
Output is the ‘best’ parameters (e.g., maximum likelihood).
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Conditional Random Fields Variational Inference

Maximum Likelihood Formulation

Let’s fit the parameters using maximum likelihood of data:
(assuming the Xi are independent)

w = argmax
w

n∏
i=1

p(Xi|w),

or equivalently minimize negative log-likelihood (NLL),

w = argmin
w
− 1

n

n∑
i=1

log(p(Xi|w)),

and you could/should also use a regularizer,

w = argmin
w
− 1

n

n∑
i=1

log(p(Xi|w)) + λ

2
‖w‖2.
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Log-Linear Parameterization of MRFs

Naive parameterization:

φi(xi) = wi, φij(xi, xj) = wij .

subject to w ≥ 0.

Not convex, and assumes potentials are all different.

We’ll use a log-linear parameterization:

φi(xi) = exp(wm(i,xi)), φij(xi, xj) = exp(wm(i,j,xi,xj)).

where m maps from parameters to potentials.
Parameter tieing can be done with choice of m:

If m(i, xi) = xi for all i, each day has same potentials.
(parameters are tied)

If m(i, xi) = xi(n− 1) + i for all i, each day has different potentials.
We could have groups: E.g., weekdays vs. weekends, or boundary.
We’ll use the convention that m(i, xi) = 0 means that φi(xi) = 1.
Similar logic holds for edge potentials.
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Example: Ising Model of Rain Data
E.g., we could parameterize our node potentials using

log(φi(xi)) =

{
w1 no rain

0 rain
,

and one parameter is enough since scale of φi is arbitrary.
(though might want two parameters if using regularization)

Ising parameterization of edge potentials,

log(φij(xi, xj)) =

{
w2 xi = xj

0 xi 6= xj
.

Apply gradient descent to get maximum likelihood solution of

w =

[
0.16
0.85

]
, φi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, φij =

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.
Average NLL of 16.8 vs. 19.0 for independent model.
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Example: Ising Model of Rain Data

Independent model vs. Ising chain-UGM model:
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Full Model of Rain Data
We could alternately use fully expressive edge potentials

log(φij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.
Could also fix one of these at 0.

We could also have special potentials for the boundaries.
Common in language models: treat start/end of setnence differently.

Samples from model and conditional samples if rain on first day:
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Log-Linear Parameterization of MRFs
When we use a log-linear parameterization,

φi(xi) = exp(wm(i,xi)), φij(xi, xj) = exp(wm(i,j,xi,xj)),

we exclude φi = 0 but otherwise this is not restrictive.

Nice property: energy function E(X) is linear,

E(X) = log

∏
i

φi(xi)
∏

(i,j)∈E
φij(xi, xj)


= log

exp

∑
i

wm(i,xi)
+

∑
(i,j)∈E

wm(i,j,xi,xj)


=

∑
i

wm(i,xi)
+

∑
(i,j)∈E

wm(i,j,xi,xj)
.

To make notation simpler, consider this identity

wm(i,xi) =
∑
f

wfI[m(i, xi) = f ],
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Feature Vector Representation
Use this identity to write any log-linear energy in a simple form

E(X) =
∑
i

wm(i,xi) +
∑

(i,j)∈E

wm(i,j,xi,xj)

=
∑
i

∑
f

wfI[m(i, xi) = f ] +
∑

(i,j)∈E

∑
f

wfI[m(i, j, xi, xj) = f ]

=
∑
f

wf

∑
i

I[m(i, xi) = f ] +
∑

(i,j)∈E

I[m(i, j, xi, xj) = f ]


= wTF (X)

So p(X) ∝ exp(E(X)) = exp(wTF (x)) is in the exponential family.

Ff (X) ,
∑

i I[m(i, xi) = f ] +
∑

(i,j)∈E I[m(i, j, xi, xj) = f ] are sufficient
statistics:

In Ising model F1(X) is number of times it rained in X and F2(X) is number
adjacent days that have the same value.
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MRF Training Objective Function

With log-linear parameterization, NLL takes the form

f(w) = − 1

n

n∑
i=1

log p(Xi|w) = − 1

n

n∑
i=1

log

(
exp(wTF (Xi))

Z(w)

)

= − 1

n

n∑
i=1

wTF (Xi) +
1

n

n∑
i=1

logZ(w)

= −wTF (D) + logZ(w).

where F (D) = 1
n

∑
i F (X

i) is sufficient statistics of data.

