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Admin

@ | went through project proposals:

e Some of you got a message on Piazza.
o No news is good news.

@ Ab coming tomorrow.

@ Project submission details coming next week.



Gibbs Sampling Markov Chain Monte Carlo Metropolis-Hastings Non-Parametric Bayes

Overview of Bayesian Inference Tasks

@ In Bayesian approach, we typically work with the posterior

1

p(Bla) = p(e10)p(6) = (),

where Z makes the distribution sum/integrate to 1.
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Overview of Bayesian Inference Tasks

@ In Bayesian approach, we typically work with the posterior

p(Bla) = p(e10)p(6) = (),

where Z makes the distribution sum/integrate to 1.

@ Typically, we need to compute expectation of some f with respect to posterior,

/f p(0]x)do
@ Examples:

o If f(0) = p(|0), we get posterior predictive.
o If f(#) =1 and we use p(6), we get marginal likelihood Z.
o If f(8) =1(0 € S) we get probability of S (e.g., marginals or conditionals).
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Last Time: Conjugate Prior and Monte Carlo Methods

@ Last time we saw two ways to deal with this:
@ Conjugate priors:
o Apply when p(z|6) is in the exponential family.
o Set p(#) to a conjugate prior, and posterior will have the same form.
o Integrals will often have closed-form solutions, but restricted class of models.
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Last Time: Conjugate Prior and Monte Carlo Methods

@ Last time we saw two ways to deal with this:
@ Conjugate priors:
o Apply when p(z|6) is in the exponential family.
o Set p(#) to a conjugate prior, and posterior will have the same form.
o Integrals will often have closed-form solutions, but restricted class of models.

@ Monte Carlo methods: sample 6% from p(f|z) and use:
1~
BIf(0)] = [ £Op0)a8 ~ > £0)
i=1

@ We discussed basic Monte Carlo methods:

o Inverse CDF, ancestral sampling, rejection sampling, importance sampling.
e Work well in low dimensions or for posteriors with analytic properties.
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Limitations of Simple Monte Carlo Methods

@ These methods tend not to work in complex situations:

e Inverse CDF may not be avaiable.

e Conditional needed for ancestral sampling may be hard to compute.
e Rejection sampling tends to reject almost all samples.

e Importance sampling tends gives almost zero weight to all samples.

@ We want an algorithm that gets better over time.


https://www.youtube.com/watch?v=aUkBa1zMKv4
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Limitations of Simple Monte Carlo Methods

@ These methods tend not to work in complex situations:

e Inverse CDF may not be avaiable.

e Conditional needed for ancestral sampling may be hard to compute.
e Rejection sampling tends to reject almost all samples.

e Importance sampling tends gives almost zero weight to all samples.

@ We want an algorithm that gets better over time.
@ Two main strategies:
e Sequential Monte Carlo:

@ Importance sampling where proposal g;: changes over time from simple to posterior.
o “Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBalzMKv4
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Limitations of Simple Monte Carlo Methods

@ These methods tend not to work in complex situations:
e Inverse CDF may not be avaiable.
e Conditional needed for ancestral sampling may be hard to compute.
e Rejection sampling tends to reject almost all samples.
e Importance sampling tends gives almost zero weight to all samples.

@ We want an algorithm that gets better over time.
@ Two main strategies:
e Sequential Monte Carlo:
@ Importance sampling where proposal g;: changes over time from simple to posterior.
o “Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBalzMKv4
o Markov chain Monte Carlo (MCMC).

@ Design Markov chain whose stationary distribution is the posterior.


https://www.youtube.com/watch?v=aUkBa1zMKv4

Gibbs Sampling Markov Chain Monte Carlo Metropolis-Hastings Non-Parametric Bayes
Motivating Example: Sampling from a UGM

@ High-dimensional integration problems arise in other settings:

e Bayesian graphical models and Bayesian neural networks.
o Deep belief networks, Boltzmann machines.
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@ In this model:
o Compute p(z) is easy.
o Computing Z is #P-hard.
o Generating a sample is NP-hard (at least).



Gibbs Sampling
Motivating Example: Sampling from a UGM

@ High-dimensional integration problems arise in other settings:

e Bayesian graphical models and Bayesian neural networks.
o Deep belief networks, Boltzmann machines.

Recall the definition of a discrete paiwise undirected graphical model (UGM):

51 65(@) i jyen b (i ms)  pa)
p(IE) == ZJ - z

@ In this model:
o Compute p(z) is easy.
o Computing Z is #P-hard.
o Generating a sample is NP-hard (at least).

