CPSC 540: Machine Learning Directed Acyclic Graphical Models

Mark Schmidt

University of British Columbia

Winter 2016

Plate Notation

Admin

- Assignment 3:
 - Due today, 1 late day to hand it in Thursday.
- Assignment 4:
 - Out, due in 2 weeks.
- Thursday;
 - Rich Sutton in DMP 110 at 3:30 (cancelling class): "The Future of Artificial Intelligence"
- Friday:
 - Julien Mairal in ICICS 146 at 5:00.
- Monday:
 - Monday: CVPR Area Chair Workshop; http://cvpr2016.thecvf.com/events/ac_workshop.

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.
- Topic 2 has been density estimation: modeling $p(x^i)$.
 - Simple Bernoulli/Gaussian and product distributions.
 - Mixture models, EM, probbalistic latent-factor models.

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.
- Topic 2 has been density estimation: modeling $p(x^i)$.
 - Simple Bernoulli/Gaussian and product distributions.
 - Mixture models, EM, probbalistic latent-factor models.
- Some things that should be bothering you:

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.
- Topic 2 has been density estimation: modeling $p(x^i)$.
 - Simple Bernoulli/Gaussian and product distributions.
 - Mixture models, EM, probbalistic latent-factor models.
- Some things that should be bothering you:
 - How does conditional independence actually work?

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.
- Topic 2 has been density estimation: modeling $p(x^i)$.
 - Simple Bernoulli/Gaussian and product distributions.
 - Mixture models, EM, probbalistic latent-factor models.
- Some things that should be bothering you:
 - How does conditional independence actually work?
 - Can we combine Topics 1 and 2?
 - Topic 3: Probabilistic graphical models.

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.
- Topic 2 has been density estimation: modeling $p(x^i)$.
 - Simple Bernoulli/Gaussian and product distributions.
 - Mixture models, EM, probbalistic latent-factor models.
- Some things that should be bothering you:
 - How does conditional independence actually work?
 - Can we combine Topics 1 and 2?
 - Topic 3: Probabilistic graphical models.
 - Why aren't we learning about deep learning?
 - Topic 4: Deep learning.

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.
- Topic 2 has been density estimation: modeling $p(x^i)$.
 - Simple Bernoulli/Gaussian and product distributions.
 - Mixture models, EM, probbalistic latent-factor models.
- Some things that should be bothering you:
 - How does conditional independence actually work?
 - Can we combine Topics 1 and 2?
 - Topic 3: Probabilistic graphical models.
 - Why aren't we learning about deep learning?
 - Topic 4: Deep learning.
 - Why do we optimize w, cross-validate λ , and integrate over z?

Plate Notation

- Topic 1 was supervised learning: modeling $p(y^i|x^i)$.
 - Regresion models, change of basis, cross-validation, regularization/MAP.
 - Robust/logistic losses, structured sparisty, convex optimization, kernels, duality.
- Topic 2 has been density estimation: modeling $p(x^i)$.
 - Simple Bernoulli/Gaussian and product distributions.
 - Mixture models, EM, probbalistic latent-factor models.
- Some things that should be bothering you:
 - How does conditional independence actually work?
 - Can we combine Topics 1 and 2?
 - Topic 3: Probabilistic graphical models.
 - Why aren't we learning about deep learning?
 - Topic 4: Deep learning.
 - Why do we optimize w, cross-validate λ , and integrate over z?
 - We'll start clarifying this in topic 5, where we'll also start relaxing IID...

- Let A and B are random variables taking values $a \in \mathcal{A}$ and $b \in \mathcal{B}$.
- \bullet We say that A and B are independent if we have

$$p(a,b) = p(a)p(b),$$

for all a and b.

• This is true iff p(a,b) = f(a)g(b) for some functions f and g.

- Let A and B are random variables taking values $a \in \mathcal{A}$ and $b \in \mathcal{B}$.
- \bullet We say that A and B are independent if we have

$$p(a,b) = p(a)p(b),$$

for all a and b.