Given sufficient statistics F (D), can throw out data Xi.
(only go through data once)

Function f(w) is convex.

With ‖w‖2 regularizer, unique solution is guaranteed to exist.
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Optimization with MRFs

With log-linear parameterization, NLL takes the form

f(w) = −wTF (D) + logZ(w).

Gradient with respect to parameter f is given by

−∇ff(w) = Ff (D)−
∑
X

exp(wTF (X))

Z(w)
Ff (X)

= Ff (D)−
∑
X

p(X)Ff (X)

= Ff (D)− EX [Ff (X)].

Derivative of log(Z) is marginal of feature.
inference required for learning.

∇ff(w) = 0 means sufficient statistics match in model and data.
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Learning for Structured Prediction

3 types of classifiers discussed in CPSC 340/540:

Setting Generative Discriminative Discriminant
Model p(Y,X) Model p(Y |X) Function Y = f(X)

“Classic ML” Naive Bayes, GDA Logistic Regression SVM

Struct. Pred. MRF CRF SSVM

Generative models have lost popularity since modeling p(X,Y ) is harder than p(Y |X).
Has lead to rise in popularity of conditional models like CRFs:

Directly model p(Y |X) and just condition on X.

Extremely widely-used in natural language processing.

I believe CRFs are second-most cited ML paper of 2000s:

1. Topic models (non-parametric Bayes), 2. CRFs, 3. Deep learning.
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I believe CRFs are second-most cited ML paper of 2000s:

1. Topic models (non-parametric Bayes), 2. CRFs, 3. Deep learning.
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Review of Discriminative Models for Classification

Conditional random fields generalize logistic regression:

p(y = +1|x) = 1

1 + exp(−ywTx)
=

φ(+1)

φ(+1) + φ(−1)
.

p(y = −1|x) = 1− p(y = +1|x) = 1− 1

1 + exp(−ywTx)

=
exp(−ywTx)

1 + exp(−ywTx)
=

φ(−1)
φ(+1) + φ(−1)

.

This is a conditional UGM with:

m(1, j, y = +1) = 0, m(1, j, y = −1) = j.
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Conditional Random Fields (CRFs)
CRFs directly model p(Y |X) for structured prediction

p(Y |X) =
exp(wTF (Y,X))

Z(w,X)
,

where X is treated as fixed.
Convex function and much simpler than generative approach:

No need to model features x for each possible object y.

For pairwise UGMs, features have form F (yi, X) or F (yi, yj , X).
NLL and its gradient have similar form to MRFs

f(w) = − 1

n

n∑
i=1

−wTF (Yi, Xi) + log(Z(w,Xi)),

∇ff(w) = −
1

n

n∑
i=1

F (Yi, Xi) + EY |X [Ff (Yi, Xi)],

but partition function and marginals for each example i.
More expensive because don’t have sufficient statistics.
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Rain Demo with Month Data
Let’s add a month variable to rain data:

Fit a CRF of p(rain | month).
Use 12 binary indicator features giving month.
NLL goes from 16.8 to 16.2.

Samples of rain data conditioned on December and July:
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Approximate Learning

Inference is a sub-routine of learning:

We can only learn when inference is tractable.

Strategies when inference is not tractable:
Change the objective function:

Pseudo-likelihood (fast, convex, and crude):

log p(Y |X) ≈
∑
i

log p(yi|y−i, X),

transforms learning into logistic regression on each part.
SSVMs: generalization of SVMs that only requires decoding.

Use approximate inference:

Monte Carlo methods.
Variational methods.
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Variational Inference

“Variational inference”:

Formulate inference problem as constrained optimization.
Approximate the function or constraints to make it easy.

Why not use MCMC?

MCMC works asymptotically, but may take forever.
Variational methods not consistent, but very fast.