With rejection sampling, probability of acceptance might be arbitrarily small.
But there is a simple MCMC method...
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Gibbs Sampling for Discrete UGMs

@ A Gibbs sampling algorithm for pairwise UGMs:
o Start with some configuration 2, then repeat the following:
@ Choose a variable j uniformly at random.
Q Set xt_tl = 2" ;, and sample 2 from its conditional,

2~ plaglel ;) = plajleve))-
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Gibbs Sampling for Discrete UGMs

@ A Gibbs sampling algorithm for pairwise UGMs:
o Start with some configuration 2, then repeat the following:
@ Choose a variable j uniformly at random.
t+1 _ it t B e
Q Set x”; =z’ ;, and sample x; from its conditional,
t+1 t t
xi "~ p(xile ;) = p(xjleme))-
e Analogy: sampling version of coordinate descent:
@ Transformed d-dimensional sampling into 1-dimensional sampling.
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Gibbs Sampling for Discrete UGMs

@ A Gibbs sampling algorithm for pairwise UGMs:
o Start with some configuration 2, then repeat the following:
@ Choose a variable j uniformly at random.
Q Set a:t_tl = 2" ;, and sample 2 from its conditional,

1’;“ ~ P(xj‘xtfj) = p(xj‘xltvls(j))-

e Analogy: sampling version of coordinate descent:
@ Transformed d-dimensional sampling into 1-dimensional sampling.
@ These iterations are very cheap:

o Need to know p(z") for each value of .

e Then sample from a single discrete random variable.

@ Does this work? How long does this take?
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Gibbs Sampling in Action

@ Start with some initial value: z° [2 2 3 1]
@ Select random j: j = 3.

o Sample variable j: 2% = [2 2 1 1].

@ Select random j: j = 1.

o Sample variable j: 2% = [3 2 1 1].

@ Select random j: j = 2.

o Sample variable j: 2% = [3 2 1 1].

@ Use all these samples to make approximation of p(z).
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Gibbs Sampling in Action: UGMs

Consider using a UGM for image denoising:

We have

@ Unary potentials ¢; for each position.

e Pairwise potentials ¢;; for neighbours on grid.

@ Parameters are trained as CRF (next time).
Goal is to produce a noise-free image.

Non-Parametric Bayes
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Gibbs samples after every 100d iterations:

Gibbs Sampling in Action: UGMs

Samples from Gibbs sampler

5 5 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
5 5 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
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Gibbs Sampling in Action: UGMs

Mean image and marginal decoding:

20

25-

30-

Gibbs Estimates of Marginals of Noisy X Gibbs Decoding of Noisy X
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Gibbs Sampling in Action: Multivariate Gaussian

@ Gibbs sampling works for general distributions.
e E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

4 -
ot .
0 F
><C\'I .
bt
Samples
4 “ . ) o 18150 Samples
o X(t=0)
-6 1 1 1 1 1
-4 -2 0 2 4 6


https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

Outline

@ Gibbs Sampling
© Markov Chain Monte Carlo
© Metropolis-Hastings

@ Non-Parametric Bayes
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Homoegenous Markov Chains and Invariant Distribution

e Given initial distribution p(x°) Markov chain assumes that

plat]a 1) = pla'la ),

which we call the Markov property.
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Homoegenous Markov Chains and Invariant Distribution

e Given initial distribution p(x°) Markov chain assumes that

platlat1) = platlst ),

which we call the Markov property.
@ Important special case is homogenous Markov chains, where

p(l’t — S|$t_1 — 8’) :p(mt_l — S‘l’t_Q — 5/)’

for all s, s’, and ¢ (transition probabilities don't change over time).
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Homoegenous Markov Chains and Invariant Distribution

e Given initial distribution p(x°) Markov chain assumes that

p(xt|x1:t—1)

-1

= p(xt’xt ))
which we call the Markov property.

@ Important special case is homogenous Markov chains, where

t

p(l’ — S|$t_1 — 8’) :p(mt_l — S‘l’t_Q — 5/)’

for all s, s’, and ¢ (transition probabilities don't change over time).

@ Under weak conditions, homogenous chains converge to an invariant distribution,

p(s) =) pla’ = sla"! = & )p(s).

