
CPSC Coding Project (due December 17)

matLearn

For the coding project, as a class we are going to develop a new Matlab toolbox for supervised learning,
called matLearn. This toolbox will make a wide range of methods available, for addressing a variety of
different supervised learning task. The main documentation for the toolbox will be a sequence of demos that
compares/contrasts the different models in different situations. Your coding project is to implement at least
one model and make at least one demo comparing this model to other models.

1 Structure of the Package

The matLearn functions will use the interface

[model] = matLearn_task_name(X,y,options)

In the above, you will replace ‘task’ with one of the tasks that matLearn will address (such as ‘regression’)
and you will replace ‘name’ with the name of the model (such as ‘logistic’).

The variable X is our usual N by d design matrix and y is our usual n by 1 target vector. The variable options
is a struct that specifies any non-default options. For example, if you are doing multi-class classification
with logistic regression you could specify the number of classes using something like

options.nClasses = 5;

model = matLearn_classification_logistic(X,Y,options);

Calling the function myProcessOptions within the function lets you specify the possible arguments as well
as their default values. Note that some models (like boosting) will actually take other models as an input.
This will let users mix and match things where possible.

The returned variable model is also a struct. It should store the variables that are needed to make a prediction
after the model has been trained, and it should also provide a function predict that makes predictions using
the model,

yhat = model.predict(model,Xhat)

Thus, the format is a generalization of what we used in Assignment 6.

The demos will consist of scripts that are called directly, such as

matLearn_example_regression

Each demo should compare two or models on a supervised learning task, and somehow show a visualization
of their performance. For example, in the assignments we’ve used regression problems in one variable and
classification problems in two variables to illustrate various methods. You could alternately make demos
that compare different methods in terms of test error or interpretability.

1

2 Examples

Several models/demos are included in matLearn.zip, you can run use these to get a rough idea of the expected
code structure.

3 Notation

The above framework means it is easy to add new models, but we also want to be able to modify and
understand existing models in the package. To achieve this goal, we are going to define standard notation
for different commonly-occuring variables. Below is the current list, and if you have extra suggestions please
post them to Piazza and I will update the list:

• X: Matrix where each row is a training example and each column is a feature.

• y: Vector containing the target variable for each training example.

• w: Weight vector for linear models.

• nTrain: Number of training examples (number of rows in X and Y).

• nTest: Number of testing examples (number of rows in X̂ in the predict).

• nFeatures: Number of features (number of columns in X).

• nClasses: Number of classes (for multi-class classification).

• nMixtures: Number of mixtures (for mixture models).

• i: index of training example (use i1 and i2 if you need two indices).

• j: index of feature (use j1 and j2 if you need two indices).

• c: index of class label (use c1 and c2 if you need two indices).

• λ: strength of regularization parameter (use λ1 and λ2 if there are two regularizers).

• nModels: number of sub-models (for ensemble methods).

• z: Weight for each training sample.

In the function header, define all of the potential options fields for the model, as well as what they mean.
Also put the year and your name. Further, please comment what each part of the code is doing, and try to
make the code as readable as possible.

If your model has sub-routines, you should define them within the .m file containing the model, as opposed
to external files. If people find they are using common sub-routines, we will define external files and update
the common matLearn.zip file.

4 Optimization

Several models require solving generic numerical optimization problems. You can implement specialized
solvers as options to solve these problems, but for solving generic problems the following solvers are included:

• minFunc: Finds a local minimizer of a differentiable function. This is basically a more advanced version
of the findMin function from the assignments.

• L1General : Finds a local minimizer of a differentiable function plus `1-regularization.

2

• minConf : A set of functions that use projection/proximal methods to solve problems with simple
constraints or simple regularizers.

5 Marking Scheme

The marking scheme is as follows:

• Notation and readability (2 points): You will get two points if you follow the standard notation, the
function header follows the guidelines, you document all parts of the code, and write simple/readable
code.

• Correctness and runnability (3 points): You will get three points if your implementation of the model
is correct and if your demo runs after adding your files to a fresh download of matLearn.zip. You will
lose 1 point each time I need to contact you because your code doesn’t run.

• Value-added (2 points): You must have at least two aspects of your model or demo that make it
more interesting than simply translating the model from a textbook or Wikipedia. There is a lot of
flexibility in what the actual aspects could be, but a list of suggestions is given in Section 7.

• Collaboration (1 point): To get the final point, you must get in touch with one or more others member
of the class who are working on a related model, and make a second demo that compares/contrasts
the different models. Alternately, if it makes sense you could write one model function that combines
two or more models where an extra field in options allows you to switch between the models. Some
suggestions for this part are given in Section 8.

Note that course auditors only need to get 4 points to pass the course, so they do not necessarily have to do
the value-added or collaboration parts (e.g., a correct and documented textbook implementation that runs
is sufficient, but you are welcome to go further than that).

