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Admin

I went through project proposals:

Some of you got a message on Piazza.
No news is good news.

A5 coming tomorrow.

Project submission details coming next week.



Gibbs Sampling Markov Chain Monte Carlo Metropolis-Hastings Non-Parametric Bayes

Overview of Bayesian Inference Tasks

In Bayesian approach, we typically work with the posterior

p(θ|x) =
1

Z
p(x|θ)p(θ) =

1

Z
p̃(θ),

where Z makes the distribution sum/integrate to 1.

Typically, we need to compute expectation of some f with respect to posterior,

E[f(θ)] =

∫
θ
f(θ)p(θ|x)dθ.

Examples:

If f(θ) = p(x̃|θ), we get posterior predictive.
If f(θ) = 1 and we use p̃(θ), we get marginal likelihood Z.
If f(θ) = I(θ ∈ S) we get probability of S (e.g., marginals or conditionals).
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Last Time: Conjugate Prior and Monte Carlo Methods

Last time we saw two ways to deal with this:
1 Conjugate priors:

Apply when p(x|θ) is in the exponential family.
Set p(θ) to a conjugate prior, and posterior will have the same form.
Integrals will often have closed-form solutions, but restricted class of models.

2 Monte Carlo methods: sample θi from p(θ|x) and use:

E[f(θ)] =

∫
f(θ)p(θ)dθ ≈ 1

n

n∑
i=1

f(θi).

We discussed basic Monte Carlo methods:

Inverse CDF, ancestral sampling, rejection sampling, importance sampling.
Work well in low dimensions or for posteriors with analytic properties.



Gibbs Sampling Markov Chain Monte Carlo Metropolis-Hastings Non-Parametric Bayes

Last Time: Conjugate Prior and Monte Carlo Methods

Last time we saw two ways to deal with this:
1 Conjugate priors:

Apply when p(x|θ) is in the exponential family.
Set p(θ) to a conjugate prior, and posterior will have the same form.
Integrals will often have closed-form solutions, but restricted class of models.

2 Monte Carlo methods: sample θi from p(θ|x) and use:

E[f(θ)] =

∫
f(θ)p(θ)dθ ≈ 1

n

n∑
i=1

f(θi).

We discussed basic Monte Carlo methods:

Inverse CDF, ancestral sampling, rejection sampling, importance sampling.
Work well in low dimensions or for posteriors with analytic properties.



Gibbs Sampling Markov Chain Monte Carlo Metropolis-Hastings Non-Parametric Bayes

Last Time: Conjugate Prior and Monte Carlo Methods

Last time we saw two ways to deal with this:
1 Conjugate priors:

Apply when p(x|θ) is in the exponential family.
Set p(θ) to a conjugate prior, and posterior will have the same form.
Integrals will often have closed-form solutions, but restricted class of models.

2 Monte Carlo methods: sample θi from p(θ|x) and use:

E[f(θ)] =

∫
f(θ)p(θ)dθ ≈ 1

n

n∑
i=1

f(θi).

We discussed basic Monte Carlo methods:

Inverse CDF, ancestral sampling, rejection sampling, importance sampling.
Work well in low dimensions or for posteriors with analytic properties.



Gibbs Sampling Markov Chain Monte Carlo Metropolis-Hastings Non-Parametric Bayes

Limitations of Simple Monte Carlo Methods

These methods tend not to work in complex situations:

Inverse CDF may not be avaiable.
Conditional needed for ancestral sampling may be hard to compute.
Rejection sampling tends to reject almost all samples.
Importance sampling tends gives almost zero weight to all samples.

We want an algorithm that gets better over time.

Two main strategies:
Sequential Monte Carlo:

Importance sampling where proposal qt changes over time from simple to posterior.
“Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBa1zMKv4

Markov chain Monte Carlo (MCMC).