E.g., p(zf|z!=1) > 0 is sufficient, or weaker condition of “irreducible and
aperiodic”.
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Markov Chain Monte Carlo

@ Markov chain Monte Carlo (MCMC): given target p, design transitions such that

n

%Zf(ﬁ) — / f(x)p(x)dx and/or z" ~ p,
t=1 £

as n — oQ.

@ We are generating dependent samples that still solve the integral.
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Markov Chain Monte Carlo

@ Markov chain Monte Carlo (MCMC): given target p, design transitions such that

n

%Zf(xt) — / f(x)p(x)dx and/or z" ~ p,
t=1 £

as n — oQ.

@ We are generating dependent samples that still solve the integral.
@ There are many transitions that will yield posterior as invariant distribution.
e Typically easy to design sampler, but hard to characterize rate of convergence.
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Markov Chain Monte Carlo

@ Markov chain Monte Carlo (MCMC): given target p, design transitions such that

n
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as n — oQ.

@ We are generating dependent samples that still solve the integral.
@ There are many transitions that will yield posterior as invariant distribution.
e Typically easy to design sampler, but hard to characterize rate of convergence.

@ Gibbs sampling satisfies the above under very weak conditions.
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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC): given target p, design transitions such that

n

%Zf(xt) — / f(x)p(x)dx and/or z" ~ p,
t=1 £

as n — oQ.

We are generating dependent samples that still solve the integral.
There are many transitions that will yield posterior as invariant distribution.
e Typically easy to design sampler, but hard to characterize rate of convergence.

Gibbs sampling satisfies the above under very weak conditions.

Typically, we don't take all samples:

e Burn in: throw away the initial samples when we haven't converged to stationary.
e Thinning: only keep every k samples, since they will be highly correlated.
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Markov Chain Monte Carlo

@ Markov chain Monte Carlo (MCMC): given target p, design transitions such that
1 n
L3t [ f@pe)ds andfor 2"~
"= z
as n — 0o.
@ We are generating dependent samples that still solve the integral.
@ There are many transitions that will yield posterior as invariant distribution.
e Typically easy to design sampler, but hard to characterize rate of convergence.
@ Gibbs sampling satisfies the above under very weak conditions.
o Typically, we don't take all samples:
e Burn in: throw away the initial samples when we haven't converged to stationary.
e Thinning: only keep every k samples, since they will be highly correlated.
@ It can very hard to diagnose if we reached invariant distribution.

o Recent work showed that this is P-space hard (much worse than NP-hard).



Markov Chain Monte Carlo

Markov Chain Monte Carlo

From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.

0.06 — a



http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Gibbs Sampilng: Variations

@ Block Gibbs sampling samples multiple variables:

e Sample a number of variables k£ > 1 jointly.
e Sample a tree-structured subgraph of a UGM.
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Gibbs Sampilng: Variations

@ Block Gibbs sampling samples multiple variables:

e Sample a number of variables k£ > 1 jointly.
e Sample a tree-structured subgraph of a UGM.

@ Auxiliary-variable sampling: Introduce variables to sample bigger blocks:

e E.g., introduce z variables in mixture models.
e Also used in Bayesian logistic regression.
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Gibbs Sampilng: Variations

@ Block Gibbs sampling samples multiple variables:

e Sample a number of variables k£ > 1 jointly.
e Sample a tree-structured subgraph of a UGM.

@ Auxiliary-variable sampling: Introduce variables to sample bigger blocks:
e E.g., introduce z variables in mixture models.
o Also used in Bayesian logistic regression.
@ Collapsed or Rao-Blackwellized: integrate out variables that are not of interest.

e Provably decrease variance of sampler.
e E.g., integrate out hidden states in Bayesian hidden Markov model.
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Block Gibbs Sampling in Action

For denoising task, we could use two tree-structured blocks:




Gibbs vs. tree-structured block-Gibbs samples:

10
15
20
25
30

10
15
20
25
30

Markov Chain Monte Carlo

Block Gibbs Sampling in Action

Samples from Gibbs sampler

5 5 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 70 20 30
5 5 ) 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

Samples from Block Gibbs sampler

5 18 5 5 ,
10 10 10 t 10
15 15 15 § 15
20 20 20 20
2 2 2 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
5 5 5 5
10 10 10 10
15 15 i 15
20 20 20 20
2 I, 2 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
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Limitations of Gibbs Sampling

@ Gibbs sampling is nice because it has no parameters:
e You just need to decide on the blocks and auxiliary variables.
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Limitations of Gibbs Sampling

@ Gibbs sampling is nice because it has no parameters:
e You just need to decide on the blocks and auxiliary variables.
e But it isn't always ideal:

e Samples can be very correlated: slow progress.
e Conditional may not have a nice form:

o If Markov blanket is not conjugate, need rejection/importance sampling.



