Midterm:
- Marks posted on UBC Connect.

Assignment 5:
- Out soon.
- Due April 5th.

Remaining topics:
- More Bayesian stats, structured prediction, variational inference, deep learning.
Last Time: Bayesian Statistics

For most of the course, we considered **MAP estimation**:

\[
\hat{w} = \arg\max_w p(w|X,y) \quad \text{(train)}
\]

\[
\hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}) \quad \text{(test)}.
\]
Last Time: Bayesian Statistics

- For most of the course, we considered **MAP estimation**:
 \[
 \hat{w} = \arg\max_w p(w|X, y) \quad \text{(train)}
 \]
 \[
 \hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}) \quad \text{(test)}.
 \]

- But \(w \) was random: I have **no justification** to only base decision on \(\hat{w} \).
 - Ignores other reasonable values of \(w \) that could make opposite decision.
Last Time: Bayesian Statistics

- For most of the course, we considered **MAP estimation**:
 \[\hat{w} = \arg\max_w p(w|X,y) \quad \text{(train)} \]
 \[\hat{y}^i = \arg\max_{\hat{y}} \int p(\hat{y}^i,\hat{w}) \]
 \[= \arg\max_{\hat{y}} \int_{\hat{w}} p(\hat{y}^i,\hat{w}) p(w|X,y) \, dw. \]

- But \(w \) was random: I have **no justification** to only base decision on \(\hat{w} \).
 - Ignores other reasonable values of \(w \) that could make opposite decision.

- Last week, we considered **Bayesian** approach:
 - Treat \(w \) as a random variable, and define probability over what we want given data:
 \[\hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}^i, X, y) \]
 \[= \arg\max_{\hat{y}} \int p(\hat{y}^i, X, y) \, dw. \]
For most of the course, we considered **MAP estimation**:

\[
\hat{w} = \arg\max_w p(w|X, y) \quad \text{(train)}
\]

\[
\hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}) \quad \text{(test)}.
\]

But \(w \) was random: I have no justification to only base decision on \(\hat{w} \).
- Ignores other reasonable values of \(w \) that could make opposite decision.

Last week, we considered **Bayesian** approach:
- Treat \(w \) as a random variable, and define probability over what we want given data:

\[
\hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, X, y)
\]

\[
= \arg\max_{\hat{y}} \int_w p(\hat{y}|\hat{x}^i, w)p(w|X, y)dw.
\]

- Directly follows from rules of probability, and no separate training/testing.
Beta-Bernoulli Model

Consider again a coin-flipping example with a Bernoulli variable,

\[x \sim \text{Ber}(\theta). \]
Consider again a coin-flipping example with a Bernoulli variable,

\[x \sim \text{Ber}(\theta). \]

Last time we considered that either \(\theta = 1 \) or \(\theta = 0.5 \).

Today let’s view \(\theta \) as a **continuous** random variable.
Consider again a coin-flipping example with a Bernoulli variable,

\[x \sim \text{Ber}(\theta). \]

Last time we considered that either \(\theta = 1 \) or \(\theta = 0.5 \). Today let’s view \(\theta \) as a *continuous* random variable.

In particular, let’s assume \(\theta \) comes from a beta distribution,

\[\theta \sim \mathcal{B}(\alpha, \beta). \]

The parameters \(\alpha \) and \(\beta \) of the prior are called *hyper-parameters*.

Similar to \(\lambda \) in regression, these are parameters of the prior.
Beta-Bernoulli Model

- Consider again a coin-flipping example with a Bernoulli variable,
 \[x \sim \text{Ber}(\theta). \]

- Last time we considered that either \(\theta = 1 \) or \(\theta = 0.5 \).
- Today let’s view \(\theta \) as a continuous random variable.
- In particular, let’s assume \(\theta \) comes from a beta distribution,
 \[\theta \sim \mathcal{B}(\alpha, \beta). \]

- The parameters \(\alpha \) and \(\beta \) of the prior are called hyper-parameters.
 - Similar to \(\lambda \) in regression, these are parameters of the prior.
- The PDF for the beta distribution has the form
 \[p(\theta|\alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha-1}(1 - \theta)^{\beta-1}, \]
 where the beta function is \(B(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha + \beta) \).
Beta-Bernoulli Model

Why the beta distribution?

- “It’s a flexible distribution that includes uniform as special case”.

https://en.wikipedia.org/wiki/Beta_distribution

Uniform distribution if $\alpha = 1$ and $\beta = 1$.

“It makes the integrals easy.”
Beta-Bernoulli Model

Why the beta distribution?

- “It’s a flexible distribution that includes uniform as special case”.

- Uniform distribution if \(\alpha = 1 \) and \(\beta = 1 \).
- “It makes the integrals easy”.

https://en.wikipedia.org/wiki/Beta_distribution
Ingredients of Bayesian Inference

- **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.
Ingredients of Bayesian Inference

1. **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.

2. **Prior** $p(\theta|\alpha, \beta)$.
 - Belief that parameters are correct before we've seen data.
Ingredients of Bayesian Inference

1. **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.

2. **Prior** $p(\theta|\alpha, \beta)$.
 - Belief that parameters are correct before we’ve seen data.

3. **Posterior** $p(\theta|x, \alpha, \beta)$.
 - Probability that parameters are correct after we’ve seen data.