- This is true iff p(a,b) = f(a)g(b) for some functions f and g.
- Let's solve for p(a),

$$p(a) = \frac{p(a,b)}{p(b)} = p(a|b).$$

 $\bullet\,$ This gives us a more intuitive/useful definition: A and B are independent if

p(a|b) = p(a)

for all a and b.

- Let A and B are random variables taking values $a \in \mathcal{A}$ and $b \in \mathcal{B}$.
- \bullet We say that A and B are independent if we have

$$p(a,b) = p(a)p(b),$$

for all a and b.

- This is true iff p(a,b) = f(a)g(b) for some functions f and g.
- Let's solve for p(a),

$$p(a) = \frac{p(a,b)}{p(b)} = p(a|b).$$

 $\bullet\,$ This gives us a more intuitive/useful definition: A and B are independent if

p(a|b) = p(a)

for all a and b.

- By the same logic it's also equivalently to p(b|a) = p(b).
- We sometimes write this as $A \perp B$.

- A and B are independent if p(a|b) = p(a):
 - In words: knowing b tells us nothing about a (and vice versa).

- A and B are independent if p(a|b) = p(a):
 - In words: knowing b tells us nothing about a (and vice versa).
- Example:
 - If we flip coin 1 then flip coin 2, the results of the two tosses are independent.
 - If we flip coin if coin 1 lands heads and otherwise flip coin 3, not independent.

- A and B are independent if p(a|b) = p(a):
 - In words: knowing b tells us nothing about a (and vice versa).
- Example:
 - If we flip coin 1 then flip coin 2, the results of the two tosses are independent.
 - If we flip coin if coin 1 lands heads and otherwise flip coin 3, not independent.
- If we are talking about d variables x_i , we say they're mutually independent if

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j)$$
, or $p(x_j | x_{-j}) = p(x_j)$ for all j .

- A and B are independent if p(a|b) = p(a):
 - In words: knowing b tells us nothing about a (and vice versa).
- Example:
 - If we flip coin 1 then flip coin 2, the results of the two tosses are independent.
 - If we flip coin if coin 1 lands heads and otherwise flip coin 3, not independent.
- If we are talking about d variables x_j , we say they're mutually independent if

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j)$$
, or $p(x_j | x_{-j}) = p(x_j)$ for all j .

• In a product of Bernoullis model we have

$$p(x) = \prod_{j=1}^{n} p(x_j),$$

so the x_j are independent and $p(x_j|x_{-j}) = p(x_j)$.

- A and B are independent if p(a|b) = p(a):
 - In words: knowing b tells us nothing about a (and vice versa).
- Example:
 - If we flip coin 1 then flip coin 2, the results of the two tosses are independent.
 - If we flip coin if coin 1 lands heads and otherwise flip coin 3, not independent.
- If we are talking about d variables x_j , we say they're mutually independent if

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j)$$
, or $p(x_j | x_{-j}) = p(x_j)$ for all j .

• In a product of Bernoullis model we have

$$p(x) = \prod_{j=1}^{n} p(x_j),$$

so the x_j are independent and $p(x_j|x_{-j}) = p(x_j)$.

- In a mixture of (product of Bernoullis) the x_j are not independent:
 - Knowing x_{-j} can tell you something about x_j .

D-Separation

Plate Notation

Conditional Independence

• We say that A is conditionally independent of B given C if p(a,b|c) = p(a|c)p(b|c),

or equivalently we have

$$p(a|b,c) = p(a|c) \quad \left(\text{both equal } \frac{p(a,b|c)}{p(b|c)} \right).$$

Plate Notation

Conditional Independence

• We say that A is conditionally independent of B given C if

p(a,b|c) = p(a|c)p(b|c),

or equivalently we have

$$p(a|b,c) = p(a|c) \quad \left(\mathsf{both equal} \; \frac{p(a,b|c)}{p(b|c)}
ight).$$

• If you know C, then *also* knowing B would tell you nothing about A.

