Notation:

\[\mathcal{D} : \text{data set} \subseteq \{(x_i, y_i)\}_{i=1}^n \]

\[\mathcal{D}_i : \text{data sample} \subseteq \{(x_i, y_i)\} \]

\[\mathcal{X} \text{ : feature vector} \]

\(\theta \) : parameters of Bernoulli hypothesis for MLE in binary \(\theta \in \{0, 1\} \)

\(\mathcal{X}, \mathcal{Y} \) : design matrix, features of examples \(\mathcal{Y} = y \)

Naive Bayes

Advantages
- Simple
- Fast training
- Scalable
- Small per model
- Not much data needed

Disadvantages
- Non-linear dependence assumption
- Limited modeling power
- Only certain data types

Today's goal: \(x \in \mathbb{R}^d \) and which feature instead of binary

Gaussian Distribution

\[x \sim \mathcal{N}(\mu, \Sigma) \]

\[p(x | \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right) \]

Motivation
- Central Limit Theorem (converge in mean)
- Analytic properties (mean, variance, moments)
- Simple in sample
- Data in Gaussian

MLE

\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i \]

\[\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})(x_i - \hat{\mu})^T \]

\[p(x, y; \mathbf{\theta}, \phi) = \frac{1}{Z(\phi)} \exp\{\mathbf{\theta}^T \mathbf{G}(\mathbf{x}) + \phi(\mathbf{x})\} \]

where \(Z(\phi) \) is the normalization constant.

Projected Idea

- Explore ways to relax NB assumption
- (TAN Bayes, Bayesian network classifiers)
- More sophisticated
Gaussian Discriminant Analysis

\[p(x_2 \mid y_2) = N(x_2 \mid \mu_2, \Sigma_2) \]

where \(\mu_2 \) and \(\Sigma_2 \) are the mean and covariance of the distribution of \(x_2 \) given \(y_2 \).

\[p(x_1 \mid y_1) = N(x_1 \mid \mu_1, \Sigma_1) \]

This is the same for \(x_1 \) as well.

The discriminant function is given by

\[
D(x) = \frac{1}{2} [x - \mu_1] \Sigma_1^{-1} (x - \mu_2) + \frac{1}{2} \log \left| \frac{\Sigma_1}{\Sigma_2} \right| + \log p(y_1) - \log p(y_2)
\]

In order to classify a new observation, we need to know the means and covariances of the two classes.

For linear discriminant analysis, we assume that each class follows a normal distribution with the same covariance matrix, \(\Sigma_1 = \Sigma_2 = \Sigma \).

Let \(X \) be the data matrix of \(N \) observations and \(n \) features, and let \(y \) be the class labels.

A linear discriminant analysis model is of the form

\[Y = W^T X + b \]

where \(W \) is the weight vector and \(b \) is the bias term.

The goal is to find the weight vector \(W \) that maximizes the ratio of the between-class variance to the within-class variance.

\[W = \arg \max_{W} \frac{\text{Tr}(W^T \Sigma W)}{\text{Tr}(W^T \Sigma W)} \]

subject to the condition that \(W^T \Sigma W = 1 \).

This is a constrained optimization problem, and it can be solved using the method of Lagrange multipliers.

The solution for \(W \) can be found using the following equation:

\[W = \Sigma^{-1} \mu_Y - \Sigma^{-1} \mu_X \]

where \(\mu_Y \) and \(\mu_X \) are the mean vectors for the two classes.

The discriminant function can then be used to classify new observations.