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Last Time: Bayesian Statistics

In Bayesian statistics we work with posterior over parameters,

p(θ|x, α, β) =
p(x|θ)p(θ|α, β)

p(x|α, β)
.

We discussed empirical Bayes, where you optimize prior using marginal likelihood,

argmax
α,β

p(x|α, β) = argmax
α,β

∫
θ
p(x|θ)p(θ|α, β)dθ.

Can be used to optimize λj , polynomial degree, RBF σi, polynomial vs. RBF, etc.

We also considered hierarchical Bayes, where you put a prior on the prior,

p(α, β|x, γ) =
p(x|α, β)p(α, β|γ)

p(x|γ)
.

But is the hyper-prior really needed?
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Hierarchical Bayes as Graphical Model

Let xi be a binary variable, representing if treatment works on patient i,

xi ∼ Ber(θ).

As before, let’s assume that θ comes from a beta distribution,

θ ∼ B(α, β).

We can visualize this as a graphical model:
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Hierarchical Bayes for Non-IID Data

Now let xi represent if treatment works on patient i in hospital j.

Let’s assume that treatment depends on hospital,

xij ∼ Ber(θj).

The xij are IID given the hospital.
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Hierarchical Bayes for Non-IID Data

Now let xi represent if treatment works on patient i in hospital j.

Let’s assume that treatment depends on hospital,

xij ∼ Ber(θj).

The xij are IID given the hospital.

But we may have more data for some hospitals than others:

Can we use data from one hospital to learn about others?
Can we say anything about a hospital with no data?
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Hierarchical Bayes for Non-IID Data

Common approach: assume θj drawn from common prior,

θj ∼ B(α, β).

This ties the parameters from the different hospitals together:

But, if you fix α and β then you can’t learn across hospitals:

The θj and d-separated given α and β.
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Hierarchical Bayes for Non-IID Data

If α and β are random variables and you use a hyperprior:

You can now consider posterior over both types of variables given data and γ:

p(θ, α, β|x, γ).

Now there is a dependency between the different θj .
You combine the non-IID data across different hospitals.
Data-rich hospitals inform posterior for data-poor hospitals.
You even consider the posterior for new hospitals.
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1 Hierarchical Bayes for Non-IID Data

2 Conjugate Priors

3 Monte Carlo Methods
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Conjugate Priors

Bayesian framework gives simple solutions to several difficult problems:

Estimating uncertainty, choosing many hyper-parameters, handling non-IID data, etc.

But it often requires:
1 Representing high-dimensional distributions.
2 Solving high-dimensional integration problems.

We’ve seen this is possible in some special cases:

Bernoulli likelihood with discrete prior gives discrete posterior (θ = 0.5 or θ = 1).
Bernoulli likelihood with beta prior gives beta posterior.
Gaussian likelihood with Gaussian prior gives Gaussian posterior (linear regression).

These are easy because the posterior is in the same ‘family’ as the prior:

This is called a conjugate prior to the likelihood.
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Conjugate Priors

Basic idea of conjugate priors:

x ∼ D(θ), θ ∼ P (λ) ⇒ θ | x ∼ P (λ′).

Beta-bernoulli example:

x ∼ Ber(θ), θ ∼ B(α, β), ⇒ θ | x ∼ B(α′, β′),

and in particular if we see h heads and t tails then the posterior is B(h+α, t+ β).

Gaussian-Gaussian example:

x ∼ N (µ,Σ), µ ∼ N (µ0,Σ0), ⇒ µ | x ∼ N (µ′,Σ′),

and posterior predictive is also a Gaussian.
If Σ is also a random variable:

Conjugate prior is normal-inverse-Wishart.
Posterior predictive is a student t.

For the conjugate priors of many standard distributions, see:
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
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Existence of Conjugate Priors

Conjugate priors make Bayesian inference easier:

Posterior involves updating parameters of prior.
Marginal likelihood has closed form as ratio of normalizing constants.
In many cases posterior predictive also has a nice form.

Do conjugate priors always exist?

No, only exist for exponential family likelihoods.
If you aren’t in the exponential family (e.g., student t), Bayesian inference gets ugly.
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Exponential Family

Exponential family distributions can be written in the form

p(x|θ) ∝ h(x) exp(θTφ(x)).

We often have h(x) = 1, and φ(x) are called the sufficient statistics.
If you have φ(x) for a dataset x, you don’t need data x1, x2, . . . , xn.