We won’t use the MAP “point estimate”, we want the whole distribution.

4. **Posterior predictive** $p(\hat{x}|x, \alpha, \beta)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.

5. **Marginal likelihood** $p(x|\alpha, \beta)$ (also called evidence).
 - Probability of seeing data given hyper-parameters.

6. **We might also have a cost** $g(\tilde{x}|\hat{x})$.
 - The penalty you pay for predicting \hat{x} when it was really was \tilde{x}.
 - Leads to Bayesian decision theory.

Straightforward extension: predict to minimize expected cost.
Ingredients of Bayesian Inference

1. **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.

2. **Prior** $p(\theta|\alpha, \beta)$.
 - Belief that parameters are correct before we’ve seen data.

3. **Posterior** $p(\theta|x, \alpha, \beta)$.
 - Probability that parameters are correct after we’ve seen data.
 - We won’t use the MAP “point estimate”, we want the whole distribution.

4. **Posterior predictive** $p(\hat{x}|x, \alpha, \beta)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.

5. **Marginal likelihood** $p(x|\alpha, \beta)$ (also called evidence).
 - Probability of seeing data given hyper-parameters.

6. We might also have a cost $g(\tilde{x}|\hat{x})$.
 - The penalty you pay for predicting \hat{x} when it was really was \tilde{x}.
 - Leads to Bayesian decision theory.
 - Straightforward extension: predict to minimize expected cost.
Ingredients of Bayesian Inference

1. **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.

2. **Prior** $p(\theta|\alpha, \beta)$.
 - Belief that parameters are correct before we’ve seen data.

3. **Posterior** $p(\theta|x, \alpha, \beta)$.
 - Probability that parameters are correct after we’ve seen data.
 - We won’t use the MAP “point estimate”, we want the whole distribution.

4. **Posterior predictive** $p(\hat{x}|x, \alpha, \beta)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.

5. **Marginal likelihood** $p(x|\alpha, \beta)$ (also called evidence).
 - Probability of seeing data given hyper-parameters.

6. **Cost function** $g(\tilde{x}|\hat{x})$.
 - The penalty you pay for predicting \hat{x} when it was really \tilde{x}.
 - Leads to Bayesian decision theory.
 - Straightforward extension: predict to minimize expected cost.
Ingredients of Bayesian Inference

1. **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.

2. **Prior** $p(\theta|\alpha, \beta)$.
 - Belief that parameters are correct before we’ve seen data.

3. **Posterior** $p(\theta|x, \alpha, \beta)$.
 - Probability that parameters are correct after we’ve seen data.
 - We won’t use the MAP “point estimate”, we want the whole distribution.

4. **Posterior predictive** $p(\hat{x}|x, \alpha, \beta)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.

5. **Marginal likelihood** $p(x|\alpha, \beta)$ (also called evidence).
 - Probability of seeing data given hyper-parameters.
Ingredients of Bayesian Inference

1. **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.

2. **Prior** $p(\theta|\alpha, \beta)$.
 - Belief that parameters are correct before we’ve seen data.

3. **Posterior** $p(\theta|x, \alpha, \beta)$.
 - Probability that parameters are correct after we’ve seen data.
 - We won’t use the MAP “point estimate”, we want the whole distribution.

4. **Posterior predictive** $p(\hat{x}|x, \alpha, \beta)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.

5. **Marginal likelihood** $p(x|\alpha, \beta)$ (also called evidence).
 - Probability of seeing data given hyper-parameters.

6. We might also have a cost $g(\tilde{x}|\hat{x})$.
 - The penalty you pay for predicting \hat{x} when it was really was \tilde{x}.
Ingredients of Bayesian Inference

1. **Likelihood** $p(x|\theta)$.
 - Probability of seeing data given parameters.

2. **Prior** $p(\theta|\alpha, \beta)$.
 - Belief that parameters are correct before we’ve seen data.

3. **Posterior** $p(\theta|x, \alpha, \beta)$.
 - Probability that parameters are correct after we’ve seen data.
 - We won’t use the MAP “point estimate”, we want the whole distribution.

4. **Posterior predictive** $p(\hat{x}|x, \alpha, \beta)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.

5. **Marginal likelihood** $p(x|\alpha, \beta)$ (also called evidence).
 - Probability of seeing data given hyper-parameters.

6. We might also have a **cost** $g(\tilde{x}|\hat{x})$.
 - The penalty you pay for predicting \hat{x} when it was really was \tilde{x}.
 - Leads to Bayesian decision theory.
 - Straightforward extension: predict to minimize expected cost.
Posterior and Marginal Likelihood

- Our model is: \(x \sim \text{Ber}(\theta), \quad \theta \sim \text{B}(\alpha, \beta). \)
Posterior and Marginal Likelihood

Our model is: $x \sim \text{Ber}(\theta)$, $\theta \sim \mathcal{B}(\alpha, \beta)$.