- We often write this as $A \perp B \mid C$ or equivalently $B \perp A \mid C$.
- In a mixture of (product of Bernoullis) model

$$p(x) = \sum_{c=1}^{k} p(z=c) \prod_{j=1}^{d} p(x_j|z=c),$$

we have that $x_i \perp x_j \mid z$ (conditionally independent given the cluster)

Plate Notation

Conditional Independence

• We say that A is conditionally independent of B given C if

$$p(a,b|c) = p(a|c)p(b|c),$$

or equivalently we have

$$p(a|b,c) = p(a|c) \quad \left(\mathsf{both equal} \; \frac{p(a,b|c)}{p(b|c)}
ight).$$

- If you know C, then *also* knowing B would tell you nothing about A.
- We often write this as $A \perp B \mid C$ or equivalently $B \perp A \mid C$.
- In a mixture of (product of Bernoullis) model

$$p(x) = \sum_{c=1}^{k} p(z=c) \prod_{j=1}^{d} p(x_j | z=c),$$

we have that $x_i \perp x_j \mid z$ (conditionally independent given the cluster) • In particular, we can show that

$$p(x_i, x_j|z) = p(x_i|z)p(x_j|z)$$
 and $p(x_i|x_j, z) = p(x_i|z)$.

Conditional Independence

DAG Models

D-Separation

Plate Notation

Conditional Independence

2 DAG Models

3 D-Separation

Plate Notation

D-Separation

DAG Models

• Directed acyclic graphical (DAG) use product rule, p(a, b, c) = p(b, c|a)p(a), to write

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2, x_3, \dots, x_d | x_1)$$

= $p(x_1)p(x_2 | x_1)p(x_3, x_4, \dots, x_d | x_1, x_2)$
= $p(x_1)p(x_2 | x_1)p(x_3 | x_2, x_1)p(x_4, x_5, \dots, x_d | x_1, x_2, x_3)$

D-Separation

DAG Models

• Directed acyclic graphical (DAG) use product rule, p(a, b, c) = p(b, c|a)p(a), to write

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2, x_3, \dots, x_d | x_1)$$

= $p(x_1)p(x_2 | x_1)p(x_3, x_4, \dots, x_d | x_1, x_2)$
= $p(x_1)p(x_2 | x_1)p(x_3 | x_2, x_1)p(x_4, x_5, \dots, x_d | x_1, x_2, x_3)$

and so on until we get

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{1:j-1}).$$

D-Separation

DAG Models

• Directed acyclic graphical (DAG) use product rule, p(a, b, c) = p(b, c|a)p(a), to write

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2, x_3, \dots, x_d | x_1)$$

= $p(x_1)p(x_2 | x_1)p(x_3, x_4, \dots, x_d | x_1, x_2)$
= $p(x_1)p(x_2 | x_1)p(x_3 | x_2, x_1)p(x_4, x_5, \dots, x_d | x_1, x_2, x_3)$

and so on until we get

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{1:j-1}).$$

- The above always holds, but it has too many parameters:
 - For binary x_i , we need 2^d parameters for $p(x_j|x_1, x_2, \dots, x_{j-1})$ alone

DAG Models: Parsimonious Parameterization

• Directed acyclic graphical (DAG) models use product rule to write

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{1:j-1}).$$

- $\bullet\,$ Two main approaches for simplifying these d probability distributions.
- Approach 1: we can treat $p(x_j|x_{1:j-1})$ as supervised learning problem.

DAG Models: Parsimonious Parameterization

• Directed acyclic graphical (DAG) models use product rule to write

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{1:j-1}).$$

- Two main approaches for simplifying these d probability distributions.
- Approach 1: we can treat $p(x_j|x_{1:j-1})$ as supervised learning problem.
 - The features are $x_{1:j-1}$ and the label is x_j .
 - If we use linear model, only need (j-1) parameters.
 - We can apply our tricks from Topic 1 to Topic 2.
 - Nonlinear bases, robust/logistic losses, structured sparsity, kernels, etc.

DAG Models: Conditional Independence

• Directed acyclic graphical (DAG) models use product rule to write

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{1:j-1}).$$

- Two main approaches for simplifying these d probability distributions.
- Approach 2: assume conditional independence to write

$$p(x_j|x_{1:j-1}) = p(x_j|x_{\mathsf{pa}(j)}),$$

where pa(j) are the parents of j.

