CPSC 540: Machine Learning Conjugate Priors and Monte Carlo Methods

Mark Schmidt

University of British Columbia

Winter 2016

• Nothing exciting?

Last Time: Bayesian Statistics

• In Bayesian statistics we work with posterior over parameters,

$$p(\theta|x, \alpha, \beta) = \frac{p(x|\theta)p(\theta|\alpha, \beta)}{p(x|\alpha, \beta)}.$$

Last Time: Bayesian Statistics

• In Bayesian statistics we work with posterior over parameters,

$$p(\theta|x, \alpha, \beta) = \frac{p(x|\theta)p(\theta|\alpha, \beta)}{p(x|\alpha, \beta)}.$$

• We discussed empirical Bayes, where you optimize prior using marginal likelihood,

$$\operatorname*{argmax}_{\alpha,\beta} p(x|\alpha,\beta) = \operatorname*{argmax}_{\alpha,\beta} \int_{\theta} p(x|\theta) p(\theta|\alpha,\beta) d\theta.$$

• Can be used to optimize λ_j , polynomial degree, RBF σ_i , polynomial vs. RBF, etc.

Last Time: Bayesian Statistics

• In Bayesian statistics we work with posterior over parameters,

$$p(\theta|x, \alpha, \beta) = \frac{p(x|\theta)p(\theta|\alpha, \beta)}{p(x|\alpha, \beta)}$$

• We discussed empirical Bayes, where you optimize prior using marginal likelihood,

$$\operatorname*{argmax}_{\alpha,\beta} p(x|\alpha,\beta) = \operatorname*{argmax}_{\alpha,\beta} \int_{\theta} p(x|\theta) p(\theta|\alpha,\beta) d\theta.$$

• Can be used to optimize λ_j , polynomial degree, RBF σ_i , polynomial vs. RBF, etc. • We also considered hierarchical Bayes, where you put a prior on the prior,

$$p(\alpha,\beta|x,\gamma) = \frac{p(x|\alpha,\beta)p(\alpha,\beta|\gamma)}{p(x|\gamma)}.$$

• But is the hyper-prior really needed?

Hierarchical Bayes as Graphical Model

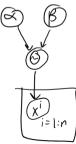
• Let x^i be a binary variable, representing if treatment works on patient i,

 $x^i \sim \mathsf{Ber}(\theta).$

• As before, let's assume that θ comes from a beta distribution,

 $\theta \sim \mathcal{B}(\alpha, \beta).$

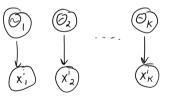
• We can visualize this as a graphical model:



- Now let x^i represent if treatment works on patient i in hospital j.
- Let's assume that treatment depends on hospital,

 $x_j^i \sim \mathsf{Ber}(\theta_j).$

• The x_i^i are IID given the hospital.



- Now let x^i represent if treatment works on patient i in hospital j.
- Let's assume that treatment depends on hospital,

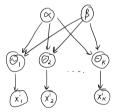
 $x_j^i \sim \mathsf{Ber}(\theta_j).$

- The x_j^i are IID given the hospital.
- But we may have more data for some hospitals than others:
 - Can we use data from one hospital to learn about others?
 - Can we say anything about a hospital with no data?

• Common approach: assume θ_j drawn from common prior,

 $\theta_j \sim \mathcal{B}(\alpha, \beta).$

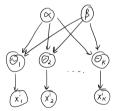
• This ties the parameters from the different hospitals together:



• Common approach: assume θ_j drawn from common prior,

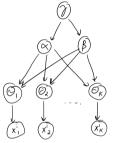
 $\theta_j \sim \mathcal{B}(\alpha, \beta).$

• This ties the parameters from the different hospitals together:



- But, if you fix α and β then you can't learn across hospitals:
 - The θ_j and d-separated given α and β .

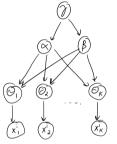
• If α and β are random variables and you use a hyperprior:



• You can now consider posterior over both types of variables given data and $\gamma :$

 $p(\theta, \alpha, \beta | x, \gamma).$

• If α and β are random variables and you use a hyperprior:



• You can now consider posterior over both types of variables given data and $\gamma:$

 $p(\theta, \alpha, \beta | x, \gamma).$

- Now there is a dependency between the different θ_j .
- You combine the non-IID data across different hospitals.
- Data-rich hospitals inform posterior for data-poor hospitals.
- You even consider the posterior for new hospitals.