Design Markov chain whose stationary distribution is the posterior.

https://www.youtube.com/watch?v=aUkBa1zMKv4
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Motivating Example: Sampling from a UGM

High-dimensional integration problems arise in other settings:

Bayesian graphical models and Bayesian neural networks.
Deep belief networks, Boltzmann machines.

Recall the definition of a discrete paiwise undirected graphical model (UGM):

p(x) =

∏d
j=1 φj(xj)

∏
(i,j)∈E φij(xi, xj)

Z
=
p̃(x)

Z
.

In this model:

Compute p̃(x) is easy.
Computing Z is #P-hard.
Generating a sample is NP-hard (at least).

With rejection sampling, probability of acceptance might be arbitrarily small.

But there is a simple MCMC method...
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Gibbs Sampling for Discrete UGMs

A Gibbs sampling algorithm for pairwise UGMs:
Start with some configuration x0, then repeat the following:

1 Choose a variable j uniformly at random.
2 Set xt+1

−j = xt−j , and sample xtj from its conditional,

xt+1
j ∼ p(xj |xt−j) = p(xj |xtMB(j)).

Analogy: sampling version of coordinate descent:

Transformed d-dimensional sampling into 1-dimensional sampling.

These iterations are very cheap:

Need to know p̃(xt) for each value of xtj .
Then sample from a single discrete random variable.

Does this work? How long does this take?
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Gibbs Sampling in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j: j = 3.

Sample variable j: x2 =
[
2 2 1 1

]
.

Select random j: j = 1.

Sample variable j: x3 =
[
3 2 1 1

]
.

Select random j: j = 2.

Sample variable j: x4 =
[
3 2 1 1

]
.

...
Use all these samples to make approximation of p(x).
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Gibbs Sampling in Action: UGMs
Consider using a UGM for image denoising:

We have

Unary potentials φj for each position.

Pairwise potentials φij for neighbours on grid.

Parameters are trained as CRF (next time).

Goal is to produce a noise-free image.
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Gibbs Sampling in Action: UGMs
Gibbs samples after every 100d iterations:
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Gibbs Sampling in Action: UGMs

Mean image and marginal decoding:
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Gibbs Sampling in Action: Multivariate Gaussian
Gibbs sampling works for general distributions.

E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
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Outline

1 Gibbs Sampling

2 Markov Chain Monte Carlo

3 Metropolis-Hastings

4 Non-Parametric Bayes
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Homoegenous Markov Chains and Invariant Distribution

Given initial distribution p(x0) Markov chain assumes that

p(xt|x1:t−1) = p(xt|xt−1),

which we call the Markov property.

Important special case is homogenous Markov chains, where

p(xt = s|xt−1 = s′) = p(xt−1 = s|xt−2 = s′),

for all s, s′, and t (transition probabilities don’t change over time).

Under weak conditions, homogenous chains converge to an invariant distribution,

p(s) =
∑
s′

p(xt = s|xt−1 = s′)p(s′).

E.g., p(xt|xt−1) > 0 is sufficient, or weaker condition of “irreducible and
aperiodic”.
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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC): given target p, design transitions such that

1

n

n∑
t=1

f(xt)→
∫
x
f(x)p(x)dx and/or xn ∼ p,

as n→∞.

We are generating dependent samples that still solve the integral.

There are many transitions that will yield posterior as invariant distribution.
Typically easy to design sampler, but hard to characterize rate of convergence.

Gibbs sampling satisfies the above under very weak conditions.

Typically, we don’t take all samples:
Burn in: throw away the initial samples when we haven’t converged to stationary.
Thinning: only keep every k samples, since they will be highly correlated.

It can very hard to diagnose if we reached invariant distribution.
Recent work showed that this is P-space hard (much worse than NP-hard).
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Markov Chain Monte Carlo

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Gibbs Sampilng: Variations

Block Gibbs sampling samples multiple variables:

Sample a number of variables k > 1 jointly.
Sample a tree-structured subgraph of a UGM.