If we observe ‘HTH’ then our posterior distribution is

$$p(\theta|HTH, \alpha, \beta) = \frac{p(HTH|\theta, \alpha, \beta)p(\theta|\alpha, \beta)}{p(HTH|\alpha, \beta)}$$

(Bayes)

$$= \left(\theta^2(1-\theta)^1\right) \left(\frac{1}{B(\alpha, \beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}\right)$$

(likelihood/prior)

$$= \frac{1}{B(\alpha, \beta)} \frac{\theta^{(2+\alpha)-1}(1-\theta)^{(1+\beta)-1}}{p(HTH|\alpha, \beta)}.$$
Our model is: $x \sim \text{Ber}(\theta)$, $\theta \sim \mathcal{B}(\alpha, \beta)$.

If we observe 'HTH' then our posterior distribution is

$$p(\theta | HTH, \alpha, \beta) = \frac{p(HTH | \theta, \alpha, \beta)p(\theta | \alpha, \beta)}{p(HTH | \alpha, \beta)}$$

(Bayes)

$$= \frac{\left(\frac{1}{B(\alpha, \beta)}\theta^{\alpha-1}(1 - \theta)^{\beta-1}\right)}{p(HTH | \alpha, \beta)}$$

(likelihood/prior)

$$= \frac{1}{B(\alpha, \beta)} \frac{\theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1}}{p(HTH | \alpha, \beta)}.$$

Denominator is marginal likelihood,

$$p(HTH | \alpha, \beta) = \int_\theta \frac{1}{B(\alpha, \beta)} \theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1} d\theta.$$
Posterior and Marginal Likelihood

- Our model is: \(x \sim \text{Ber}(\theta), \theta \sim \mathcal{B}(\alpha, \beta). \)
- If we observe ‘HTH’ then our posterior distribution is

\[
p(\theta|HTH, \alpha, \beta) = \frac{p(HTH|\theta, \alpha, \beta)p(\theta|\alpha, \beta)}{p(HTH|\alpha, \beta)}
\]

(Bayes)

\[
= \frac{\left(\theta^2(1-\theta)^1\right)\left(\frac{1}{B(\alpha, \beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}\right)}{p(HTH|\alpha, \beta)}
\]

(likelihood/prior)

\[
= \frac{1}{B(\alpha, \beta)}\theta^{(2+\alpha)-1}(1-\theta)^{(1+\beta)-1}
\]

\[
p(HTH|\alpha, \beta) = \int_\theta \frac{1}{B(\alpha, \beta)}\theta^{(2+\alpha)-1}(1-\theta)^{(1+\beta)-1}d\theta.
\]

- Denominator is marginal likelihood,

- Understanding Bayesian inference is much easier once you can notice that:
 - The posterior is a beta distribution and the marginal likelihood integral is trivial.
Posterior and Marginal Likelihood

Given HTH, we’ve shown that posterior is

\[p(\theta | HTH, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{(2+\alpha)-1} (1 - \theta)^{(1+\beta)-1} \]

\[\propto \theta^{(2+\alpha)-1} (1 - \theta)^{(1+\beta)-1}. \]
Posterior and Marginal Likelihood

Given HTH, we’ve shown that posterior is

\[
p(\theta|HTH,\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \theta^{2+\alpha-1}(1-\theta)^{(1+\beta)-1} p(HTH|\alpha,\beta)
\]

\[
\propto \theta^{2+\alpha-1}(1-\theta)^{(1+\beta)-1}.
\]

Consider a \(B(\alpha',\beta')\) distribution on \(\theta\) with \(\alpha' = 2 + \alpha\) and \(\beta' = 1 + \beta\),

\[
p(\theta|\alpha',\beta') = \frac{1}{B(\alpha',\beta')} \theta^{\alpha'-1}(1-\theta)^{\beta'-1}
\]

\[
\propto \theta^{2+\alpha-1}(1-\theta)^{(1+\beta)-1}.
\]
Given HTH, we’ve shown that posterior is
\[
p(\theta | HTH, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1} \propto \theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1}.
\]

Consider a \(B(\alpha', \beta') \) distribution on \(\theta \) with \(\alpha' = 2 + \alpha \) and \(\beta' = 1 + \beta \),
\[
p(\theta | \alpha', \beta') = \frac{1}{B(\alpha', \beta')} \theta^{\alpha'-1}(1 - \theta)^{\beta'-1} \propto \theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1}.
\]

Probabilities sum to 1: these have same distribution and normalizing constant.
Posterior and Marginal Likelihood

- Given HTH, we've shown that posterior is
 \[
p(\theta|HTH, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{2+\alpha-1}(1-\theta)^{1+\beta-1} \propto \theta^{2+\alpha-1}(1-\theta)^{1+\beta-1}.
 \]

- Consider a \(B(\alpha', \beta')\) distribution on \(\theta\) with \(\alpha' = 2 + \alpha\) and \(\beta' = 1 + \beta\),
 \[
p(\theta|\alpha', \beta') = \frac{1}{B(\alpha', \beta')} \theta^{\alpha'-1}(1-\theta)^{\beta'-1} \propto \theta^{2+\alpha-1}(1-\theta)^{1+\beta-1}.
 \]

- Probabilities sum to 1: these have same distribution and normalizing constant.
 - Posterior is a beta distribution, \(p(\theta|HTH, \alpha, \beta)\) is a \(B(2 + \alpha, 1 + \beta)\) distribution.
Given HTH, we've shown that posterior is

\[p(\theta | HTH, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1} p(HTH | \alpha, \beta) \propto \theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1}. \]

Consider a \(\mathcal{B}(\alpha', \beta') \) distribution on \(\theta \) with \(\alpha' = 2 + \alpha \) and \(\beta' = 1 + \beta \),

\[p(\theta | \alpha', \beta') = \frac{1}{B(\alpha', \beta')} \theta^{\alpha'-1}(1 - \theta)^{\beta'-1} \propto \theta^{(2+\alpha)-1}(1 - \theta)^{(1+\beta)-1}. \]

Probabilities sum to 1: these have same distribution and normalizing constant.