Markov Chain Monte Carlo

Limitations of Gibbs Sampling

@ Gibbs sampling is nice because it has no parameters:
e You just need to decide on the blocks and auxiliary variables.
e But it isn't always ideal:

e Samples can be very correlated: slow progress.
e Conditional may not have a nice form:

o If Markov blanket is not conjugate, need rejection/importance sampling.
@ Generalization that can address these is Metropolis-Hastings:
o Oldest algorithm among the “Best of the 20th Century”.
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Metropolis Algorithms

@ The Metropolis algorithm for sampling from a continuous p(x):
o Start from some z° and on iteration ¢:

@ Add zero-mean Gaussian noise to z* to generate #'.
@ Generate u from a U(0, 1).
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Metropolis Algorithms

@ The Metropolis algorithm for sampling from a continuous p(x):
o Start from some z° and on iteration ¢:

@ Add zero-mean Gaussian noise to z* to generate #'.
@ Generate u from a U(0, 1).
© Accept the sample and set z'*! = &t if

!

u < ~(jt)
— ~(:Z:t)7
and otherwise reject the sample and set z!*! = 2t
e A random walk, but sometimes rejecting steps that decrease probability:

@ Another valid MCMC algorithm, although convergence may again be slow.

|
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Metropolis Algorithm in Action

1.0

N
M=0.615,0.398; N,,,=1000, Nm—o,ag

pro

0.4

0.0

0.0 0.2 0.4 06 o0g 1.0

http://www.columbia.edu/~cjdl1l/charles_dimaggio/DIRE/styled-4/styled-11/code-5/


http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5/
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Metropolis Algorithm Analysis

t = §'|lzt=1 = s) is reversible if there

e Markov chain with transitions psy = p(z
exists p such that
p(8)pss = p(s")psrs,

which is called detailed balance.
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Metropolis Algorithm Analysis

@ Markov chain with transitions psy = p(a! = §'|zt~1 = s) is reversible if there
exists p such that
p(s)pss’ = p(sl)ps’sa
which is called detailed balance.
@ Assuming we reach stationary, detailed balance is sufficent for p to be the
stationary distribution,

Zp(s)pss’ = Zp(sl)ps’s
> p(8)psy = p(s) Y past

N——
=1

ZP(S)pss' =p(s") (stationary condition)
S
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Metropolis Algorithm Analysis
@ Metropolis algorithm has psy > 0 and satisfies detailed balance,
p(s)pss’ = p(S/)pS/S.

@ We can show this by defining transition kernel

~7 ./
Tss’ = min{l, p~(8 ) } 5

i

—~
V2)

=

Non-Parametric Bayes



Metropolis-Hastings Non-Parametric Bayes

Markov Chain Monte Carlo

Gibbs Sampling
Metropolis Algorithm Analysis

@ Metropolis algorithm has psy > 0 and satisfies detailed balance,
p(s)pss’ = p(S/)pS/S.

@ We can show this by defining transition kernel
e

Towr =min L56
and observing that
s » = p(s) min p(s) = p(s) min %ﬁ(S/)
p( )Tss _p( ) {1’ ﬁ(s) } _p( ) {1’ %]5(8) }
p(s) } _ p(S,)Ts/s
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Metropolis-Hastings

@ Instead of Gaussian noise, consider a general proposal distribution ¢:
o Value q(#!|2z!) is probability of proposing 7.
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Metropolis-Hastings

@ Instead of Gaussian noise, consider a general proposal distribution ¢:
o Value q(#!|2z!) is probability of proposing 7.
@ Metropolis-Hastings accepts proposal if

o < PE )

pa)ali]")

where extra terms ensure detailed balance for asymmetric ¢:
o E.g., if you are more likely to propose to go from 2! to #! than the reverse.
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Metropolis-Hastings

@ Instead of Gaussian noise, consider a general proposal distribution ¢:
o Value q(#!|2z!) is probability of proposing 7.
@ Metropolis-Hastings accepts proposal if