(trade off accuracy vs. computation)
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Exponential Families and Cumulant Function

We will again consider log-linear models:

P (X) =
exp(wTF (X))

Z(w)
,

but view them as exponential family distributions,

P (X) = exp(wTF (X)−A(w)),

where A(w) = log(Z(w)).

Log-partition A(w) is called the cumulant function,

∇A(w) = E[F (X)], ∇2A(w) = V[F (X)],

which implies convexity.
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Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W
{µTw −A(w)}.

E.g., in A3 we did this for logistic regression:

A(w) = log(1 + exp(w)),

implies that A∗(µ) satisfies w = log(µ)/ log(1− µ).
When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)
= −H(pµ),

negative entropy of binary distribution with mean µ.
If µ does not satisfy boundary constraint, sup is ∞.
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Convex Conjugate and Entropy

More generally, if A(w) = log(Z(w)) then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and constraint:

µ = ∇A(w) = E[F (X)].

Convex set satisfying these is called marginal polytope M.

If A is convex (and LSC), A∗∗ = A. So we have

A(w) = sup
µ∈U
{wTµ−A∗(µ)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M
{wTµ+H(pµ)}.

We’ve written inference as a convex optimization problem.
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Bonus slide: Maximum Likelihood and Maximum Entropy
The maximum likelihood parameters w satisfy:

min
w∈Rd

−wTF (D) + log(Z(w))

= min
w∈Rd

−wTF (D) + sup
µ∈M
{wTµ+H(pµ)} (convex conjugate)

= min
w∈Rd

sup
µ∈M
{−wTF (D) + wTµ+H(pµ)}

= sup
µ∈M
{min
w∈Rd

−wTF (D) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless F (D) = µ (e.g., maximum likelihood w), so we have

min
w∈Rd

−wTF (D) + log(Z(w))

= max
µ∈M

H(pµ),

subject to F (D) = µ.
Maximum likelihood ⇒ maximum entropy + moment constraints.
Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear).
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Difficulty of Variational Formulation

We wrote inference as a convex optimization:

log(Z)) = sup
µ∈M
{wTµ+H(pµ)},

Did this make anything easier?

Computing entropy H(pµ) seems as hard as inference.
Characterizing marginal polytope M becomes hard with loops.

Practical variational methods:

Work with approximation to marginal polytope M.
Work with approximation/bound on entropy A∗.

Notatation trick: we put everything “inside” w to discuss general log-potentials.
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Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.



Conditional Random Fields Variational Inference

Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.



Conditional Random Fields Variational Inference

Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.



Conditional Random Fields Variational Inference

Bonus slide: Entropy of Mean Field Approximation

Entropy form is from distributive law and probabilities sum to 1:

∑
X

p(X) log p(X) =
∑
X

p(X) log(
∏
i

p(xi))

=
∑
X

p(X)
∑
i

log(p(xi))

=
∑
i

∑
X

p(X) log p(xi)

=
∑
i

∑
X

∏
j

p(xj) log p(xi)

=
∑
i

∑
X

p(xi) log p(xi)
∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi)
∑

xj |j 6=i

∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi).
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Mean Field as Non-Convex Lower Bound

Since MF ⊆M, yields a lower bound on log(Z):

sup
µ∈MF

{wTµ+H(pµ)} ≤ sup
µ∈M
{wTµ+H(pµ)} = log(Z).

Since MF ⊆M, it is an inner approximation:

Constraints µij,st = µi,sµj,t make it non-convex.

Mean field algorithm is coordinate descent on wTµ+H(pµ) over MF .
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Discussion of Mean Field and Structured MF

Mean field is weird:

Non-convex approximation to a convex problem.
For learning, we want upper bounds on log(Z).

Structured mean field:

Cost of computing entropy is similar to cost of inference.
Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation of M and H(pµ):

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Summary

Log-linear parameterization can be used to learn UGMs:

Maximum likelihood is convex, but requires normalizing constant Z.

Conditional random fields are UGMs that treat X as fixed and model p(Y |X).

Log-linear parameterization again leads to convexity.

Variational inference methods formulate counting/integrals as continuous
optimization.

For UGMs, this is done via the convex conjugate.
Mean-field is one of the most common methods.

Next time: combining graphical models and deep learning.
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