- Posterior is a beta distribution, \(p(\theta | HTH, \alpha, \beta) \) is a \(\mathcal{B}(2 + \alpha, 1 + \beta) \) distribution.
- Marginal likelihood is ratio of posterior and prior normalizing constants,

\[p(HTH | \alpha, \beta) = \frac{B(2 + \alpha, 1 + \beta)}{B(\alpha, \beta)}. \]
Posterior Predictive

If we observe ‘HHH’ then our different estimates are:

- **Maximum likelihood:**

 \[
 \hat{\theta} = \frac{n_H}{n} = \frac{3}{3} = 1.
 \]

- **MAP with uniform Beta(1,1) prior,**

 \[
 \hat{\theta} = \frac{(3 + \alpha) - 1}{(3 + \alpha) + \beta - 2} = \frac{3}{3} = 1.
 \]
Posterior Predictive

If we observe ‘HHH’ then our different estimates are:

- **Maximum likelihood:**
 \[\hat{\theta} = \frac{n_H}{n} = \frac{3}{3} = 1. \]

- **MAP with uniform Beta(1,1) prior,**
 \[\hat{\theta} = \frac{(3 + \alpha) - 1}{(3 + \alpha) + \beta - 2} = \frac{3}{3} = 1. \]

- **Posterior predictive with Beta(1,1) prior,**
 \[
p(H|HHH) = \int_0^1 p(H|\theta)p(\theta|HHH)d\theta
 = \int_0^1 \text{Ber}(H|\theta)\text{Beta}(\theta|3 + \alpha, \beta)d\theta
 = \int_0^1 \theta\text{Beta}(\theta|3 + \alpha, \beta)d\theta = \mathbb{E}[\theta]
 = \frac{(3 + \alpha)}{(3 + \alpha) + \beta} = \frac{4}{5} = 0.8.
\]
Beta Bernoulli Model Discussion

- If we observe h heads and t tails, the posterior will be $B(h + \alpha, t + \beta)$.

 - $B(1, 1)$ is like seeing one head and one tail before we flip.
 - For HHH, posterior predictive is 0.800.
 - $B(3, 3)$ prior is like seeing 3 heads and 3 tails (stronger uniform prior),
 For HHH, posterior predictive is 0.667.
 - $B(100, 1)$ prior is like seeing 100 heads and 1 tail (biased),
 For HHH, posterior predictive is 0.990.
 - $B(0.01, 0.01)$ biases towards having unfair coin (head or tail),
 For HHH, posterior predictive is 0.997.

 Called "improper" prior (does not integrate to 1), but posterior can be "proper".
Beta Bernoulli Model Discussion

If we observe \(h \) heads and \(t \) tails, the posterior will be \(\mathcal{B}(h + \alpha, t + \beta) \).

- Posterior summarized by hyper-parameters \(\{\alpha, \beta\} \) and counts \(\{h, t\} \).
Beta Bernoulli Model Discussion

- If we observe h heads and t tails, the posterior will be $\mathcal{B}(h + \alpha, t + \beta)$.
 - Posterior summarized by hyper-parameters $\{\alpha, \beta\}$ and counts $\{h, t\}$.
- Hyper-parameters α and β are like “pseudo-counts” in our mind before we flip:
 - $\mathcal{B}(1, 1)$ is like seeing one head and one tail before we flip.
 - For HHH, posterior predictive is 0.800.
Beta Bernoulli Model Discussion

- If we observe h heads and t tails, the posterior will be $\mathcal{B}(h + \alpha, t + \beta)$.
 - Posterior summarized by hyper-parameters $\{\alpha, \beta\}$ and counts $\{h, t\}$.
- Hyper-parameters α and β are like “pseudo-counts” in our mind before we flip:
 - $\mathcal{B}(1, 1)$ is like seeing one head and one tail before we flip.
 - For HHH, posterior predictive is 0.800.
 - $\mathcal{B}(3, 3)$ prior is like seeing 3 heads and 3 tails (stronger uniform prior),
 - For HHH, posterior predictive is 0.667.
Beta Bernoulli Model Discussion

- If we observe \(h \) heads and \(t \) tails, the posterior will be \(\mathcal{B}(h + \alpha, t + \beta) \).
 - Posterior summarized by hyper-parameters \(\{\alpha, \beta\} \) and counts \(\{h, t\} \).
- Hyper-parameters \(\alpha \) and \(\beta \) are like “pseudo-counts” in our mind before we flip:
 - \(\mathcal{B}(1, 1) \) is like seeing one head and one tail before we flip.
 - For HHH, posterior predictive is 0.800.
 - \(\mathcal{B}(3, 3) \) prior is like seeing 3 heads and 3 tails (stronger uniform prior),
 - For HHH, posterior predictive is 0.667.
 - \(\mathcal{B}(100, 1) \) prior is like seeing 100 heads and 1 tail (biased),
 - For HHH, posterior predictive is 0.990.
If we observe h heads and t tails, the posterior will be $B(h + \alpha, t + \beta)$.

