CPSC 540 Notes on Naive Bayes

Mark Schmidt

Fall 2014

The maximum likelihood estimator (MLE) is the hypothesis h that maximizes the likelihood, $p(\mathcal{D}|h)$, of a dataset \mathcal{D} over a set of possible hypotheses \mathcal{H} ,

$$h_{\text{MLE}} = \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} p(\mathcal{D}|h).$$

In supervised learning, we define \mathcal{D} as a set of ordered pairs $\{(x_i, y_i)\}_{i=1}^N$, and we'll use \mathcal{D}_i to denote ordered pair number $i, (x_i, y_i)$. If we assume these ordered pairs are independent and identically distributed (IID), we have

$$h_{\text{MLE}} = \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \prod_{i=1}^{N} p(\mathcal{D}_i|h).$$

Generative classifiers model the probability $p(y_i, x_i|h)$,

$$p(\mathcal{D}_i|h) = p(y_i, x_i|h) = p(x_i|y_i, h)p(y_i|h).$$

In naive Bayes, we assume that the variables x^1, x^2, \ldots, x^D are mutually conditionally independent given y, which gives us

$$p(x_i|y_i, h) = p(x_i^1|x_i^{2:D}, y_i, h)p(x_i^{2:D}|y_i, h)$$

= $p(x_i^1|y_i, h)p(x_i^{2:D}|y_i, h)$
= $p(x_i^1|y_i, h)p(x_i^2|x_i^{3:D}, y_i, h)p(x_i^{3:D}|y_i, h)$
= $p(x_i^1|y_i, h)p(x_i^2|y_i, h)p(x_i^{3:D}|y_i, h)$
= $\prod_{j=1}^{D} p(x_i^j|y_i, h)$

We need to choose how we will define $p(y_i|h)$ and $p(x_i^j|y_i,h)$. If y is binary $\{0,1\}$, then it makes sense to use Bernoulli distributions (If we toss a coin that lands 'heads' with probability θ , we say that the distribution of {heads,tails} follows a Bernoulli distribution with parameter θ).

We'll use θ as the parameter of the Bernoulli distribution for y_i , so that y_i is distributed according to a Bernoulli random variable with parameter θ (so we'll have $\theta \in h$, and h will also include the parameters of the other distributions we'll use in the model), which we write as

$$y_i \sim \operatorname{Ber}(\theta),$$

From the definition of a Bernoulli random variable, we have under this assumption that

$$p(y_i|h) = p(y_i|\theta) = \theta^{I(y_i=1)}(1-\theta)^{I(y_i=0)}.$$

If the x_i^j are also binary, it still makes sense to use a Bernoulli distribution but we will have a different Bernoulli distribution depending on the value of the corresponding y_i . So for each variable j we will have two parameters θ_1^j and θ_0^j , and the value of y_i decides which one we use,

$$x_{i}^{j}|y_{i} \sim \operatorname{Ber}(\theta_{y_{i}}^{j}),$$

$$p(x_{i}^{j}|y_{i},h) = p(x_{i}^{j}|y_{i},\theta_{y_{i}}^{j}) = (\theta_{y_{i}}^{j})^{I(x_{i}^{j}=1)}(1-\theta_{y_{i}}^{j})^{I(x_{i}^{j}=0)}.$$

To compute the MLE, for numerical reasons we typically work in the log-domain (taking the logarithm doesn't change the argmax), and plugging in everything above we get

$$\begin{split} h_{\text{MLE}} &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} p(\mathcal{D}|h) & (\text{definition of MLE}) \\ &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \prod_{i=1}^{N} p(\mathcal{D}_{i}|h) & (\text{IID assumption}) \\ &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \log \prod_{i=1}^{N} p(\mathcal{D}_{i}|h) & (\log \text{ does not change optimal value}) \\ &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \sum_{i=1}^{N} \log p(\mathcal{D}_{i}|h) & (\log \text{ turns multiplication in addition}) \\ &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \sum_{i=1}^{N} \log p(y_{i}, x_{i}|h) & (\text{definition of } \mathcal{D}_{i}) \\ &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \sum_{i=1}^{N} \log p(y_{i}|h) p(x_{i}|y_{i},h)) & (\text{product rule}) \\ &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \sum_{i=1}^{N} \left[\log p(y_{i}|h) + \log p(x_{i}|y_{i},h) \right] & (\text{log turns multiplication into addition}) \\ &= \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} \sum_{i=1}^{N} \left[\log p(y_{i}|h) + \sum_{j=1}^{D} \log p(x_{i}^{j}|y_{i},h) \right] & (\text{naive Bayes assumption}) \\ &= \underset{\theta \in [0,1], \theta_{i}^{j} \in [0,1], \forall_{i} \in \{1,1,\dots,D\}}{\operatorname{arg\,max}} \sum_{i=1}^{N} \left[\log p(y_{i}|\theta) + \sum_{j=1}^{D} \log p(x_{i}^{j}|y_{i},\theta_{y_{i}}^{j}) \right] & (\text{Bernoulli parameterization}) \end{split}$$

Each term in this sum only depends on either θ or a single value of θ_1^j or θ_0^j . This means we can solve for these parameters independently (in optimization, this is called a *separable* function). Let's just concentrate

on the terms that depend on θ :

$$\begin{aligned} \theta_{MLE} &= \operatorname*{arg\,max}_{\theta \in [0,1]} \sum_{i=1}^{N} \log p(y_i | \theta) \\ &= \operatorname*{arg\,max}_{\theta \in [0,1]} \sum_{i=1}^{N} \log(\theta^{I(y_i=1)}(1-\theta)^{I(y_i=0)}) \\ &= \operatorname*{arg\,max}_{\theta \in [0,1]} \sum_{i=1}^{N} \left[I(y_i=1) \log(\theta) + I(y_i=0) \log(1-\theta) \right) \right] \\ &= \operatorname*{arg\,max}_{\theta \in [0,1]} \log(\theta) \sum_{i=1}^{N} I(y_i=1) + \log(1-\theta) \sum_{i=1}^{N} I(y_i=0) \\ &= \operatorname*{arg\,max}_{\theta \in [0,1]} \log(\theta) N_1 + \log(1-\theta) N_0, \end{aligned}$$

where N_1 is the number of times $y_i = 1$ in the training data and N_0 is the number of times $y_i = 0$. We will be able to prove this with tools we develop later, but right now I will claim that there is one stationary point of the log-likelihood in terms of θ in the interval [0, 1] and that this is a maximizer. To find this stationary point, take the derivative and set it to 0,

$$0 = \frac{N_1}{\theta} - \frac{N_0}{1-\theta}.$$

Re-arrange this to get

$$\frac{\theta}{1-\theta} = \frac{N_1}{N_0} = \frac{N_1/N}{N_0/N}$$

The solution to this (within [0,1]) is

$$\theta = \frac{N_1}{N_1 + N_0} = \frac{N_1}{N},$$

to see this observe that $1 - \theta = 1 - N_1/N = N_0/N$.

This is an overly complicated way to say that if you flip a coin 100 times and it lands heads 40 times, then if you have no prior knowledge your most likely guess for the probability that it will land heads is 40/100.

The general solution when $y_i \in \{1, 2, ..., C\}$ and we have parameters $\{\theta_1, \theta_2, ..., \theta_C\}$ is

$$\theta_c = \frac{N_c}{N}.$$

For a binary x_i conditioned on these y_i , you get

$$\theta_c^j = \frac{N_{c1}^j}{N_c},$$

where N_{c1}^{j} is the number of times variable $x_{i}^{j} = 1$ and $y_{i} = c$.