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The maximum likelihood estimator (MLE) is the hypothesis h that maximizes the likelihood, p(D|h), of a
dataset D over a set of possible hypotheses H,

hymie = argmax p(DJh).
heH

In supervised learning, we define D as a set of ordered pairs {(z;,v;)};, and we’ll use D; to denote ordered
pair number i, (z;,y;). If we assume these ordered pairs are independent and identically distributed (IID),

we have
N

h =argmax | | p(D;|h).
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Generative classifiers model the probability p(y;, z;|h),
p(Dilh) = p(yi, xilh) = p(zilys, B)p(y:|h).

In naive Bayes, we assume that the variables z',z2, ..., 2" are mutually conditionally independent given v,
which gives us
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We need to choose how we will define p(y;|h) and p(z?|y;, h). If y is binary {0,1}, then it makes sense to use
Bernoulli distributions (If we toss a coin that lands ‘heads’ with probability 8, we say that the distribution
of {heads,tails} follows a Bernoulli distribution with parameter 6).

We'll use 6 as the parameter of the Bernoulli distribution for y;, so that y; is distributed according to a
Bernoulli random variable with parameter 6 (so we’ll have 8 € h, and h will also include the parameters of
the other distributions we’ll use in the model), which we write as

yi ~ Ber(0),
From the definition of a Bernoulli random variable, we have under this assumption that

p(yl|h) = p(l/z|9) = 91(%:1)(1 _ H)I(yi:())_



If the xz are also binary, it still makes sense to use a Bernoulli distribution but we will have a different
Bernoulli distribution depending on the value of the corresponding y;. So for each variable j we will have
two parameters 6] and 67, and the value of y; decides which one we use,

a|y; ~ Ber(69)),
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To compute the MLE, for numerical reasons we typically work in the log-domain (taking the logarithm
doesn’t change the argmax), and plugging in everything above we get

hyig = arg max p(D]h) (definition of MLE)
heH
N
= arg max H p(D;|h) (IID assumption)
heH oy
N
= arg max log H p(D;|h) (log does not change optimal value)
hen ey
N
= arg max Z log p(D;|h) (log turns multiplication in addition)
h i=1
N
= arg max Z log p(yi, x;|h) (definition of D;)
e
N
= arg max Z log(p(y:|h)p(x;lyi, h)) (product rule)
he” 3
N
= arg max Z [log p(yi|h) + log p(z;|yi, h)] (log turns multiplication into addition)
heH i
N D 4
= arg max Z log p(yi|h) + Z log p(2?|yi, h) (naive Bayes assumption)
her 5 j=1
N D ‘
= arg max Z log p(y;|0) + Z log p(2] |yi, 05,) (Bernoulli parameterization)
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Each term in this sum only depends on either 8 or a single value of 0{ or 06. This means we can solve for
these parameters independently (in optimizaiton, this is called a separable function). Let’s just concentrate



on the terms that depend on 6:

N
Oy E = arg max Z log p(y;|0)
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= argmax Y log(#/ W= (1 — 9)! w:=0))
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= arg maxz [I(y; =1)log(8) + I(y; = 0)log(1 —6))]

N

= argmaxlog(6) > I(y; = 1) +log(1—60) > I(y; = 0)
0€[0,1] i=1 i=1

= arg max log(0) N7 + log(1 — 0) Ny,
0€l(0,1]

where N; is the number of times y; = 1 in the training data and Ny is the number of times y; = 0. We will
be able to prove this with tools we develop later, but right now I will claim that there is one stationary point
of the log-likelihood in terms of @ in the interval [0, 1] and that this is a maximizer. To find this stationary
point, take the derivative and set it to 0,

Re-arrange this to get

The solution to this (within [0,1]) is
N N

TN +Ny, N
to see this observe that 1 — 0 =1 — N;/N = Ny/N.
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This is an overly complicated way to say that if you flip a coin 100 times and it lands heads 40 times, then
if you have no prior knowledge your most likely guess for the probability that it will land heads is 40/100.

The general solution when y; € {1,2,...,C} and we have parameters {01, 6s,...,0c} is

N,
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For a binary x; conditioned on these y;, you get
ej _ Ngl
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where N7, is the number of times variable xz =landy; =c.