6 List of Models

Here is a list of the four tasks we will focus on this semester, as well as associated methods. We will keep a
master list of the model each person has chose to do on Piazza (first come, first served), and you will have to
choose a model to implement among those that have not yet been chosen. You can also implement a model
that is not on the list, subject to approval by me. Items in blue are still available since the last time this
document was updated (but check Piazza for the master list).

6.1 Task: regression

These are models that use xi predict a single target label yi ∈ R:

• matLearn regression stump.m: Regression based on choosing the best variable (xi)j .

• matLearn regression NB.m: Regression based on independently minimizing the squared loss for each
variable,

∑N
i=1

∑d
j=1(wjxij − yi)2. This is like a naive Bayes version of least squares.

• matLearn regression L2.m: Regression based on minimizing the squared loss,
∑N

i=1(wTxi − yi)2.

• matLearn regression L1.m: Regression based on minimizing the absolute loss,
∑N

i=1 |wTxi − yi|.

• matLearn regression Huber.m: Regression based on minimizing the Huber loss.

• matLearn regression student.m: Regression based on minimizing a student ‘t’ loss.

3

• matLearn regression totalL2.m: Regression based on the total least squares loss.

• matLearn regression SVR.m: Support vector regression using the ε-insensitive loss.

• matLearn regression ARD.m: Squared error with `2-regularization fit using type II maximum likeli-
hood (automatic relevance determination).

• matLearn regression MLP.m: Squared error within a multi-layer perceptron.

• matLearn regression KNN.m: Interpolation based k-nearest neighbours.

• matLearn regression NW.m: Global interpolation using kernel function.

There are models that take a model as a sub-routine:

• matLearn regression tree.m: Regression tree.

• matLearn regression GAM.m: regression using generalized additive model.

• matLearn regression local.m: Local regression (fitting a model based on closest points).

• matLearn regression bagging.m: Regression based on the average prediction among models fit to boot-
strap samples.

• matLearn regression basis.m: Regression under a change of basis.

• matLearn regression CV.m: Regression where cross-validation is used to choose a hyper-parameter.

• matLearn regression CV2.m: Regression where cross-validation is used to choose two hyper-parameters
(e.g., λ1 and λ2 with elastic net regularization).

6.2 Task: classification2

These are models that use xi predict a single binary target label yi ∈ {−1, 1}:

• matLearn classification2 stump.m: Classification based on a decision stump.

• matLearn classification2 perceptron.m: Classification using the perceptron algorithm.

• matLearn classification2 logistic.m: Classification using logistic regression.

• matLearn classification2 probit.m: Classification using probit regression.

• matLearn classification2 SVM.m: Classification using support vector machine

• matLearn classification2 SSVM.m: Classification using smooth SVM (squared hinge loss).

• matLearn classification2 HSVM.m: Classification using Huberized SVM.

• matLearn classification2 extreme.m: Classification using a GLM with the extreme-value link.

• matLearn classification2 Cauchit.m: Classification using a GLM with the Cauchit link.

• matLearn classification2 MLP.m: Classification using a multi-layer perceptron with binary loss (like
cross-entropy).

• matLearn classification2 mixtureLogistic.m: Classification using a mixture of logistic regression models.

There are models that take a model as a sub-routine:

• matLearn classification2 regression.m: Classification by using a regression model.

• matLearn classification2 tree.m: Classification based on a decision tree.

4

• matLearn classification2 classification.m: Using a multi-class classifier and treating the special case of
binary labels.

• matLearn classification2 bagging.m: Classification based on the average prediction among models fit
to bootstrap samples.

• matLearn classification2 boosting.m: Classification based on boosting a binary classifier.

• matLearn classification2 randomForest.m: Classification based on a random forest.

• matLearn classification2 GAM.m: classification using generalized additive model.

• matLearn classification2 basis.m: Classification under a change of basis.

• matLearn classification2 CV.m: Classification where cross-validation is used to choose a hyper-parameter.

• matLearn classification2 CV2.m: Classification where cross-validation is used to choose two hyper-
parameters (e.g., λ1 and λ2 with elastic net regularization).

6.3 Task: classification

These are models that use xi predict a single target label yi ∈ {1, 2, . . . ,K}:

• matLearn classification KNN.m: Classification using k-nearest neighbours.

• matLearn classification stump.m: Classification based on a decision stump.

• matLearn classification logistic.m: Classification using multinomial logistic regression.

• matLearn classification SVM.m: Classification using multi-class support vector machine.

• matLearn classification MLP.m: Classification using a multi-layer perceptron with a multi-class loss
(like softmax).

Below are generative approaches to classification:

• matLearn classification generativeNB.m: Naive Bayes.

• matLearn classification generativeGDA.m: Gaussian discriminant analysis.

• matLearn classification generativeLaplace.m: Generative classifier where you fit a Laplace distribution
to each classifier.

• matLearn classification generativeStudent.m: Generative classifier where you fit a multivariate t dis-
tribution to each classifier.

• matLearn classification generativeMixtureGaussian.m: Generative classifier where you fit a mixture of
Gaussian distribution to each classifier.