Conjugate Priors

Monte Carlo Methods

Outline

I Hierarchical Bayes for Non-IID Data

2 Conjugate Priors

3 Monte Carlo Methods

- Bayesian framework gives simple solutions to several difficult problems:
 - Estimating uncertainty, choosing many hyper-parameters, handling non-IID data, etc.

- Bayesian framework gives simple solutions to several difficult problems:
 - Estimating uncertainty, choosing many hyper-parameters, handling non-IID data, etc.
- But it often requires:
 - Representing high-dimensional distributions.
 - Solving high-dimensional integration problems.

- Bayesian framework gives simple solutions to several difficult problems:
 - Estimating uncertainty, choosing many hyper-parameters, handling non-IID data, etc.
- But it often requires:
 - Representing high-dimensional distributions.
 - Solving high-dimensional integration problems.
- We've seen this is possible in some special cases:
 - Bernoulli likelihood with discrete prior gives discrete posterior ($\theta = 0.5$ or $\theta = 1$).
 - Bernoulli likelihood with beta prior gives beta posterior.
 - Gaussian likelihood with Gaussian prior gives Gaussian posterior (linear regression).

- Bayesian framework gives simple solutions to several difficult problems:
 - Estimating uncertainty, choosing many hyper-parameters, handling non-IID data, etc.
- But it often requires:
 - Representing high-dimensional distributions.
 - Solving high-dimensional integration problems.
- We've seen this is possible in some special cases:
 - Bernoulli likelihood with discrete prior gives discrete posterior ($\theta = 0.5$ or $\theta = 1$).
 - Bernoulli likelihood with beta prior gives beta posterior.
 - Gaussian likelihood with Gaussian prior gives Gaussian posterior (linear regression).
- These are easy because the posterior is in the same 'family' as the prior:
 - This is called a conjugate prior to the likelihood.

• Basic idea of conjugate priors:

$$x \sim D(\theta), \quad \theta \sim P(\lambda) \quad \Rightarrow \quad \theta \mid x \sim P(\lambda').$$

• Basic idea of conjugate priors:

$$x \sim D(\theta), \quad \theta \sim P(\lambda) \quad \Rightarrow \quad \theta \mid x \sim P(\lambda').$$

• Beta-bernoulli example:

$$x \sim \mathsf{Ber}(\theta), \quad \theta \sim \mathcal{B}(\alpha, \beta), \quad \Rightarrow \quad \theta \mid x \sim \mathcal{B}(\alpha', \beta'),$$

and in particular if we see h heads and t tails then the posterior is $\mathcal{B}(h+\alpha, t+\beta)$.

• Basic idea of conjugate priors:

$$x \sim D(\theta), \quad \theta \sim P(\lambda) \quad \Rightarrow \quad \theta \mid x \sim P(\lambda').$$

• Beta-bernoulli example:

$$x \sim \mathsf{Ber}(\theta), \quad \theta \sim \mathcal{B}(\alpha, \beta), \quad \Rightarrow \quad \theta \mid x \sim \mathcal{B}(\alpha', \beta'),$$

and in particular if we see h heads and t tails then the posterior is $\mathcal{B}(h+\alpha, t+\beta)$. • Gaussian-Gaussian example:

$$x \sim \mathcal{N}(\mu, \Sigma), \quad \mu \sim \mathcal{N}(\mu_0, \Sigma_0), \quad \Rightarrow \quad \mu \mid x \sim \mathcal{N}(\mu', \Sigma'),$$

and posterior predictive is also a Gaussian.

• Basic idea of conjugate priors:

$$x \sim D(\theta), \quad \theta \sim P(\lambda) \quad \Rightarrow \quad \theta \mid x \sim P(\lambda').$$

• Beta-bernoulli example:

$$x \sim \mathsf{Ber}(\theta), \quad \theta \sim \mathcal{B}(\alpha, \beta), \quad \Rightarrow \quad \theta \mid x \sim \mathcal{B}(\alpha', \beta'),$$

and in particular if we see h heads and t tails then the posterior is $\mathcal{B}(h + \alpha, t + \beta)$. • Gaussian-Gaussian example:

$$x \sim \mathcal{N}(\mu, \Sigma), \quad \mu \sim \mathcal{N}(\mu_0, \Sigma_0), \quad \Rightarrow \quad \mu \mid x \sim \mathcal{N}(\mu', \Sigma'),$$

and posterior predictive is also a Gaussian.