- Posterior summarized by hyper-parameters $\{\alpha, \beta\}$ and counts $\{h, t\}$.

Hyper-parameters α and β are like “pseudo-counts” in our mind before we flip:

- $B(1, 1)$ is like seeing one head and one tail before we flip.
 - For HHH, posterior predictive is 0.800.
- $B(3, 3)$ prior is like seeing 3 heads and 3 tails (stronger uniform prior),
 - For HHH, posterior predictive is 0.667.
- $B(100, 1)$ prior is like seeing 100 heads and 1 tail (biased),
 - For HHH, posterior predictive is 0.990.
- $B(0.01, 0.01)$ biases towards having unfair coin (head or tail),
 - For HHH, posterior predictive is 0.997.
 - Called “improper” prior (does not integrate to 1), but posterior can be “proper”.
Outline

1. Baysics
2. Empirical Bayes
3. Hierarchical Bayes
Bayesian Linear Regression

In week 2, we argued that L2-regularized linear regression,

$$\arg\min_w \frac{1}{2\sigma^2} \|Xw - y\|^2 + \frac{\lambda}{2}\|w\|^2,$$

corresponds to MAP estimation in the model

$$y_i \sim N(w^T x_i, \sigma^2 I), \quad w_j \sim N(0, \lambda^{-1}).$$

By some tedious Gaussian identities, the posterior has the form

$$w|X,y \sim N(\frac{1}{\sigma^2} A^{-1} X^T y, A^{-1}),$$

with

$$A = \frac{1}{\sigma^2} X^T X + \lambda I.$$
Bayesian Linear Regression

- In week 2, we argued that **L2-regularized linear regression**,
 \[
 \arg\min_w \frac{1}{2\sigma^2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2,
 \]
 corresponds to **MAP estimation** in the model
 \[
 y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda^{-1}).
 \]
Bayesian Linear Regression

- In week 2, we argued that L2-regularized linear regression,
 \[\arg\min_w \frac{1}{2\sigma^2} \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2, \]
 corresponds to MAP estimation in the model
 \[y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda^{-1}). \]

- By some tedious Gaussian identities, the posterior has the form
 \[w|X, y \sim \mathcal{N} \left(\frac{1}{\sigma^2} A^{-1} X^T y, A^{-1} \right), \quad \text{with} \quad A = \frac{1}{\sigma^2} X^T X + \lambda I. \]

- Notice that mean of posterior is the MAP estimate (not true in general).
Bayesian Linear Regression

- In week 2, we argued that L2-regularized linear regression,

\[
\arg\min_w \frac{1}{2\sigma^2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2,
\]

corresponds to MAP estimation in the model

\[
y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda^{-1}).
\]

- By some tedious Gaussian identities, the posterior has the form

\[
w|X, y \sim \mathcal{N} \left(\frac{1}{\sigma^2 A^{-1}} X^T y, A^{-1} \right), \quad \text{with } A = \frac{1}{\sigma^2} X^T X + \lambda I.
\]

- Notice that mean of posterior is the MAP estimate (not true in general).
- Bayesian perspective gives us variability in \(w\) and optimal predictions given prior.
- But it also gives different ways to choose \(\lambda\) and choose basis.
Learning the Prior from Data?

- Can we use the data to set the hyper-parameters?
Learning the Prior from Data?

- Can we use the data to set the hyper-parameters?
- In theory: No!
 - It would not be a “prior”.
 - It’s no longer the right thing to do.
Learning the Prior from Data?

- Can we use the data to set the hyper-parameters?
- In theory: No!
 - It would not be a “prior”.
 - It’s no longer the right thing to do.
- In practice: Yes!
 - Approach 1: use a validation set or cross-validation as before.
Learning the Prior from Data?

- Can we use the data to set the hyper-parameters?
 - In theory: No!
 - It would not be a “prior”.
 - It’s no longer the right thing to do.
 - In practice: Yes!
 - Approach 1: use a validation set or cross-validation as before.
 - Approach 2: optimize the marginal likelihood,
 \[
 p(y|X, \lambda) = \int_{w} p(y|X, w)p(w|\lambda)dw.
 \]
 - Also called type II maximum likelihood or evidence maximization or empirical Bayes.
Consider polynomial basis, and treat degree M as a hyper-parameter:

Consider polynomial basis, and treat degree M as a hyper-parameter:

Marginal likelihood (evidence) is highest for $M = 2$.

“Bayesian Occam’s Razor”: prefers simpler models that fit data well.
Consider polynomial basis, and treat degree M as a hyper-parameter:

Marginal likelihood (evidence) is highest for $M = 2$.

- "Bayesian Occam's Razor": prefers simpler models that fit data well.
- $\sum_{D'} p(D'|m) = 1$, for $M = 7$ we have low $p(D|m)$ since it can fit many datasets.
Type II Maximum Likelihood for Basis Parameter

- Consider polynomial basis, and treat degree M as a hyper-parameter:

- Marginal likelihood (evidence) is highest for $M = 2$.
 - “Bayesian Occam’s Razor”: prefers simpler models that fit data well.
 - $\sum_{D'} p(D'|m) = 1$, for $M = 7$ we have low $p(D|m)$ since it can fit many datasets.
 - Model selection criteria like BIC are approximations to marginal likelihood as $n \to \infty$.

