
CPSC 540 Notes on Naive Bayes

Mark Schmidt

Fall 2014

The maximum likelihood estimator (MLE) is the hypothesis h that maximizes the likelihood, p(D|h), of a
dataset D over a set of possible hypotheses H,

hMLE = arg max
h∈H

p(D|h).

In supervised learning, we define D as a set of ordered pairs {(xi, yi)}Ni=1, and we’ll use Di to denote ordered
pair number i, (xi, yi). If we assume these ordered pairs are independent and identically distributed (IID),
we have

hMLE = arg max
h∈H

N∏
i=1

p(Di|h).

Generative classifiers model the probability p(yi, xi|h),

p(Di|h) = p(yi, xi|h) = p(xi|yi, h)p(yi|h).

In naive Bayes, we assume that the variables x1, x2, . . . , xD are mutually conditionally independent given y,
which gives us

p(xi|yi, h) = p(x1i |x2:Di , yi, h)p(x2:Di |yi, h)

= p(x1i |yi, h)p(x2:Di |yi, h)

= p(x1i |yi, h)p(x2i |x3:Di , yi, h)p(x3:Di |yi, h)

= p(x1i |yi, h)p(x2i |yi, h)p(x3:Di |yi, h)

=

D∏
j=1

p(xji |yi, h)

We need to choose how we will define p(yi|h) and p(xji |yi, h). If y is binary {0, 1}, then it makes sense to use
Bernoulli distributions (If we toss a coin that lands ‘heads’ with probability θ, we say that the distribution
of {heads,tails} follows a Bernoulli distribution with parameter θ).

We’ll use θ as the parameter of the Bernoulli distribution for yi, so that yi is distributed according to a
Bernoulli random variable with parameter θ (so we’ll have θ ∈ h, and h will also include the parameters of
the other distributions we’ll use in the model), which we write as

yi ∼ Ber(θ),

From the definition of a Bernoulli random variable, we have under this assumption that

p(yi|h) = p(yi|θ) = θI(yi=1)(1− θ)I(yi=0).
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If the xji are also binary, it still makes sense to use a Bernoulli distribution but we will have a different
Bernoulli distribution depending on the value of the corresponding yi. So for each variable j we will have
two parameters θj1 and θj0, and the value of yi decides which one we use,

xji |yi ∼ Ber(θjyi),

p(xji |yi, h) = p(xji |yi, θ
j
yi) = (θjyi)

I(xj
i=1)(1− θjyi)

I(xj
i=0).

To compute the MLE, for numerical reasons we typically work in the log-domain (taking the logarithm
doesn’t change the argmax), and plugging in everything above we get

hMLE = arg max
h∈H

p(D|h) (definition of MLE)

= arg max
h∈H

N∏
i=1

p(Di|h) (IID assumption)

= arg max
h∈H

log

N∏
i=1

p(Di|h) (log does not change optimal value)

= arg max
h∈H

N∑
i=1

log p(Di|h) (log turns multiplication in addition)

= arg max
h∈H

N∑
i=1

log p(yi, xi|h) (definition of Di)

= arg max
h∈H

N∑
i=1

log(p(yi|h)p(xi|yi, h)) (product rule)

= arg max
h∈H

N∑
i=1

[log p(yi|h) + log p(xi|yi, h)] (log turns multiplication into addition)

= arg max
h∈H

N∑
i=1

log p(yi|h) +

D∑
j=1

log p(xji |yi, h)

 (naive Bayes assumption)

= arg max
θ∈[0,1],θji∈[0,1],∀i∈{0,1},j∈{1,2,...,D}

N∑
i=1

log p(yi|θ) +

D∑
j=1

log p(xji |yi, θ
j
yi)

 (Bernoulli parameterization)

Each term in this sum only depends on either θ or a single value of θj1 or θj0. This means we can solve for
these parameters independently (in optimizaiton, this is called a separable function). Let’s just concentrate
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on the terms that depend on θ:

θMLE = arg max
θ∈[0,1]

N∑
i=1

log p(yi|θ)

= arg max
θ∈[0,1]

N∑
i=1

log(θI(yi=1)(1− θ)I(yi=0))

= arg max
θ∈[0,1]

N∑
i=1

[I(yi = 1) log(θ) + I(yi = 0) log(1− θ))]

= arg max
θ∈[0,1]

log(θ)

N∑
i=1

I(yi = 1) + log(1− θ)
N∑
i=1

I(yi = 0)

= arg max
θ∈[0,1]

log(θ)N1 + log(1− θ)N0,

where N1 is the number of times yi = 1 in the training data and N0 is the number of times yi = 0. We will
be able to prove this with tools we develop later, but right now I will claim that there is one stationary point
of the log-likelihood in terms of θ in the interval [0, 1] and that this is a maximizer. To find this stationary
point, take the derivative and set it to 0,

0 =
N1

θ
− N0

1− θ
.

Re-arrange this to get
θ

1− θ
=
N1

N0
=
N1/N

N0/N
.

The solution to this (within [0, 1]) is

θ =
N1

N1 +N0
=
N1

N
,

to see this observe that 1− θ = 1−N1/N = N0/N .

This is an overly complicated way to say that if you flip a coin 100 times and it lands heads 40 times, then
if you have no prior knowledge your most likely guess for the probability that it will land heads is 40/100.

The general solution when yi ∈ {1, 2, . . . , C} and we have parameters {θ1, θ2, . . . , θC} is

θc =
Nc
N
.

For a binary xi conditioned on these yi, you get

θjc =
N j
c1

Nc
,

where N j
c1 is the number of times variable xji = 1 and yi = c.
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