If φ(x) = x, we say that the θ are the cannonical parameters.
For Bernoulli, write it as

p(x|π) = πx(1− π)1−x = exp(log(πx(1− π)1−x))

= exp(x log π + (1− x) log(1− π))

= exp

(
x log

(
π

1− π

)
+ log(1− π)

)
∝ exp

(
x log

(
π

1− π

))
,

and parameterize in terms of log-odds, θ = log(π/(1− π)).
(solve for π using sigmoid function, π = 1/(1 + exp(−θ)))
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Conjugate Graphical Models
Discrete priors are “conjugate” to all likelihoods:

Posterior will be discrete, although it still might be NP-hard to use.

Conjugacy also helps in more complex situations.
Consider DAGs where marginal of parent is conjugate prior for child:

Unconditional inference and sampling will be easy.
Examples:

Gaussian graphical models.
Discrete graphical models.
Hybrid Gaussian/discrete, where discrete nodes can’t have Gaussian parents.
Gaussian graphical model with normal-inverse-Wishart parents.
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Need for Approximate Integration

Posterior often doesn’t have a closed-form expression.

We don’t just want to flip coins and multiply Gaussians.
You can use mixtures of conjugate priors, but we’ll consider a different approach.

Can we approximate the posterior with a simpler closed-form distribution?

Two main strategies:
1 Variational methods.
2 Monte Carlo methods.

Both are classic ideas from statistical physics, but in 90s revolutionized Bayesian
stats/ML.

Also used extensively in graphical models and deep learning.
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Monte Carlo Methods

Our goal is to approximate a probability distribution p(x) with a simpler
distribution.

This could be a posterior distribution or a graphical model or a deep belief network.

Basic idea between Monte Carlo methods:
1 Generate n samples proportional to p(x),

xi ∼ p
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Monte Carlo Methods
Our goal is to approximate a probability distribution p(x) with a simpler
distribution.

This could be a posterior distribution or a graphical model or a deep belief network.

Basic idea between Monte Carlo methods:
1 Generate n samples proportional to p(x),

xi ∼ p

2 Use these samples as an approximation of the distribution.

p(x) ≈ 1

n

n∑
i=1

I[x = xi].

(Area where you have more samples means higher probaiblity.)

As n→∞, “converges” to the true distribution.
We can use this “empirical measure” to approximate the original probability.

E.g., if you want E[f(x)], compute 1
n

∑n
i=1 f(x).

Converges to expectation as n→∞ by law of large numbers.
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Monte Carlo Methods Example: Rolling di

Probability of event: (number of samples consistent with event)/(number of sampes)
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Monte Carlo Methods Example: Gaussian distribution



Hierarchical Bayes for Non-IID Data Conjugate Priors Monte Carlo Methods

Overview of Monte Carlo Methods

We’ll assume you have a way to sample uniformly over [0, 1].

Usually, a ”pseudo-random” number generator is good enough.
E.g., Matlab’s rand function.

First class of Monte Carlo method generate independent samples:
1 Inverse transform and ancestral sampling.
2 Rejection and importance sampling.

Second class of Monte Carlo methods generate dependent samples:
1 Markov chain Monte Carlo.

Gibbs sampling, Metropolis-Hastings.

2 Sequential Monte Carlo.

AKA sequential importance sampling or particle filtering.
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Inverse Transform Method (Exact 1D Sampling)
Recall that we’re using p(x) as a short way to write p(X = x):

Probability that random variable X has the value x.

The cumulative distribution function (CDF) F is p(X ≤ x).
F (x) is between 0 and 1 a gives proportion of times X is below x.

https://en.wikipedia.org/wiki/Cumulative_distribution_function

The inverse CDF (or quantile function) F−1 is its inverse:
Given a number u between 0 and 1, gives x such that p(X ≤ x) = u.

Inverse transfrom method for exact sampling in 1D:
1 Sample u ∼ U(0, 1).
2 Compute x = F−1(u).

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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Inverse Transform Method (Exact 1D Sampling)

Consider a discrete distribution:

p(X = 1) = 0.4, p(X = 2) = 0.1, p(X = 3) = 0.2, p(X = 4) = 0.3.