DAG Models: Conditional Independence

• Directed acyclic graphical (DAG) models use product rule to write

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{1:j-1}).$$

- Two main approaches for simplifying these d probability distributions.
- Approach 2: assume conditional independence to write

$$p(x_j|x_{1:j-1}) = p(x_j|x_{\mathsf{pa}(j)}),$$

where pa(j) are the parents of j.

- Specifically, we assume that $x_j \perp x_{np(j)} | x_{pa(j)}$, where np(j) are non-parents.
- In binary case, if we have k parents then only need 2^{k+1} parameters.
 - We can also combine both approaches: use regression on parents.

Special Cases of DAG Models

• We can write a lot of models as special cases DAG models,

$$p(x) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}).$$

• Product of independent: if $pa(j) = \emptyset$ then all variables are independent,

$$p(x) = \prod_{j=1}^{d} p(x_j).$$

Special Cases of DAG Models

• We can write a lot of models as special cases DAG models,

$$p(x) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}).$$

• Product of independent: if $pa(j) = \emptyset$ then all variables are independent,

$$p(x) = \prod_{j=1}^{d} p(x_j).$$

• Markov chain: If $pa(j) = \{j - 1\}$ then each j only depends on the previous value,

$$p(x) = p(x_1) \prod_{j=2}^{d} p(x_j | x_{j-1}).$$

Special Cases of DAG Models

• We can write a lot of models as special cases DAG models,

$$p(x) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}).$$

• Product of independent: if $pa(j) = \emptyset$ then all variables are independent,

$$p(x) = \prod_{j=1}^{d} p(x_j).$$

• Markov chain: If $pa(j) = \{j - 1\}$ then each j only depends on the previous value,

$$p(x) = p(x_1) \prod_{j=2}^{d} p(x_j | x_{j-1}).$$

• Naive Bayes: Add an extra variable y with $\mathsf{pa}(y) = \emptyset$ and $\mathsf{pa}(x_j) = y,$

$$p(y,x) = p(y) \prod_{j=1}^{n} p(x_j|y).$$

Plate Notation

Special Cases of DAG Models

• Instead of factorizing by variables j, could factor into blocks b:

$$p(x) = \prod_{b=1} p(x_b | x_{\mathsf{pa}(b)}).$$

D-Separation

Plate Notation

Special Cases of DAG Models

• Instead of factorizing by variables j, could factor into blocks b:

$$p(x) = \prod_{b=1} p(x_b | x_{\mathsf{pa}(b)}).$$

• Generative models (Classification using Topic 2): $pa(y) = \emptyset$ and pa(x) = y,

p(y, x) = p(y)p(x|y).

D-Separation

Plate Notation

Special Cases of DAG Models

• Instead of factorizing by variables j, could factor into blocks b:

$$p(x) = \prod_{b=1} p(x_b | x_{\mathsf{pa}(b)}).$$

• Generative models (Classification using Topic 2): $pa(y) = \emptyset$ and pa(x) = y,

$$p(y, x) = p(y)p(x|y).$$

• Discriminative models (Classification using topic 1): pa(y) = x and $pa(x) = \emptyset$,

$$p(y, x) = p(y|x)p(x).$$

D-Separation

Plate Notation

Special Cases of DAG Models

• Instead of factorizing by variables j, could factor into blocks b:

$$p(x) = \prod_{b=1} p(x_b | x_{\mathsf{pa}(b)}).$$

• Generative models (Classification using Topic 2): $pa(y) = \emptyset$ and pa(x) = y,

$$p(y, x) = p(y)p(x|y).$$

• Discriminative models (Classification using topic 1): pa(y) = x and $pa(x) = \emptyset$,

$$p(y, x) = p(y|x)p(x).$$

• Mixture models: $pa(z) = \emptyset$ and pa(x) = z,

$$p(x,z) = p(z)p(x|z).$$
From Probability Factorizations to Graphs

- DAG models are also known as "Bayesian networks" and "belief networks".
- Called graphical because we can visualize independence assumptions as a graph:
 - We have a vertex for each variable j (or block b).