Type II Maximum Likelihood for Regularization Parameter

- Maximum likelihood maximizes probability of data given parameters,

\[\hat{w} = \arg\max_w p(y \mid X, w). \]

- If we have a complicated model, this often overfits.
Type II Maximum Likelihood for Regularization Parameter

- **Maximum likelihood** maximizes probability of data given parameters,

\[\hat{w} = \arg\max_w p(y|X, w). \]

- If we have a complicated model, this often **overfits**.

- **Type II maximum likelihood** maximizes probability of data given hyper-parameters,

\[\hat{\lambda} = \arg\max_\lambda p(y|X, \lambda), \text{ where } p(y|X, \lambda) = \int_w p(y|X, w)p(w|\lambda)dw, \]

and the integral has closed-form solution because posterior is Gaussian.
Type II Maximum Likelihood for Regularization Parameter

- **Maximum likelihood** maximizes probability of data given parameters,

\[\hat{w} = \arg\max_w p(y|X, w). \]

- If we have a complicated model, this often **overfits**.
- **Type II maximum likelihood** maximizes probability of data given hyper-parameters,

\[\hat{\lambda} = \arg\max_{\lambda} p(y|X, \lambda), \quad \text{where} \quad p(y|X, \lambda) = \int_w p(y|X, w)p(w|\lambda)dw, \]

and the integral has closed-form solution because posterior is Gaussian.
- **We are using the data to optimize the prior.**
Type II Maximum Likelihood for Regularization Parameter

- **Maximum likelihood** maximizes probability of data given parameters,
 \[
 \hat{w} = \arg\max_w p(y|X, w).
 \]

- If we have a complicated model, this often **overfits**.

- **Type II maximum likelihood** maximizes probability of data given hyper-parameters,
 \[
 \hat{\lambda} = \arg\max_{\lambda} p(y|X, \lambda), \quad \text{where} \quad p(y|X, \lambda) = \int_w p(y|X, w)p(w|\lambda)dw,
 \]
 and the integral has closed-form solution because posterior is Gaussian.

- We are using the data to **optimize the prior**.

- Even if we have a complicated model, much **less likely to overfit**:
 - Complicated models need to integrate over many more alternative hypotheses.
Learning Principles

- Maximum likelihood:
 \[\hat{w} = \arg\max_w p(y|X, w) \quad \hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}). \]
Learning Principles

- Maximum likelihood:
 \[
 \hat{w} = \arg\max_w p(y|X,w) \quad \hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}).
 \]

- MAP:
 \[
 \hat{w} = \arg\max_w p(w|X,y,\lambda) \quad \hat{y}^i = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}).
 \]

- Optimizing \(\lambda\) in this setting does not work: sets \(\lambda = 0\).
Learning Principles

- Maximum likelihood:
 \[\hat{w} = \arg\max_w p(y|X, w) \quad \hat{y} = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}). \]

- MAP:
 \[\hat{w} = \arg\max_w p(w|X, y, \lambda) \quad \hat{y} = \arg\max_{\hat{y}} p(\hat{y}|\hat{x}^i, \hat{w}). \]

- Optimizing \(\lambda \) in this setting does not work: sets \(\lambda = 0 \).

- Bayesian:
 \[\hat{y}^i = \arg\max_{\hat{y}} \int_w p(\hat{y}|\hat{x}^i, w)p(w|X, y, \lambda)dw. \]
Learning Principles

- Maximum likelihood:
 \[\hat{w} = \underset{w}{\text{argmax}} \, p(y|X, w) \quad \hat{y}^i = \underset{\hat{y}}{\text{argmax}} \, p(\hat{y}|\hat{x}^i, \hat{w}). \]

- MAP:
 \[\hat{w} = \underset{w}{\text{argmax}} \, p(w|X, y, \lambda) \quad \hat{y}^i = \underset{\hat{y}}{\text{argmax}} \, p(\hat{y}|\hat{x}^i, \hat{w}). \]

- Optimizing \(\lambda \) in this setting does not work: sets \(\lambda = 0 \).

- Bayesian:
 \[\hat{y}^i = \underset{\hat{y}}{\text{argmax}} \int_w p(\hat{y}|\hat{x}^i, w)p(w|X, y, \lambda)dw. \]

- Type II maximum likelihood:
 \[\hat{\lambda} = \underset{\lambda}{\text{argmax}} \, p(y|, X, \lambda) \quad \hat{y}^i = \underset{\hat{y}}{\text{argmax}} \int_w p(\hat{y}|\hat{x}^i, w)p(w|X, y, \hat{\lambda})dw. \]
Consider having a hyper-parameter λ_j for each w_j,

$$
y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

Too expensive for cross-validation, but type II maximum likelihood works. You can do gradient descent to optimize the λ_j. Weird fact: yields sparse solutions (automatic relevance determination). Can send $\lambda_j \to \infty$, concentrating posterior for w_j at 0. This is L2-regularization, but empirical Bayes naturally encourages sparsity. Non-convex and theory not well understood, but recent work shows: Never performs worse than L1-regularization, and exists cases where it does better.
Type II Maximum Likelihood for Individual Regularization Parameter

- Consider having a hyper-parameter λ_j for each w_j,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

- Too expensive for cross-validation, but type II maximum likelihood works.
 - You can do gradient descent to optimize the λ_j.

