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In class we showed that the least squares estimator,

arg min
w

1

2
‖Ax− b‖2,

is the solution to the linear system
(XTX)w = XTY,

where X ∈ RN×d, Y = RN×1, w ∈ Rd×1. A solution to this problem always exists, but it may not be unique
(but if multiple solutions exist, threy will all minimize the least squares objective function).

We’ll also show that the ridge regression estimator,

arg min
w

1

2
‖Ax− b‖2 +

λ

2
‖w‖2,

is the solution to
(XTX + λI)w = XTY,

where λ is a scalar. In case, there is a unique value of w that satisfies the equation. Note that XTX is
positive semi-definite while (XTX + λI) is positive definite (although XTX will also be positive definite if
the columns of X are independent).

The first way to solve these problems is by treating them as linear systems,

Ax = b,

and using methods to solve generic linear systems. In this case there are a few options available:

1. Inverse: If you compute A−1, then you can simply set x = A−1b. However, XTX may not have
an inverse (if it is not positive definite), and this is both slower and less numerically stable than the
methods below.

2. Pseudo-Inverse: The singular value decomposition of a matrix is a way to re-write a matrix in the
form A = UDV T , where U and V are orthogonal and D is diagonal. A special case for symmetric
matrices is the spectral decomposition A = V DV T (here V is orthogonal contains the eigenvalues) while
D is diagonal containing the eigenvalues (which are non-negative for positive semi-definite matrices like
XTX). If A is invertible, then its inverse is given by V D−1UT (because U and V are orthogonal, and
note that the inverse of D is a diagonal matrix with the reciprocals of the diagonal of D). This does
not work when A is not invertible because we will have zeros on the diagonal of D. The pseudo-inverse
is V D†UT , where the diagonal matrix D† is D−1 but with 0 in places where we would divide by zero.
A solution to the linear system is given by x = V D†UT b. This is more numerically stable than the
inverse method, and works even when the inverse doesn’t exist. In Matlab, the pinv function will give
you the pseudo-inverse.
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3. Least-norm solution: The pseudo-inverse method gives the least-norm solution (i.e., among all
possible solutions it returns the one minimizing ‖w‖). A faster way to compute this is with the QR-
factorization, where you write A = QR where Q is orthogonal and R is upper-triangular (so you can
get x by solving the upper triangular system Rx = QT b by back-substitution). This is the method
used by Matlab when A is not square, and will be used by Matlab if you type w = X\y, but note that
it assumes that we have Xw = y for some w (so in fact, the QR-factorization is less useful for machine
learning).

4. Gaussian elimination: This decomposes the matrix as A = LU , where L is lower triangular and
U is upper triangular. You can then use back-substituion to get the answer (this is equivalent to the
Gauss-Jordan elimination you will see in an introductory linear algebra class). This is used by Matlab
for square matrices where the Cholesky factorization fails. This is faster than QR, but may fail in the
same cases that QR and the explicit inverse fail.

5. Cholesky factorization: For positive definite-matrices, this decomposes the matrix as A = LLT . By
using symmetry (and the fact that you do not need to exchange rows to perform Gaussian elimination
in this case), this is faster than Gaussian eliminiation.

Conclusion: if you are doing ridge regression or know that XTX is positive-definite, use Cholesky. Otherwise,
use the pseudo-inverse.

All of the above methods cost O(Nd2) to form XTX and O(d3) to run the solver. An alternative to direct
solvers are iterative methods, which generate a sequence of iterations whose limit is the solution. The most
common class of iterative methods only do multiplications with X and XT , so their iteration cost is the much
smaller O(Nd). This includes methods like gradient descent and conjugate gradient (for positive definite
matrices). Even faster methods only work with individual columns of X (coordinate descent) or individual
rows of X (stochastic gradient), so their iteration costs are the even-lower O(N) and O(d).
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