• matLearn classification generativeMixtureLaplace.m: Generative classifier where you fit a mixture of
Laplace distribution to each classifier.

• matLearn classification generativeMixtureStudent.m: Generative classifier where you fit a mixture of
Laplace distribution to each classifier.

• matLearn classification generativeKDE.m: Generative classifier where you use a kernel density estima-
tor (AKA Parzen window).

There are models that take a model as a sub-routine:

• matLearn classification tree.m: Classification based on a decision tree.

5

• matLearn classification regression.m: Classification by using a multiple regression model and a ‘1 of
K’ of the class labels.

• matLearn classification 1vA.m: Training and combining binary ‘one vs. all’ classifiers.

• matLearn classification 1v1.m: Training and combining binary ‘one vs. one’ classifiers.

• matLearn classification ECOC.m: Training and combining binary classifiers using error-correcting out-
put codes.

• matLearn classification GAM.m: classification using generalized additive model.

• matLearn classification bagging.m: Classification based on the average prediction among models fit to
bootstrap samples.

• matLearn classification boosting.m: Classification based on boosting a classifier.

• matLearn classification basis.m: Classification under a change of basis.

• matLearn classification CV.m: Classification where cross-validation is used to choose a hyper-parameter.

• matLearn classification CV2.m: Classification where cross-validation is used to choose two hyper-
parameters (e.g., λ1 and λ2 with elastic net regularization).

6.4 Task: ordinal

This is the same task as classification, but these models assume that the classes are ordered:

• matLearn ordinal logistic.m: Ordinal logistic regression.

• matLearn ordinal probit.m: Ordinal probit regression.

• matLearn ordinal extreme.m: Ordinal extreme-value regression.

• matLearn ordinal regression.m: Ordinal regression by fitting a basic regression model.

7 Value-Added

Here are some suggestions for the value-added part of your project (you may have to do some research):

• Weighting : Add the ability to specify an options.weights, giving the weight for each training example.

• MAP : Add the ability to use a regularizer, such as `2-regularization or `1-regularization (for linear
models) or a beta prior (for models like naive Bayes).

• Splitting Criteria and pruning trees: For decision trees, add several options for the splitting criterion
(classification error, infomax, Gini index, etc.) and add a pruning strategy.

• Scalability : Make an implementation that scales to larger data sets (e.g. allow conjugate gradient if
you are doing least squares, or allow diagonal covariance if you are fitting a Gaussian, or coordinate
descent or stochastic gradient methods for numerical optimization).

• Variants: Add some common variants on the basic method (e.g., logitBoost in addition to AdaBoost).

• Probabilistic Output : Implement an extra function in the model that makes probabilistic predictions
over the classes instead of a hard assignment.

• Dual optimization: Add the ability to optimize the model using dual coordinate ascent.

6

• Use sparsity : Make the code take advantage of sparsity present in the design matrix X.

• Bayesian: Allow the ability to use the posterior mean, or median, give the full posterior predictive
distribution, or use type II maximum likelihood.

• Smarter searches: In methods that use a naive search, like cross-validation, add the ability to prune
the search or add the ability to optimize the parameter (e.g., for regularization parameters).

• Kernelize: Add the ability to use kernels with the method.

Finally, instead of having the value-added component related to the model, you could also produce an
interesting demo. This could be based on an easily-interpretable dataset or some visualizing interesting
property.

8 Possible Collaborations

There are two possible collaboration types: refactoring or comparison. The refactoring type involves com-
bining two or more of the above models into a single function, where you can switch between different
models using specific choices of the options structure. The comparison type involves comparing two or more
of the above models. There is no limit to the size of the collaboration groups, but they should be sensical
collaborations (e.g., it wouldn’t make sense to have refactor decision trees and SVMs into one function).

For refactoring collaborations, some examples of logical refactoring might be (there are many other possible
combinations):

• Combine decision stumps and decision tree to use one common model function.

• Combine logistic regression and probit regression to use one common model function.

• Combine the bagging models for the different tasks.

• Combine the cross-validation models fothe different tasks.

• Write a generic generative classifier that can takes a generative model as an input option.

For comparison collaborations, some examples of logical comparisons that would make good demos include
(there are many other possible combinations):

• Comparing linear regression or classification methods using different loss functions.

• Comparing decision stumps to decision trees, or comparing these before/after boosting.

• Comparing MLPs trained with squared error to training with the softmax error.

• Generative classifiers using different types of generative distributions.

• Comparing test performance with and without cross-validation.

• Comparing linear models (like logistic regression) to non-linear models (like GAMs, mixtures, or MLPs)
or to non-parametric models (like KNN).

9 Deliverables

By the end of December 17, you need to e-mail me a .zip file containing:

1. Your model function (and external functions that it calls).

2. Your individual demo script.

7

3. A text file containing a short description of your value-added contributions, and your collaboration
contribution.

If you did a comparison collaboration, you also submit the comparison demo script (if it is different than
your individual demo script). If you did a refactoring collaboration, you have the option of submitting one
zip file on behalf of the collaboration group.

8