Weird fact: yields sparse solutions (automatic relevance determination). Can send $\lambda_j \to \infty$, concentrating posterior for w_j at 0. This is L2-regularization, but empirical Bayes naturally encourages sparsity. Non-convex and theory not well understood, but recent work shows:
 - Never performs worse than L1-regularization, and exists cases where it does better.
Consider having a hyper-parameter λ_j for each w_j,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

Too expensive for cross-validation, but type II maximum likelihood works.
- You can do gradient descent to optimize the λ_j.
- Weird fact: yields sparse solutions (automatic relevance determination).
Consider having a hyper-parameter λ_j for each w_j,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

Too expensive for cross-validation, but type II maximum likelihood works.
- You can do gradient descent to optimize the λ_j.
- Weird fact: yields sparse solutions (automatic relevance determination).
 - Can send $\lambda_j \to \infty$, concentrating posterior for w_j at 0.
 - This is L2-regularization, but empirical Bayes naturally encourages sparsity.
Type II Maximum Likelihood for Individual Regularization Parameter

- Consider having a hyper-parameter λ_j for each w_j,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2 I), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

- Too expensive for cross-validation, but type II maximum likelihood works.
 - You can do gradient descent to optimize the λ_j.

- Weird fact: yields sparse solutions (automatic relevance determination).
 - Can send $\lambda_j \to \infty$, concentrating posterior for w_j at 0.
 - This is L2-regularization, but empirical Bayes naturally encourages sparsity.

- Non-convex and theory not well understood, but recent work shows:
 - Never performs worse than L1-regularization, and exists cases where it does better.
If we fix λ and use L1-regularization (Bayesian lasso), posterior is **not sparse**.
- Probability that a variable is exactly 0 is zero.
- L1-regularization only lead to sparsity because the MAP point estimate is sparse.

Type II maximum likelihood leads to sparsity in the posterior because variance goes to zero.

We can encourage sparsity in Bayesian models using a **spike and slab** prior:
- Mixture of Dirac delta function 0 and another prior with non-zero variance.
- Places non-zero posterior weight at exactly 0.
- Posterior is still non-sparse, but answers the question “what is the probability that variable is non-zero”?
Outline

1. Baysics
2. Empirical Bayes
3. Hierarchical Bayes
Hierarchical Bayesian Models

- Type II maximum likelihood is not really Bayesian:
 - We’re dealing with w using the rules of probability.
 - But we’re using a “point estimate” of λ.

Hierarchical Bayesian models introduce a hyper-prior $p(\lambda | \gamma)$. This is a “very Bayesian” model. For dealing with hyper-parameters like λ, we can now do Bayesian inference: Work with posterior over λ, $p(\lambda | X, y, \gamma)$. Computing $p(\lambda_1 | X, y, \gamma) / p(\lambda_2 | X, y, \gamma)$ is called Bayes factor. Bayes factors provide an alternative to classic statistical tests: E.g., we can compute posterior of “fair coin” vs. coin from beta prior. Natural test, but not easy with classic methods. No need for null hypothesis, p-values etc. This month from American Statistical Association: “Statement on Statistical Significance and P-Values”. http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108 But can only tell you which model is more likely, not whether any model is correct.
Hierarchical Bayesian Models

- Type II maximum likelihood is not really Bayesian:
 - We’re dealing with w using the rules of probability.
 - But we’re using a “point estimate” of λ.
- Hierarchical Bayesian models introduce a hyper-prior $p(\lambda|\gamma)$.
 - This is a “very Bayesian” model.
Hierarchical Bayesian Models

- Type II maximum likelihood is not really Bayesian:
 - We’re dealing with w using the rules of probability.
 - But we’re using a “point estimate” of λ.
- **Hierarchical Bayesian** models introduce a hyper-prior $p(\lambda|\gamma)$.
 - This is a “very Bayesian” model.
- For dealing with hyper-parameters like λ, we can now do Bayesian inference:
 - Work with posterior over λ, $p(\lambda|X,y,\gamma)$.
 - Computing $p(\lambda_1|X,y,\gamma)/p(\lambda_2|X,y,\gamma)$ is called **Bayes factor**.

Bayes factors provide an alternative to classic statistical tests:
- E.g., we can compute posterior of “fair coin” vs. coin from beta prior.
- Natural test, but not easy with classic methods.
- No need for null hypothesis, p-values etc.