From Probability Factorizations to Graphs

- DAG models are also known as "Bayesian networks" and "belief networks".
- Called graphical because we can visualize independence assumptions as a graph:
 - We have a vertex for each variable j (or block b).
 - We place an edge from i to j if i is a parent of j.
 - By construction, the graph will be acyclic.

From Probability Factorizations to Graphs

- DAG models are also known as "Bayesian networks" and "belief networks".
- Called graphical because we can visualize independence assumptions as a graph:
 - We have a vertex for each variable j (or block b).
 - We place an edge from i to j if i is a parent of j.
 - By construction, the graph will be acyclic.
- Two interesting properties of the structure of this graph:
 - **(**) Can be used to test conditional independence between arbitrary sets.
 - Q Nice structures allow efficient calculation using dynamic programming.

D-Separation

Plate Notation

Graph Structure Examples

With product of independent we have

$$p(x) = \prod_{j=1}^{d} p(x_j).$$

$$(X_1)$$
 (X_2) (X_3) (X_4) (X_5)

D-Separation

Plate Notation

Graph Structure Examples

With Markov chain we have

$$p(x) = p(x_1) \prod_{j=2}^{d} p(x_j | x_{j-1}).$$

D-Separation

Plate Notation

Graph Structure Examples

With second-order Markov chain we have

$$p(x) = p(x_1)p(x_2|x_1) \prod_{j=3}^d p(x_j|x_{j-1}, x_{j-2}).$$

D-Separation

Plate Notation

Graph Structure Examples

With general distribution we have

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{1:j-1}).$$

D-Separation

Plate Notation

Graph Structure Examples

With Gaussian generative classifier we have

$$p(y, x) = p(y)p(x|y).$$

D-Separation

Plate Notation

Graph Structure Examples

With naive Bayes or diagonal Gaussian generative classifier we have

$$p(y,x) = p(y) \prod_{j=1}^{d} p(x_j|y).$$

D-Separation

Plate Notation

Graph Structure Examples

With mixture of independent we have

$$p(z,x) = p(z) \prod_{j=1}^{d} p(x_j|z).$$

D-Separation

Plate Notation

Graph Structure Examples

With mixture of Gaussian we have

$$p(z,x) = p(z)p(x|z).$$

D-Separation

Plate Notation

Graph Structure Examples

With probabilistic PCA we have

$$p(z, x) = p(z)p(x|z).$$

D-Separation

Plate Notation

Graph Structure Examples

With hidden Markov models we have

$$p(z,x) = p(z_1) \left(\prod_{j=2}^d p(z_j | z_{j-1}) \right) \left(\prod_{j=1}^n p(x_j | z_j) \right).$$

D-Separation

Plate Notation

Graph Structure Examples

We can do multi-output regression/classification via conditional DAGs,

$$p(y,x) = p(x) \prod_{c=1}^{k} p(y_c | y_{\mathsf{pa}(c)}, x)$$

D-Separation

Plate Notation

Graph Structure Examples

We can consider less-structured examples,

p(S, V, R, W, G, D) = p(S)p(V)p(R|V)p(W|S, R)p(G|V)p(D|G).

D-Separation

Plate Notation

Graph Structure Examples

We can consider phylogeny (family trees):

p(gm1, gf1, gm2, gf2, m, f, c)

= p(gm1)p(gf1)p(gm2)p(gf2)p(m|gm1,gf1)p(f|gm2,gf2)p(c|m,f).

D-Separation

Plate Notation

Conditional Independence

2 DAG Models

3 D-Separation

Plate Notation

D-Separation: From Graphs to Conditional Independence

- The graph represents conditional independence implied by factorization.
- Can we use the graph to test generic conditional independence statements?
 - Yes, variables are independent if all paths are block by d-separation.
- The rules are best illustrated by example...

Plate Notation

D-Separation Case 0 (No Paths and Direct Links)

Are genes for eye colour in person x independent of these genes in person y?

D-Separation Case 0 (No Paths and Direct Links)

Are genes for eye colour in person x independent of these genes in person y?

• No path: x and y are not related (independent),

We have $x \perp y$: there are no paths to be blocked.