- If Σ is also a random variable:
 - Conjugate prior is normal-inverse-Wishart.
 - Posterior predictive is a student t.

• Basic idea of conjugate priors:

$$x \sim D(\theta), \quad \theta \sim P(\lambda) \quad \Rightarrow \quad \theta \mid x \sim P(\lambda').$$

• Beta-bernoulli example:

$$x \sim \mathsf{Ber}(\theta), \quad \theta \sim \mathcal{B}(\alpha,\beta), \quad \Rightarrow \quad \theta \mid x \sim \mathcal{B}(\alpha',\beta'),$$

and in particular if we see h heads and t tails then the posterior is $\mathcal{B}(h+\alpha, t+\beta)$. • Gaussian-Gaussian example:

$$x \sim \mathcal{N}(\mu, \Sigma), \quad \mu \sim \mathcal{N}(\mu_0, \Sigma_0), \quad \Rightarrow \quad \mu \mid x \sim \mathcal{N}(\mu', \Sigma'),$$

and posterior predictive is also a Gaussian.

- If Σ is also a random variable:
 - Conjugate prior is normal-inverse-Wishart.
 - Posterior predictive is a student t.
- For the conjugate priors of many standard distributions, see:

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

Existence of Conjugate Priors

- Conjugate priors make Bayesian inference easier:
 - Posterior involves updating parameters of prior.
 - Marginal likelihood has closed form as ratio of normalizing constants.
 - In many cases posterior predictive also has a nice form.

Existence of Conjugate Priors

- Conjugate priors make Bayesian inference easier:
 - Posterior involves updating parameters of prior.
 - Marginal likelihood has closed form as ratio of normalizing constants.
 - In many cases posterior predictive also has a nice form.
- Do conjugate priors always exist?
 - No, only exist for exponential family likelihoods.
 - If you aren't in the exponential family (e.g., student t), Bayesian inference gets ugly.

Exponential Family

• Exponential family distributions can be written in the form

 $p(x|\theta) \propto h(x) \exp(\theta^T \phi(x)).$

- We often have h(x) = 1, and $\phi(x)$ are called the sufficient statistics.
 - If you have $\phi(x)$ for a dataset x, you don't need data x^1, x^2, \ldots, x^n .

Exponential Family

• Exponential family distributions can be written in the form

 $p(x|\theta) \propto h(x) \exp(\theta^T \phi(x)).$

- We often have h(x) = 1, and $\phi(x)$ are called the sufficient statistics.
 - If you have $\phi(x)$ for a dataset x, you don't need data $x^1, x^2, \ldots, x^n.$
- If $\phi(x) = x$, we say that the θ are the cannonical parameters.
 - For Bernoulli, write it as

$$p(x|\pi) = \pi^x (1-\pi)^{1-x} = \exp(\log(\pi^x (1-\pi)^{1-x}))$$
$$= \exp(x \log \pi + (1-x) \log(1-\pi))$$
$$= \exp\left(x \log\left(\frac{\pi}{1-\pi}\right) + \log(1-\pi)\right)$$
$$\propto \exp\left(x \log\left(\frac{\pi}{1-\pi}\right)\right),$$

Exponential Family

• Exponential family distributions can be written in the form

 $p(x|\theta) \propto h(x) \exp(\theta^T \phi(x)).$

- We often have h(x) = 1, and $\phi(x)$ are called the sufficient statistics.
 - If you have $\phi(x)$ for a dataset x, you don't need data $x^1, x^2, \ldots, x^n.$
- If $\phi(x) = x$, we say that the θ are the cannonical parameters.
 - For Bernoulli, write it as

$$p(x|\pi) = \pi^x (1-\pi)^{1-x} = \exp(\log(\pi^x (1-\pi)^{1-x}))$$
$$= \exp(x \log \pi + (1-x) \log(1-\pi))$$
$$= \exp\left(x \log\left(\frac{\pi}{1-\pi}\right) + \log(1-\pi)\right)$$
$$\propto \exp\left(x \log\left(\frac{\pi}{1-\pi}\right)\right),$$