Inverse transform method:
1 Generate u ∼ U(0, 1).
2 If u ≤ p(X = 1), output 1.
3 If u ≤ p(X = 1) + p(X = 2), output 2.
4 If u ≤ p(X = 1) + p(X = 2) + p(X = 3), output 3.
5 Otherwise, output 4.

With k states, cost to generate a sample is O(k).

If you are generating multiple samples, store the sums and do binary search:

O(k) pre-processing cost, then O(log k) cost per sample.
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Inverse Transform Method (Exact 1D Sampling)

Consider a discrete distribution:

p(X = 1) = 0.4, p(X = 2) = 0.1, p(X = 3) = 0.2, p(X = 4) = 0.3.

Inverse transform method:
1 Generate u ∼ U(0, 1).
2 If u ≤ p(X = 1), output 1.
3 If u ≤ p(X = 1) + p(X = 2), output 2.
4 If u ≤ p(X = 1) + p(X = 2) + p(X = 3), output 3.
5 Otherwise, output 4.
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Inverse Transform Method (Exact 1D Sampling)

Consider a Gaussian distribution,

x ∼ N (µ, σ2).

CDF has the form

F (x) = p(X ≤ x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
,

where erf the CDF of N (0, 1).

Inverse CDF has the form

F−1(u) = µ+ σ
√

2erf−1(2u− 1).

To sample from a Gaussian:
1 Generate u ∼ U(0, 1).
2 Compute F−1(u).
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Ancestral Sampling (Exact Multidimensional Sampling)

We’ve seen already for DAG models.

If you want to sample from p(x1, x2, x3),

Sample x1 from p(x1).
Using x1, sample x2 from p(x2|x1).
Using x1 and x2, sample x3 from p(x3|x1, x2).

If children are conjuate to parents this is easy.

You might be able to build distribution out of conjugate parts.

For non-conjugate models, hard to characterize all these conditionals.
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Beyond Inverse Transform and Conjugacy

We can’t sample exactly from many distributions.

But, we can use simple distributions to sample from complex distributions.

Method 1: Rejection sampling.

Example: sampling from a Gaussian subject to x ∈ [−1, 1].
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Rejection Sampling

Ingredients of rejection sampling:
1 Ability to evaluate unnormalized p̃(x),

p(x) =
p̃(x)

Z
.

2 A distribution q that is easy to sample from.
3 An upper bound M on p̃(x)/q(x).

Rejection sampling algorithm:
1 Sample x from q(x).
2 Sample u from U(0, 1).
3 Keep the sample if u ≤ p̃(x)

Mq(x) .

The accepted samples will be from p(x).
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Rejection Sampling

Examples

Sample from Gaussian q to sample from student t.
Sample from prior to sample from posterior (M = 1),

p(θ|x) = p(x|θ)︸ ︷︷ ︸
≤1

p(θ).

Drawbacks:
You may reject a large number of samples.

Most samples are rejected for high-dimensional complex distributions.

You need to know M .

Extension in 1D for convex − log p(x):

Adaptive rejection sampling refines q after each rejection.
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Importance Sampling

Importance sampling is a variation that accepts all samples.

Key idea is similar to EM,

Ep[f(x)] =
∑
x

p(x)f(x)

=
∑
x

q(x)
p(x)f(x)

q(x)

= Eq

[
p(x)

q(x)
f(x)

]
,

and similarly for continuous distributions.
We can sample from q, and reweight by p(x)/q(x) to sample from p.
Only assumption is that q is non-zero when p is non-zero.
If you only know unnormalized p̃(x), variant gives approximation of Z.
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Importance Sampling

As with rejection sampling, only efficient if q is close to p.

Otherwise, weights will be huge for a small number of samples.
Even though unbiased, variance will be huge.

In high-dimensions, these methods tend not to work well.

For high dimensions, we often resort to methods based on dependent samples:
1 Markov chain Monte Carlo.

Gibbs sampling, Metropolis-Hastings.
2 Sequential Monte Carlo.

AKA sequential importance sampling or particle filtering.
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Summary

Hierarchical Bayesian models are useful in non-standard scenarios (non-IID).

Conjugate priors are priors that lead to posteriors in the same family.

They make Bayesian inference much easier.

Exponential family distributions are the only distributions with conjugate priors.

Monte Carlo methods approximate distributions by samples.

Inverse transform generates exact samples based on uniform samples.

Rejection sampling and importance sampling use other distributions.

Next time: MCMC, non-parametric Bayes, and the Automatic Statistician.
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