D-Separation Case 0 (No Paths and Direct Links)

Are genes for eye colour in person x independent of these genes in person y?

• No path: x and y are not related (independent),

We have $x \perp y$: there are no paths to be blocked.

• Direct link: x is the parent of y,

We have $x \not\perp y$: knowing x tells you about y (direct paths aren't blockable).

Plate Notation

D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

Plate Notation

D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

• No path: If x and y are independent,

We have $x \perp y$: adding z doesn't make a path.

• Direct link: x is the parent of y,

We have $x \not\perp y$: adding z doesn't block path.

- Case 1: x and y are sibilings.
 - If z is a common unobserved parent:

- Case 1: x and y are sibilings.
 - If z is a common unobserved parent:

We now have $x \not\perp y$: knowing x would give information about y.

- Case 1: x and y are sibilings.
 - If z is a common unobserved parent:

We now have $x \not\perp y$: knowing x would give information about y.

• But if z is observed:

- Case 1: x and y are sibilings.
 - If z is a common unobserved parent:

We now have $x \not\perp y$: knowing x would give information about y.

• But if z is observed:

In this case $x \perp y \mid z$: knowing z "breaks" dependence between x and y.

- Case 1: x and y are sibilings.
 - If z_1 and z_2 are common observed parents:

- Case 1: x and y are sibilings.
 - If z_1 and z_2 are common observed parents:

We have $x \perp y \mid z_1, z_2$: knowing z_1 and z_2 breaks dependence between x and y.

- Case 1: x and y are sibilings.
 - If z_1 and z_2 are common observed parents:

We have $x \perp y \mid z_1, z_2$: knowing z_1 and z_2 breaks dependence between x and y. • But if we only observe z_2 :

Then we have $x \not\perp y \mid z_2$: dependence still "flows" through z_1 .

D-Separation

Plate Notation

D-Separation Case 2: Chain

• Case 2: x is the grandmother of y.

DAG Models

D-Separation

Plate Notation

D-Separation Case 2: Chain

- Case 2: x is the grandmother of y.
 - If z is the mother we have:

DAG Models

D-Separation

Plate Notation

D-Separation Case 2: Chain

- Case 2: x is the grandmother of y.
 - If z is the mother we have:

We have $x \not\perp y$: knowing x would give information about y because of z

DAG Models

D-Separation

Plate Notation

D-Separation Case 2: Chain

- Case 2: x is the grandmother of y.
 - If z is the mother we have:

We have $x \not\perp y$: knowing x would give information about y because of z

• But if z is observed:

DAG Models

D-Separation

Plate Notation

D-Separation Case 2: Chain

- Case 2: x is the grandmother of y.
 - If z is the mother we have:

We have $x \not\perp y$: knowing x would give information about y because of z

• But if z is observed:

In this case $x \perp y \mid z:$ knowing $z \ \mbox{``breaks''}$ dependence between x and y.

D-Separation

Plate Notation

D-Separation Case 2: Chain

• Consider weird case where parents z_1 and z_2 share mother x:
Conditional Independence

DAG Models

D-Separation

Plate Notation

D-Separation Case 2: Chain

- Consider weird case where parents z_1 and z_2 share mother x:
 - If z_1 and z_2 are observed we have:

We have $x \perp y \mid z_1, z_2$: knowing both parents breaks dependency.

Conditional Independence

DAG Models

D-Separation

Plate Notation

D-Separation Case 2: Chain

- Consider weird case where parents z_1 and z_2 share mother x:
 - If z_1 and z_2 are observed we have:

We have $x \perp y \mid z_1, z_2$: knowing both parents breaks dependency.

• But if only z_1 is *observed*:

We have $x \not\perp y \mid z_1$: dependence still "flows" through z_2 .

Plate Notation

D-Separation Case 3: Common Child

• Case 3: x and y share a child z:

- Case 3: x and y share a child z:
 - If we observe z then we have:

- Case 3: x and y share a child z:
 - If we observe z then we have:

We have $x \not\perp y \mid z$: if we know z, then knowing x gives us information about y.