Auxiliary-variable sampling: Introduce variables to sample bigger blocks:

E.g., introduce z variables in mixture models.
Also used in Bayesian logistic regression.

Collapsed or Rao-Blackwellized: integrate out variables that are not of interest.

Provably decrease variance of sampler.
E.g., integrate out hidden states in Bayesian hidden Markov model.
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Block Gibbs Sampling in Action

For denoising task, we could use two tree-structured blocks:
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Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:
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Limitations of Gibbs Sampling

Gibbs sampling is nice because it has no parameters:

You just need to decide on the blocks and auxiliary variables.

But it isn’t always ideal:

Samples can be very correlated: slow progress.
Conditional may not have a nice form:

If Markov blanket is not conjugate, need rejection/importance sampling.

Generalization that can address these is Metropolis-Hastings:

Oldest algorithm among the “Best of the 20th Century”.
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Metropolis Algorithms

The Metropolis algorithm for sampling from a continuous p̃(x):
Start from some x0 and on iteration t:

1 Add zero-mean Gaussian noise to xt to generate x̃t.
2 Generate u from a U(0, 1).

3 Accept the sample and set xt+1 = x̃t if

u ≤ p̃(x̃t)

p̃(xt)
,

and otherwise reject the sample and set xt+1 = xt.

A random walk, but sometimes rejecting steps that decrease probability:

Another valid MCMC algorithm, although convergence may again be slow.
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Metropolis Algorithm in Action

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5/

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5/
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Metropolis Algorithm Analysis

Markov chain with transitions pss′ = p(xt = s′|xt−1 = s) is reversible if there
exists p such that

p(s)pss′ = p(s′)ps′s,

which is called detailed balance.

Assuming we reach stationary, detailed balance is sufficent for p to be the
stationary distribution,∑

s

p(s)pss′ =
∑
s

p(s′)ps′s∑
s

p(s)pss′ = p(s′)
∑
s

pss′︸ ︷︷ ︸
=1∑

s

p(s)pss′ = p(s′) (stationary condition)
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Metropolis Algorithm Analysis

Metropolis algorithm has pss′ > 0 and satisfies detailed balance,

p(s)pss′ = p(s′)ps′s.

We can show this by defining transition kernel

Tss′ = min

{
1,
p̃(s′)

p̃(s)

}
,

and observing that

p(s)Tss′ = p(s) min

{
1,
p̃(s′)

p̃(s)

}
= p(s) min

{
1,

1
Z p̃(s

′)
1
Z p̃(s)

}

= p(s) min

{
1,
p(s′)

p(s)

}
= min

{
p(s), p(s′)

}
= p(s′) min

{
1,
p(s)

p(s′)

}
= p(s′)Ts′s.
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Metropolis Algorithm Analysis
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Metropolis-Hastings

Instead of Gaussian noise, consider a general proposal distribution q:

Value q(x̃t|xt) is probability of proposing x̃t.

Metropolis-Hastings accepts proposal if

u ≤ p̃(x̃t)q(xt|x̃t)
p̃(xt)q(x̃t|xt)

,

where extra terms ensure detailed balance for asymmetric q:

E.g., if you are more likely to propose to go from xt to x̃t than the reverse.

This again works under very weak conditions, such as q(x̃t|xt) > 0.

Gibbs sampling is a special case, but we have a lot of flexibility:

You can make performance much better/worse with an appropriate q.
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Metropolis-Hastings

Simple choices for proposal distribution q:

Metropolis originally used random walks: xt = xt−1 + ε for ε ∼ N (0,Σ).
Hastings originally used independent proposal: q(xt|xt−1) = q(xt).

Gibbs sampling updates single variable based on conditional:

In this case the acceptance rate is 1 so we never reject.

Mixture model for q: e.g., between big and small moves.
“Adaptive MCMC”: tries to update q as we go: needs to be done carefully.
“Particle MCMC”: use particle filter to make proposal.