"< Jf(fct)Q(:vt!i‘t)

p(a?)q(@t ")’
where extra terms ensure detailed balance for asymmetric ¢:
o E.g., if you are more likely to propose to go from 2! to #! than the reverse.
@ This again works under very weak conditions, such as ¢(z!|z!) > 0.
@ Gibbs sampling is a special case, but we have a lot of flexibility:
o You can make performance much better/worse with an appropriate gq.
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Metropolis-Hastings

@ Simple choices for proposal distribution ¢:

o Metropolis originally used random walks: 2! = 2¢~! + € for e ~ N(0,%).
o Hastings originally used independent proposal: q(xt|zt~1) = q(a?).
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Metropolis-Hastings

@ Simple choices for proposal distribution g:
o Metropolis originally used random walks: 2! = 2¢~! + € for e ~ N(0,%).
o Hastings originally used independent proposal: q(xt|zt~1) = q(a?).
o Gibbs sampling updates single variable based on conditional:

@ In this case the acceptance rate is 1 so we never reject.
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Metropolis-Hastings

@ Simple choices for proposal distribution ¢:

o Metropolis originally used random walks: 2! = 2¢~! + € for e ~ N(0,%).
o Hastings originally used independent proposal: q(xt|zt~1) = q(a?).
o Gibbs sampling updates single variable based on conditional:

@ In this case the acceptance rate is 1 so we never reject.

e Mixture model for ¢: e.g., between big and small moves.
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Markov Chain Monte Carlo Metropolis-Hastings

Metropolis-Hastings

@ Simple choices for proposal distribution ¢:

Metropolis originally used random walks: 2t = 2/~ + ¢ for e ~ N(0, X).
Hastings originally used independent proposal: g(zt|z!~!) = g(a?).
Gibbs sampling updates single variable based on conditional:

@ In this case the acceptance rate is 1 so we never reject.

e Mixture model for ¢: e.g., between big and small moves.

o “Adaptive MCMC": tries to update g as we go: needs to be done carefully.

“Particle MCMC": use particle filter to make proposal.

Non-Parametric Bayes
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Metropolis-Hastings

@ Simple choices for proposal distribution ¢:
o Metropolis originally used random walks: 2! = 2¢~! + € for e ~ N(0,%).
o Hastings originally used independent proposal: q(xt|zt~1) = q(a?).
o Gibbs sampling updates single variable based on conditional:
@ In this case the acceptance rate is 1 so we never reject.
e Mixture model for ¢: e.g., between big and small moves.
o “Adaptive MCMC": tries to update g as we go: needs to be done carefully.
o "Particle MCMC": use particle filter to make proposal.

@ Unlike rejection sampling, we don’t want acceptance rate as high as possible:

e High acceptance rate may mean we're not moving very much.
e Low acceptance rate definitely means we're not moving very much.
o Designing ¢ is an “art”.
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Metropolis-Hastings

Metropolis-Hastings for sampling from mixture of Gaussians:

1000 iterations

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

@ High acceptance rate could mean we are staying in one mode.

@ We may to proposal to be mixture between random walk and “mode jumping”.


http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Stochastic Processes and Non-Parametric Bayes

@ A stochastic process is an infinite collection of random variables {x%}.

@ Non-parametric Bayesian methods use priors defined on stochastic processes:
o Allows extremely-flexible prior, and posterior complexity grows with data size.
o Typically set up so that samples from posterior are finite-sized.

@ The two most common priors are Gaussian processes and Dirichlet processes:

o Gaussian processes define prior on space of functions (universal approximators).
e Dirichlet processes define prior on space of probabilities (without fixing dimension)
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Gaussian Processes
@ Recall that we can partition a multivariate Gaussian:
me ny
po=|Has fy|, 2= [
[ ] ’ Yye Lyy]’

and marginal distribution wrt z variables is just a N (1, X,x) Gaussian.



Non-Parametric Bayes

Gaussian Processes

@ Recall that we can partition a multivariate Gaussian:

)y X
= ) ) Y= o i )
: [Mx Hy} |:ny Zyy:|

and marginal distribution wrt z variables is just a N (1, X,x) Gaussian.
@ Generalization of this to infinite variables is Gaussian processes (GPs):

o Infinite collection of random variables.
e Any finite set from collection follows a Gaussian distribution.
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Gaussian Processes

@ Recall that we can partition a multivariate Gaussian:

)y X
= ) ) Y= o i )
: [Mx Hy} |:ny Zyy:|

and marginal distribution wrt z variables is just a N (1, X,x) Gaussian.