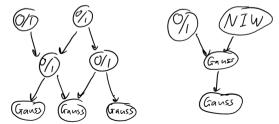
and parameterize in terms of log-odds, $\theta = \log(\pi/(1-\pi))$. (solve for π using sigmoid function, $\pi = 1/(1 + \exp(-\theta))$)

Conjugate Graphical Models

- Discrete priors are "conjugate" to all likelihoods:
 - Posterior will be discrete, although it still might be NP-hard to use.

Conjugate Graphical Models

- Discrete priors are "conjugate" to all likelihoods:
 - Posterior will be discrete, although it still might be NP-hard to use.
- Conjugacy also helps in more complex situations.
- Consider DAGs where marginal of parent is conjugate prior for child:
 - Unconditional inference and sampling will be easy.
- Examples:
 - Gaussian graphical models.
 - Discrete graphical models.
 - Hybrid Gaussian/discrete, where discrete nodes can't have Gaussian parents.
 - Gaussian graphical model with normal-inverse-Wishart parents.



Outline

I Hierarchical Bayes for Non-IID Data

Need for Approximate Integration

- Posterior often doesn't have a closed-form expression.
 - We don't just want to flip coins and multiply Gaussians.
 - You can use mixtures of conjugate priors, but we'll consider a different approach.
- Can we approximate the posterior with a simpler closed-form distribution?

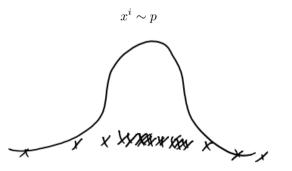
Need for Approximate Integration

- Posterior often doesn't have a closed-form expression.
 - We don't just want to flip coins and multiply Gaussians.
 - You can use mixtures of conjugate priors, but we'll consider a different approach.
- Can we approximate the posterior with a simpler closed-form distribution?
- Two main strategies:
 - Variational methods.
 - Ø Monte Carlo methods.
- Both are classic ideas from statistical physics, but in 90s revolutionized Bayesian stats/ML.
- Also used extensively in graphical models and deep learning.

- Our goal is to approximate a probability distribution p(x) with a simpler distribution.
 - This could be a posterior distribution or a graphical model or a deep belief network.

- Our goal is to approximate a probability distribution p(x) with a simpler distribution.
 - This could be a posterior distribution or a graphical model or a deep belief network.
- Basic idea between Monte Carlo methods:

() Generate n samples proportional to p(x),



- Our goal is to approximate a probability distribution p(x) with a simpler distribution.
 - This could be a posterior distribution or a graphical model or a deep belief network.
- Basic idea between Monte Carlo methods:
 - **(**) Generate n samples proportional to p(x),

 $x^i \sim p$

② Use these samples as an approximation of the distribution.

$$p(x) \approx \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[x = x^{i}].$$

(Area where you have more samples means higher probaiblity.)

- Our goal is to approximate a probability distribution p(x) with a simpler distribution.
 - This could be a posterior distribution or a graphical model or a deep belief network.
- Basic idea between Monte Carlo methods:
 - **(**) Generate n samples proportional to p(x),

 $x^i \sim p$

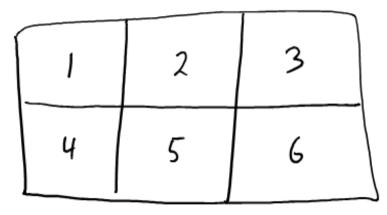
② Use these samples as an approximation of the distribution.

$$p(x) \approx \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[x = x^{i}].$$

(Area where you have more samples means higher probaiblity.)

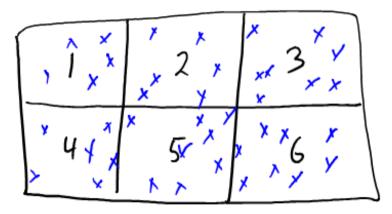
- $\bullet~{\rm As}~n\to\infty$, "converges" to the true distribution.
- We can use this "empirical measure" to approximate the original probability.
 - E.g., if you want $\mathbb{E}[f(x)]$, compute $\frac{1}{n}\sum_{i=1}^{n} f(x)$.
 - $\bullet\,$ Converges to expectation as $n\to\infty$ by law of large numbers.