This month from American Statistical Association:
- “Statement on Statistical Significance and P-Values”.
- But can only tell you which model is more likely, not whether any model is correct.
Hierarchical Bayesian Models

- **Type II maximum likelihood is not really Bayesian:**
 - We’re dealing with w using the rules of probability.
 - But we’re using a “point estimate” of λ.
- **Hierarchical Bayesian** models introduce a hyper-prior $p(\lambda|\gamma)$.
 - This is a “very Bayesian” model.
- For dealing with hyper-parameters like λ, we can now do Bayesian inference:
 - Work with posterior over λ, $p(\lambda|X, y, \gamma)$.
 - Computing $p(\lambda_1|X, y, \gamma)/p(\lambda_2|X, y, \gamma)$ is called Bayes factor.
- Bayes factors provide an alternative to classic statistical tests:
 - E.g., we can compute posterior of “fair coin” vs. coin from beta prior.
 - Natural test, but not easy with classic methods.
 - No need for null hypothesis, p-values etc.
 - This month from American Statistical Association:
 - “Statement on Statistical Significance and P-Values”.
Hierarchical Bayesian Models

- Type II maximum likelihood is not really Bayesian:
 - We’re dealing with w using the rules of probability.
 - But we’re using a “point estimate” of λ.

- Hierarchical Bayesian models introduce a hyper-prior $p(\lambda | \gamma)$.
 - This is a “very Bayesian” model.

- For dealing with hyper-parameters like λ, we can now do Bayesian inference:
 - Work with posterior over λ, $p(\lambda | X, y, \gamma)$.
 - Computing $p(\lambda_1 | X, y, \gamma)/p(\lambda_2 | X, y, \gamma)$ is called Bayes factor.

- Bayes factors provide an alternative to classic statistical tests:
 - E.g., we can compute posterior of “fair coin” vs. coin from beta prior.
 - Natural test, but not easy with classic methods.
 - No need for null hypothesis, p-values etc.
 - This month from American Statistical Assocation:
 - “Statement on Statistical Significance and P-Values”.
 - But can only tell you which model is more likely, not whether any model is correct.
Bayesian Model Selection and Averaging

- **Bayesian model selection** (“type II MAP”): maximize hyper-parameter posterior,

\[\hat{\lambda} = \arg\max_{\lambda} p(\lambda|X, y, \gamma) \]

\[= \arg\max_{\lambda} p(y|X, \lambda)p(\lambda|\gamma), \]

which further takes us away from overfitting (thus allowing more complex models).

- We could do the same thing to choose order of polynomial basis, \(\sigma \) in RBFs, etc.
Bayesian Model Selection and Averaging

Bayesian model selection ("type II MAP"): maximize hyper-parameter posterior,

\[
\hat{\lambda} = \arg\max_{\lambda} p(\lambda|X, y, \gamma)
\]
\[
= \arg\max_{\lambda} p(y|X, \lambda)p(\lambda|\gamma),
\]

which further takes us away from overfitting (thus allowing more complex models).

- We could do the same thing to choose order of polynomial basis, \(\sigma\) in RBFs, etc.
- **Bayesian model averaging** considers posterior over hyper-parameters,

\[
\hat{y}^i = \arg\max_{\hat{y}} \int \int_{\lambda} \int_{w} p(\hat{y}|\hat{x}^i, w)p(w, \lambda|X, y, \gamma)dw.
\]

- We could also maximize marginal likelihood of \(\gamma\), ("type III ML"),

\[
\hat{\gamma} = \arg\max_{\gamma} p(y|X, \gamma) = \arg\max_{\gamma} \int \int_{\lambda} \int_{w} p(y|X, w)p(w|\lambda)p(\lambda|\gamma)dwd\lambda.
\]
Discussion of Hierarchical Bayes

“Super Bayesian” approach:

- Go up the hierarchy until all your assumptions about the world are in the model.
- Some people try to do this, and have argued that this may be how humans reason.
Discussion of Hierarchical Bayes

- “Super Bayesian” approach:
 - Go up the hierarchy until all your assumptions about the world are in the model.
 - Some people try to do this, and have argued that this may be how humans reason.

- Key advantage:
 - Mathematically simple to know what to do as you go up the hierarchy:
 - Same math for w, λ, γ, and so on.
Discussion of Hierarchical Bayes

- “Super Bayesian” approach:
 - Go up the hierarchy until all your assumptions about the world are in the model.
 - Some people try to do this, and have argued that this may be how humans reason.

- Key advantage:
 - Mathematically simple to know what to do as you go up the hierarchy:
 - Same math for w, λ, γ, and so on.

- Key disadvantages:
 - It can be hard to exactly encode your prior beliefs.
 - The integrals get ugly very quickly.
Summary

- **Posterior predictive** lets us directly model what we want given hyper-parameters.
Summary

- **Posterior predictive** lets us directly model what we want given hyper-parameters.
- **Marginal likelihood** is probability seeing data given hyper-parameters.
Summary

- **Posterior predictive** lets us directly model what we want given hyper-parameters.
- **Marginal likelihood** is probability seeing data given hyper-parameters.
- **Empirical Bayes** optimizes this to set hyper-parameters:
 - Allows tuning a large number of hyper-parameters.
 - Bayesian Occam’s razor: naturally encourages sparsity and simplicity.
Summary

- **Posterior predictive** lets us directly model what we want given hyper-parameters.
- **Marginal likelihood** is probability seeing data given hyper-parameters.
- **Empirical Bayes** optimizes this to set hyper-parameters:
 - Allows tuning a large number of hyper-parameters.
 - Bayesian Occam’s razor: naturally encourages sparsity and simplicity.
- **Hierarchical Bayes** goes even more Bayesian with prior on hyper-parameters.
 - Leads to Bayesian model selection and Bayesian model averaging.

- Next time: can we actually compute these integrals?