Plate Notation

D-Separation Case 3: Common Child

- Case 3: x and y share a child z:
 - If we observe z then we have:

We have $x \not\perp y \mid z$: if we know z, then knowing x gives us information about y. • But if z is not observed:

- Case 3: x and y share a child z:
 - If we observe z then we have:

We have $x \not\perp y \mid z$: if we know z, then knowing x gives us information about y. • But if z is not observed:

We have $x \perp y$: if you don't observe z then x and y are independent. • Different from Case 1 and Case 2: not observing the child blocks path.

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

We have $x \perp y$: the path is still blocked by not knowing z_1 or z_2 .

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

We have $x \perp y$: the path is still blocked by not knowing z_1 or z_2 . But if z_2 is observed:

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

We have $x \perp y$: the path is still blocked by not knowing z_1 or z_2 . But if x_1 is a barried.

• But if z_2 is observed:

We have $x \not\perp y \mid z_2$: grandchild creates dependence even with unobserved parent.

• Case 3 needs to consider descendants of child.

D-Separation

• We say that A and B are d-separated given E if for all paths P from A to B, at least one of the following holds:

D-Separation

- We say that A and B are d-separated given E if for all paths P from A to B, at least one of the following holds:
 - P includes a "fork" with an observe parent node:

$$\bigcirc - \bullet - \bigcirc$$

D-Separation

- We say that A and B are d-separated given E if for all paths P from A to B, at least one of the following holds:
 - \bigcirc P includes a "fork" with an observe parent node:

P includes a "chain" with an observed middle node:

D-Separation

- We say that A and B are d-separated given E if for all paths P from A to B, at least one of the following holds:
 - O P includes a "fork" with an observe parent node:

- P includes a "chain" with an observed middle node:
- Includes a "collider":

where C and all its descendants are unobserved.

D-Separation

Plate Notation

D-Separation

Plate Notation

Alarm Example

• Earthquake $\not\perp$ Call.

D-Separation

Plate Notation

- Earthquake $\not\perp$ Call.
- Earthquake \perp Call | Alarm.

D-Separation

Plate Notation

- Earthquake $\not\perp$ Call.
- Earthquake \perp Call | Alarm.
- Alarm $\not\perp$ Stuff Missing.

D-Separation

Plate Notation

- Earthquake $\not\perp$ Call.
- Earthquake \perp Call | Alarm.
- Alarm $\not\perp$ Stuff Missing.
- Alarm \perp Stuff Missing | Burglary.

D-Separation

Plate Notation

D-Separation

Plate Notation

Alarm Example

• Earthquake \perp Burglary.

D-Separation

Plate Notation

- Earthquake \perp Burglary.
- Earthquake $\not\perp$ Burglary | Alarm.
 - Explaining away: Knowing Earthquake would make Burglary is less likely.

D-Separation

Plate Notation

- Earthquake \perp Burglary.
- Earthquake $\not\perp$ Burglary | Alarm.
 - Explaining away: Knowing Earthquake would make Burglary is less likely.
- Call $\not\perp$ Stuff Missing.

D-Separation

Plate Notation

- Earthquake \perp Burglary.
- Earthquake $\not\perp$ Burglary | Alarm.
 - Explaining away: Knowing Earthquake would make Burglary is less likely.
- Call $\not\perp$ Stuff Missing.
- $\bullet~$ Earthquake $\perp~$ Stuff Missing.

D-Separation

Plate Notation

- Earthquake \perp Burglary.
- Earthquake $\not\perp$ Burglary | Alarm.
 - Explaining away: Knowing Earthquake would make Burglary is less likely.
- Call $\not\perp$ Stuff Missing.
- Earthquake \perp Stuff Missing.
- Earthquake $\not\perp$ Stuff Missing | Call.

D-Separation

Plate Notation

Conditional Independence

2 DAG Models

O-Separation

Plate Notation

Discussion of D-Separation

• D-separation lets you say if conditional independence is implied by factorization:

 $(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$

Plate Notation

Discussion of D-Separation

• D-separation lets you say if conditional independence is implied by factorization:

 $(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$

- However, there might be extra conditional independences in the distribution:
 - These would depend on specific choices of the $p(x_j|x_{pa(j)})$.
 - Or some orderings may to non-equivalent graphs.