Monte Carlo Methods Example: Rolling di



Probability of event: (number of samples consistent with event)/(number of sampes)

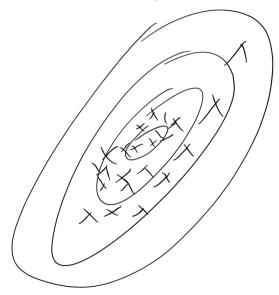
Monte Carlo Methods Example: Rolling di



Probability of event: (number of samples consistent with event)/(number of sampes)

Monte Carlo Methods

Monte Carlo Methods Example: Gaussian distribution



Overview of Monte Carlo Methods

- $\bullet\,$ We'll assume you have a way to sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough.
 - E.g., Matlab's rand function.

Overview of Monte Carlo Methods

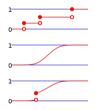
- $\bullet\,$ We'll assume you have a way to sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough.
 - E.g., Matlab's *rand* function.
- First class of Monte Carlo method generate independent samples:
 - Inverse transform and ancestral sampling.
 - **2** Rejection and importance sampling.

Overview of Monte Carlo Methods

- $\bullet\,$ We'll assume you have a way to sample uniformly over [0,1].
 - Usually, a "pseudo-random" number generator is good enough.
 - E.g., Matlab's *rand* function.
- First class of Monte Carlo method generate independent samples:
 - Inverse transform and ancestral sampling.
 - 2 Rejection and importance sampling.
- Second class of Monte Carlo methods generate dependent samples:
 - Markov chain Monte Carlo.
 - Gibbs sampling, Metropolis-Hastings.
 - 2 Sequential Monte Carlo.
 - AKA sequential importance sampling or particle filtering.

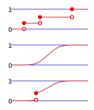
- Recall that we're using p(x) as a short way to write p(X = x):
 - Probability that random variable X has the value x.

- Recall that we're using p(x) as a short way to write p(X = x):
 - Probability that random variable X has the value x.
- The cumulative distribution function (CDF) F is $p(X \le x)$.
 - F(x) is between 0 and 1 a gives proportion of times X is below x.



https://en.wikipedia.org/wiki/Cumulative_distribution_function

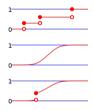
- Recall that we're using p(x) as a short way to write p(X = x):
 - Probability that random variable X has the value x.
- The cumulative distribution function (CDF) F is $p(X \le x)$.
 - F(x) is between 0 and 1 a gives proportion of times X is below x.



https://en.wikipedia.org/wiki/Cumulative_distribution_function

- The inverse CDF (or quantile function) F^{-1} is its inverse:
 - Given a number u between 0 and 1, gives x such that $p(X \le x) = u$.

- Recall that we're using p(x) as a short way to write p(X = x):
 - Probability that random variable X has the value x.
- The cumulative distribution function (CDF) F is $p(X \le x)$.
 - F(x) is between 0 and 1 a gives proportion of times X is below x.



https://en.wikipedia.org/wiki/Cumulative_distribution_function

- The inverse CDF (or quantile function) F^{-1} is its inverse:
 - Given a number u between 0 and 1, gives x such that $p(X \le x) = u$.
- Inverse transfrom method for exact sampling in 1D:

1 Sample
$$u \sim \mathcal{U}(0, 1)$$
.

2 Compute $x = F^{-1}(u)$.

• Consider a discrete distribution:

$$p(X = 1) = 0.4$$
, $p(X = 2) = 0.1$, $p(X = 3) = 0.2$, $p(X = 4) = 0.3$.

• Consider a discrete distribution:

 $p(X = 1) = 0.4, \quad p(X = 2) = 0.1, \quad p(X = 3) = 0.2, \quad p(X = 4) = 0.3.$

• Inverse transform method:

• Consider a discrete distribution:

 $p(X = 1) = 0.4, \quad p(X = 2) = 0.1, \quad p(X = 3) = 0.2, \quad p(X = 4) = 0.3.$

• Inverse transform method:

• With k states, cost to generate a sample is O(k).