Unlike rejection sampling, we don’t want acceptance rate as high as possible:

High acceptance rate may mean we’re not moving very much.
Low acceptance rate definitely means we’re not moving very much.
Designing q is an “art”.
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Metropolis-Hastings
Metropolis-Hastings for sampling from mixture of Gaussians:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

High acceptance rate could mean we are staying in one mode.

We may to proposal to be mixture between random walk and “mode jumping”.

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Stochastic Processes and Non-Parametric Bayes

A stochastic process is an infinite collection of random variables {xi}.
Non-parametric Bayesian methods use priors defined on stochastic processes:

Allows extremely-flexible prior, and posterior complexity grows with data size.
Typically set up so that samples from posterior are finite-sized.

The two most common priors are Gaussian processes and Dirichlet processes:

Gaussian processes define prior on space of functions (universal approximators).
Dirichlet processes define prior on space of probabilities (without fixing dimension).
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Gaussian Processes

Recall that we can partition a multivariate Gaussian:

µ =
[
µx, µy

]
, Σ =

[
Σxx Σxy

Σyx Σyy

]
,

and marginal distribution wrt x variables is just a N (µx,Σxx) Gaussian.

Generalization of this to infinite variables is Gaussian processes (GPs):

Infinite collection of random variables.
Any finite set from collection follows a Gaussian distribution.

GPs are specified by a mean function m and covariance function k:

If
m(x) = E[f(x)], k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ],

then we say that
f(x) ∼ GP(m(x), k(x, x′)).
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Regression Models as Gaussian Processes

For example, predictions made by linear regression with Gaussian prior

f(x) = φ(x)Tw, w ∼ N (0,Σ),

are a Gaussian process with mean function

E[f(x)] = E[φ(x)Tw] = φ(x)TE[w] = 0.

and covariance function

E[f(x)f(x)T ] = φ(x)TE[wwT ]φ(x′) = φ(x)Σφ(x′).
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Gaussian Processes
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Gaussian Process Model Selection

We can view a Gaussian process as a prior distribution over smooth functions.

Most common choice of covariance is RBF.

Is this the same as using kernels?

Yes, this is Bayesian linear regression plus the kernel trick.
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Gaussian Process Model Selection

So why do we care?

We can get estimate of uncertainty in the prediction.
We can use marginal likelihood to learn the kernel/covariance.

Non-hierarchical approach:

Write kernel in terms of parameters, optimize parameters to learn kernel.

Hierarchical approach: put a hyper-prior of types of kernels.

Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples/

http://www.automaticstatistician.com/examples/
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Dirichlet Process

Recall the finite mixture model:

p(x|θ) =

k∑
c=1

πcp(x|θc).

Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(x|θ) =

∞∑
c=1

πcp(x|θc).

Common choice for prior on π values is Dirichlet process:

Also called “Chinese restaurant process” and “stick-breaking process”.
For finite datasets, only a fixed number of clusters have πc 6= 0.
But don’t need to pick number of clusters, grows with data size.
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Dirichlet Process

Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs

We could alternately put a prior on k:

“Reversible-jump” MCMC can be used to sample from models of different sizes.

There a variety of interesting extensions:

Beta process.
Hierarchical Dirichlet process,.
Polya trees.
Infinite hidden Markov models.

https://www.youtube.com/watch?v=0Vh7qZY9sPs
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Summary

Markov chain Monte Carlo generates a sequence of dependent samples:

But asymptotically these samples come from the posterior.

Gibbs sampling is special of repeatedly sampling one variable at time.

Works poorly, but effective extensions like block/collapsed Gibbs.

Metropolis-Hastings is generalization allowing arbtirary “proposals”.

Non-Parametric Bayesian methods use flexible infinite-dimensional priors:

Allows model complexity to grow with data size.

Next time: most cited ML paper in the 00s and variational inference.
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