Discussion of D-Separation

• D-separation lets you say if conditional independence is implied by factorization:

 $(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$

• However, there might be extra conditional independences in the distribution:

- These would depend on specific choices of the $p(x_j|x_{pa(j)})$.
- Or some orderings may to non-equivalent graphs.
- Nevertheless, we can do a lot with d-separation:
 - Implies every instance of independence/conditional-independence/IID we've used.

IID Assumption in DAG and Plate Notation

• Graphical representation of the IID assumption:

Test samples from D would be related to training xⁱ because D is unobserved:
 With this understanding we can start to relax IID assumption.

Plate Notation

IID Assumption in DAG and Plate Notation

• Graphical representation of the IID assumption:

- Test samples from D would be related to training xⁱ because D is unobserved:
 With this understanding we can start to relax IID assumption.
- We can concisely represent repeated parts of graphs using plate notation:

Tilde Notation in DAG and Plate Notation

• When we write

 $y^i \sim \mathcal{N}(w^T x^i, 1),$

we can interpret it as the DAG model:

Ŵ

i=1:n

Tilde Notation in DAG and Plate Notation

• When we write

$$y^i \sim \mathcal{N}(w^T x^i, 1),$$

W

we can interpret it as the DAG model:

• If the x^i are IID then we can represent supervised learning as

Plate Notation

Tilde Notation in DAG and Plate Notation

• When we do MAP estimation under the assumptions

 $y^i \sim \mathcal{N}(w^T x^i, 1), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$

we can interpret it as the DAG model:

Plate Notation

Tilde Notation in DAG and Plate Notation

- When we do MAP estimation under the assumptions
 - $y^i \sim \mathcal{N}(w^T x^i, 1), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$

we can interpret it as the DAG model:

• Or introducing a second plate using:

Other Models in DAG/Plate Notation

 $\bullet\,$ For naive Bayes or Gaussian discriminant analysis with diagonal Σ_c we have

Plate Notation

Other Models in DAG/Plate Notation

- $\bullet\,$ For naive Bayes or Gaussian discriminant analysis with diagonal Σ_c we have
 - $y^i \sim \mathsf{Cat}(\theta), \quad x^i | y^i = c \sim D(\theta_c).$

• Or in plate notation as

Plate Notation

Other Models in DAG/Plate Notation

 $\bullet\,$ In a full Gaussian model for a single x we have

$x^i \sim \mathcal{N}(\mu, \Sigma).$

Plate Notation

Other Models in DAG/Plate Notation

• In a full Gaussian model for a single x we have

• For mixture of Gaussians we have

$$z^{i} \sim \operatorname{Cat}(\theta), \quad x^{i} | z^{i} = c \sim \mathcal{N}(\mu_{c}, \Sigma_{c}).$$

D-Separation

- Conditional independence of A and B given C:
 - Knowing B tells us nothing about A if we already know C.

D-Separation

Summary

- Conditional independence of A and B given C:
 - Knowing B tells us nothing about A if we already know C.
- DAG models factorize joint distribution into product of conditionals.
 - Assume conditionals are regression models or depend on small number "parents".
 - Joint distribution of models we've discussed can be written as DAG models.

Summary

- Conditional independence of A and B given C:
 - Knowing B tells us nothing about A if we already know C.
- DAG models factorize joint distribution into product of conditionals.
 - Assume conditionals are regression models or depend on small number "parents".
 - Joint distribution of models we've discussed can be written as DAG models.
- D-separation allows us to test conditional independences based on graph.

Summary

- Conditional independence of A and B given C:
 - Knowing B tells us nothing about A if we already know C.
- DAG models factorize joint distribution into product of conditionals.
 - Assume conditionals are regression models or depend on small number "parents".
 - Joint distribution of models we've discussed can be written as DAG models.
- D-separation allows us to test conditional independences based on graph.
- Plate Notation lets compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Next time: undirected graphical models and how we use graphical models.