• Consider a discrete distribution:

p(X = 1) = 0.4, p(X = 2) = 0.1, p(X = 3) = 0.2, p(X = 4) = 0.3.

- Inverse transform method:
- With k states, cost to generate a sample is O(k).
- If you are generating multiple samples, store the sums and do binary search:
 - O(k) pre-processing cost, then $O(\log k)$ cost per sample.

• Consider a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \sigma^2).$$

• CDF has the form

$$F(x) = p(X \le x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right],$$

where erf the CDF of $\mathcal{N}(0,1)$.

• Consider a Gaussian distribution,

$$x \sim \mathcal{N}(\mu, \sigma^2).$$

• CDF has the form

$$F(x) = p(X \le x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right],$$

where erf the CDF of $\mathcal{N}(0,1)$.

• Inverse CDF has the form

$$F^{-1}(u) = \mu + \sigma \sqrt{2} \text{erf}^{-1}(2u - 1).$$

- To sample from a Gaussian:

 - **2** Compute $F^{-1}(u)$.

Ancestral Sampling (Exact Multidimensional Sampling)

- We've seen already for DAG models.
- If you want to sample from $p(x_1, x_2, x_3)$,
 - Sample x_1 from $p(x_1)$.
 - Using x_1 , sample x_2 from $p(x_2|x_1)$.
 - Using x_1 and x_2 , sample x_3 from $p(x_3|x_1, x_2)$.

Ancestral Sampling (Exact Multidimensional Sampling)

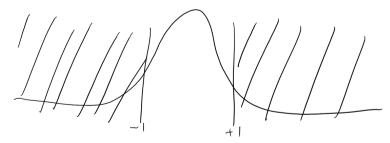
- We've seen already for DAG models.
- If you want to sample from $p(x_1, x_2, x_3)$,
 - Sample x_1 from $p(x_1)$.
 - Using x_1 , sample x_2 from $p(x_2|x_1)$.
 - Using x_1 and x_2 , sample x_3 from $p(x_3|x_1, x_2)$.
- If children are conjuate to parents this is easy.
 - You might be able to build distribution out of conjugate parts.
- For non-conjugate models, hard to characterize all these conditionals.

Beyond Inverse Transform and Conjugacy

- We can't sample exactly from many distributions.
- But, we can use simple distributions to sample from complex distributions.

Beyond Inverse Transform and Conjugacy

- We can't sample exactly from many distributions.
- But, we can use simple distributions to sample from complex distributions.
- Method 1: Rejection sampling.
 - Example: sampling from a Gaussian subject to $x \in [-1, 1]$.



- Ingredients of rejection sampling:
 - **(**) Ability to evaluate unnormalized $\tilde{p}(x)$,

$$p(x) = \frac{\tilde{p}(x)}{Z}.$$

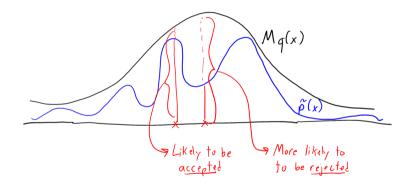
- **2** A distribution q that is easy to sample from.
- **③** An upper bound M on $\tilde{p}(x)/q(x)$.

- Ingredients of rejection sampling:
 - **(**) Ability to evaluate unnormalized $\tilde{p}(x)$,

$$p(x) = \frac{\tilde{p}(x)}{Z}.$$

- **2** A distribution q that is easy to sample from.
- **3** An upper bound M on $\tilde{p}(x)/q(x)$.
- Rejection sampling algorithm:
 - **()** Sample x from q(x).
 - **2** Sample u from $\mathcal{U}(0,1)$.
 - So Keep the sample if $u \leq \frac{\tilde{p}(x)}{Mq(x)}$.
- The accepted samples will be from p(x).

Monte Carlo Methods



- Examples
 - Sample from Gaussian q to sample from student t.
 - Sample from prior to sample from posterior (M = 1),

$$p(\theta|x) = \underbrace{p(x|\theta)}_{\leq 1} p(\theta).$$

- Examples
 - Sample from Gaussian q to sample from student t.
 - Sample from prior to sample from posterior (M = 1),

$$p(\theta|x) = \underbrace{p(x|\theta)}_{\leq 1} p(\theta).$$

Drawbacks:

- You may reject a large number of samples.
 - Most samples are rejected for high-dimensional complex distributions.
- $\bullet\,$ You need to know M.