@ Generalization of this to infinite variables is Gaussian processes (GPs):

o Infinite collection of random variables.

e Any finite set from collection follows a Gaussian distribution.
@ GPs are specified by a mean function m and covariance function k:

o If

m(z) =E[f(x)], k(z,a") = E[(f(z) —m(x))(f(a") —m(z")"],
then we say that
f(x) ~ GP(m(z), k(z,2")).
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Regression Models as Gaussian Processes

@ For example, predictions made by linear regression with Gaussian prior
f(@) = ¢(z)"w, w~N(0,3),
are a Gaussian process with mean function
E[f(2)] = E[¢(z)" w] = ¢(z)"E[w] = 0.

and covariance function

E[f(x)f(m)T] = qﬁ(w)TE[wa](b(x’) = ¢(z)Xo(z)).
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Gaussian Processes

To date kriging has been used in a variety of disciplines, including the following:
« Environmental sciencelS!

« Hydrogeology!®1718]

« Mining!®110]

« Natural resources!!1112]

« Remote sensingl!3]

« Real estate appraisall!4115] 1
and many others.
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Gaussian Process Model Selection

@ We can view a Gaussian process as a prior distribution over smooth functions.
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@ Most common choice of covariance is RBF.
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Gaussian Process Model Selection

@ We can view a Gaussian process as a prior distribution over smooth functions.
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@ Most common choice of covariance is RBF.
@ Is this the same as using kernels?
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Metropolis-Hastings Non-Parametric Bayes

Gaussian Process Model Selection

@ We can view a Gaussian process as a prior distribution over smooth functions.
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@ Most common choice of covariance is RBF.
@ Is this the same as using kernels?
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o Yes, this is Bayesian linear regression plus the kernel trick.
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Gaussian Process Model Selection

@ So why do we care?

o We can get estimate of uncertainty in the prediction.
o We can use marginal likelihood to learn the kernel/covariance.

@ Non-hierarchical approach:
o Write kernel in terms of parameters, optimize parameters to learn kernel.


http://www.automaticstatistician.com/examples/
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Gaussian Process Model Selection

So why do we care?

o We can get estimate of uncertainty in the prediction.
o We can use marginal likelihood to learn the kernel/covariance.

@ Non-hierarchical approach:
o Write kernel in terms of parameters, optimize parameters to learn kernel.

Hierarchical approach: put a hyper-prior of types of kernels.

@ Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples/


http://www.automaticstatistician.com/examples/

Non-Parametric Bayes

Dirichlet Process

@ Recall the finite mixture model:

k
= chp(.ch)
c=1

@ Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(z|0) = Zﬂcp x]6.).

@ Common choice for prior on 7 values is Dirichlet process:
e Also called “Chinese restaurant process” and “stick-breaking process”.
e For finite datasets, only a fixed number of clusters have 7. # 0.
o But don't need to pick number of clusters, grows with data size.
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Dirichlet Process

@ Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs


https://www.youtube.com/watch?v=0Vh7qZY9sPs

Non-Parametric Bayes

Dirichlet Process

@ Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs
@ We could alternately put a prior on k:
o “Reversible-jump” MCMC can be used to sample from models of different sizes.
@ There a variety of interesting extensions:

o Beta process.

e Hierarchical Dirichlet process,.
e Polya trees.

e Infinite hidden Markov models.


https://www.youtube.com/watch?v=0Vh7qZY9sPs
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Summary

@ Markov chain Monte Carlo generates a sequence of dependent samples:
e But asymptotically these samples come from the posterior.
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Summary

@ Markov chain Monte Carlo generates a sequence of dependent samples:
e But asymptotically these samples come from the posterior.

@ Gibbs sampling is special of repeatedly sampling one variable at time.
o Works poorly, but effective extensions like block/collapsed Gibbs.

@ Metropolis-Hastings is generalization allowing arbtirary “proposals”.



Summary

Markov chain Monte Carlo generates a sequence of dependent samples:

e But asymptotically these samples come from the posterior.

Gibbs sampling is special of repeatedly sampling one variable at time.

o Works poorly, but effective extensions like block/collapsed Gibbs.
Metropolis-Hastings is generalization allowing arbtirary “proposals”.
Non-Parametric Bayesian methods use flexible infinite-dimensional priors:

o Allows model complexity to grow with data size.

Next time: most cited ML paper in the 00s and variational inference.

Non-Parametric Bayes
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