- Examples
 - Sample from Gaussian q to sample from student t.
 - Sample from prior to sample from posterior (M = 1),

$$p(\theta|x) = \underbrace{p(x|\theta)}_{\leq 1} p(\theta).$$

Drawbacks:

- You may reject a large number of samples.
 - Most samples are rejected for high-dimensional complex distributions.
- $\bullet\,$ You need to know M.
- Extension in 1D for convex $-\log p(x)$:
 - Adaptive rejection sampling refines q after each rejection.

Monte Carlo Methods

Importance Sampling

• Importance sampling is a variation that accepts all samples.

• Importance sampling is a variation that accepts all samples.

• Key idea is similar to EM,

$$\mathbb{E}_p[f(x)] = \sum_x p(x)f(x)$$
$$= \sum_x q(x)\frac{p(x)f(x)}{q(x)}$$
$$= \mathbb{E}_q\left[\frac{p(x)}{q(x)}f(x)\right],$$

and similarly for continuous distributions.

• Importance sampling is a variation that accepts all samples.

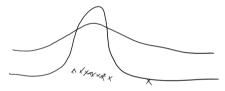
• Key idea is similar to EM,

$$\begin{split} \mathbb{E}_p[f(x)] &= \sum_x p(x) f(x) \\ &= \sum_x q(x) \frac{p(x) f(x)}{q(x)} \\ &= \mathbb{E}_q \left[\frac{p(x)}{q(x)} f(x) \right], \end{split}$$

and similarly for continuous distributions.

- We can sample from q, and reweight by p(x)/q(x) to sample from p.
- $\bullet\,$ Only assumption is that q is non-zero when p is non-zero.
- If you only know unnormalized $\tilde{p}(x)$, variant gives approximation of Z.

- As with rejection sampling, only efficient if q is close to p.
- Otherwise, weights will be huge for a small number of samples.
 - Even though unbiased, variance will be huge.



• In high-dimensions, these methods tend not to work well.

- As with rejection sampling, only efficient if q is close to p.
- Otherwise, weights will be huge for a small number of samples.
 - Even though unbiased, variance will be huge.

- In high-dimensions, these methods tend not to work well.
- For high dimensions, we often resort to methods based on dependent samples:
 - Markov chain Monte Carlo.
 - Gibbs sampling, Metropolis-Hastings.
 - Sequential Monte Carlo.
 - AKA sequential importance sampling or particle filtering.

• Hierarchical Bayesian models are useful in non-standard scenarios (non-IID).

- Hierarchical Bayesian models are useful in non-standard scenarios (non-IID).
- Conjugate priors are priors that lead to posteriors in the same family.
 - They make Bayesian inference much easier.

- Hierarchical Bayesian models are useful in non-standard scenarios (non-IID).
- Conjugate priors are priors that lead to posteriors in the same family.
 - They make Bayesian inference much easier.
- Exponential family distributions are the only distributions with conjugate priors.

- Hierarchical Bayesian models are useful in non-standard scenarios (non-IID).
- Conjugate priors are priors that lead to posteriors in the same family.
 - They make Bayesian inference much easier.
- Exponential family distributions are the only distributions with conjugate priors.
- Monte Carlo methods approximate distributions by samples.

- Hierarchical Bayesian models are useful in non-standard scenarios (non-IID).
- Conjugate priors are priors that lead to posteriors in the same family.
 - They make Bayesian inference much easier.
- Exponential family distributions are the only distributions with conjugate priors.
- Monte Carlo methods approximate distributions by samples.
- Inverse transform generates exact samples based on uniform samples.

- Hierarchical Bayesian models are useful in non-standard scenarios (non-IID).
- Conjugate priors are priors that lead to posteriors in the same family.
 - They make Bayesian inference much easier.
- Exponential family distributions are the only distributions with conjugate priors.
- Monte Carlo methods approximate distributions by samples.
- Inverse transform generates exact samples based on uniform samples.
- Rejection sampling and importance sampling use other distributions.
- Next time: MCMC, non-parametric Bayes, and the Automatic Statistician.