
CPSC 540 Assignment 4 (due October 15)

Convex Functions and Linear Classifiers

Please put your name and student number on the assignment, staple the assignment together, and you will
get 1 bonus point if the assignment is typed rather than written.

1 Inequalities involving Norms

To analyze sequences of (possibly random) variables, we will need to start using sequences of inequalities
and using various properties of norms. Please read the Notes on Norms document on the course webpage,
then show the following:

1. “Not the triangle inequality” inequality for Euclidean norm:

‖x+ y‖22 ≤ 2‖x‖22 + 2‖y‖22.

(hint: start from ‖x− y‖22 ≥ 0, reverse inequality and expand, add right side, complete the square)

2. Triangle inequality for Euclidean norm:

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2.

(hint: square the left-hand side, use Cauchy-Schwartz, complete the square)

3. Relationships between sizes of p-norms on vectors of length d:

‖x‖∞ ≤ ‖x‖1 ≤ d‖x‖∞ (Hint: |xi| ≤ max
j
{|xj |})

‖x‖∞ ≤ ‖x‖2 ≤
√
d‖x‖∞ (Hint: work with the square)

‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2 (Hint: ‖x‖1 = xT sign(x))

4. All norms are convex.
(hint: since norms are not differentiable you need to use the most general convexity definition).

2 Showing Functions are Convex

Use one of the definitions of convexity to show that the following functions are convex:

1. f(x) = maxi{xi} (hint: maxi{ai + bi} ≤ maxi{ai}+ maxi{bi})
2. f(x) =

∑d
i=1 xi log xi for xi > 0 (negative entropy)

3. f(x) =
∑N

i=1 log(1 + exp(−bixTai)) (logistic regression: use Hessian structure as with least squares)

1

Use the results above and from class, along with the operations that preserve convexity, to show that the
following functions are convex:

4. f(x) =
∑N

i=1 log(1 + exp(−bixTai)) + λ‖x‖1 (`1-regularized logistic regression)
5. f(x) = ‖Ax− b‖p + ‖x‖p (regularized regression with arbitrary p-norms)

6. f(x) = C
∑N

i=1 max{0, |bi − xTai| − ε}+ 1
2‖x‖

2
2 (support vector regression)

3 Gradient Methods for Logistic Regression

The function gradientDemo.m applies a simple gradient method (findMin.m) to optimize the logistic regres-
sion objective function,

f(w) =

N∑
i=1

log(1 + exp(−yiwTxi)).

The function f and its gradient are computed by the function LogisticLoss.m. As input, the optimizer
requires an initial guess as well as an ‘anonymous’ function that returns the function value and gradient of
the function to optimize, in this case LogisticLoss. Modify LogisticLoss so that it takes a new parameter λ
and computes the objective and gradient for `2-regularized logistic regression,

f(w) =

N∑
i=1

log(1 + exp(−yiwTxi)) +
λ

2
‖w‖2.

Hand in the modified LogisticLoss.m.

3.1 Smarter Step-Size Choices

To determine the step-size, at each iteration findMin.m first tries αt = 1 and then ‘backtracks’ (decreases
the step-size) by halving the step-size until the following ‘Armijo’ condition is satisfied,

f(wt+1) ≤ f(wt)− γαt‖∇f(wt)‖2.

This textbook strategy guarantees convergence (for γ ≤ 1/2), but in practice often requires too many
evaluations of the function. There are much more clever ways to choose the values of αt to try, and in this
question you will implement two such tricks:

1. When we try a value of αt and it fails, instead of just dividing it by 2 we can use queries to the
function that we have available to propose smarter choices. In particular, if have a value α0 that fails
the Armijo condition, we could next test the minimizer of the quadratic function that interpolates f(wt)
and f(wt − α0∇f(wt)) and agrees with the directional derivative of f at wt in the negative-gradient
direction. This value is given by

αt =
α2
0‖∇f(wt)‖2

2[f(wt − α0∇f(wt))− f(wt) + α0‖∇f(wt)‖2]
.

Modify the line-search so that instead of trying αt = α0/2 in half, it uses this choice.

2. We could also consider initializing αt using quadratic interpolation, but a smarter choice is set it to
satisfy the ‘quasi-Newton’ conditions in a least squares sense (the ‘Barzilai-Borwein’ step-size). This
choice of step-size typically gives much better practical performance. It is given by

αt = −αt−1
(yt)T∇f(wt−1)

‖yt‖2
,

2

where we have used
yt = ∇f(wt)−∇f(wt−1).

Modify the optimization code so that instead of re-setting α to one on each iteration, it uses this choice.
(Reset the step-size to one if the value of α is not in a reasonable range, such as α /∈ [10−10, 1010].)

Hand in the modified findMin.m implementing these modifications.

4 Efficient Sparse Stochastic subgradient for SVMs

The function stochGradDemo.m applies a stochastic subgradient method to optimize the SVM objective
function. However, in this demo the dataset is very sparse (each feature vector xi only has a few non-
zero entries) so the iterations are relatively expensive because the gradient of the regularizer is dense (this
happens, for example, with text data where each feature could represent whether a particular English word
is present). We can make the iterations only depend on the number of non-zero features in the randomly
chosen xi by representing our parameter vector as w = βv, where β is a scalar and v is a vector. Modify the
demo to use this representation, so that the iteration cost is proportional to the number of non-zero elements
in the selected xi rather and not the total number of variables d. Hand in the modified part of the code.

Hint:

The update can be written
wt+1 = wt − αt(g(wt) + λwt),

where g(wt) is a subgradient of the hinge loss at wt. This subgradient is sparse but the problem comes
because adding λwt is a dense operation. Let’s re-write the iteration as

wt+1 = (1− αtλ)wt − αtg(wt),

and then let’s split the update into two parts:

wt+ 1
2 = (1− αtλ)wt, wt+1 = wt+ 1

2 − αtg(wt).

The second part is fine, but we want to implement the first part without doing a full-vector operation. Using
the representation w = βv, we can implement the above two updates to maintain w = βv using

βt+ 1
2 = (1− αtλ)βt, vt+

1
2 = vt,

βt+1 = βt+ 1
2 , vt+1 = vt+

1
2 − αt

βt+1
g(βtvt).

The second line uses that we want vt+1 to satisfy wt+1 = βt+1vt+1 = βt+1vt+
1
2 − αtg(βtvt). The update of

v depends on the sparsity of g(xt) but the update of β is constant time, so these updates don’t depend on
the total number of variables.

A problem with this update is if (1− αtλ) = 0 then you set βt+ 1
2 = 0. You need to test for this case, and if

it occurs an alternate update then maintains βt+ 1
2 vt+

1
2 = wt+ 1

2 is to set βt+ 1
2 = 1 and vt+

1
2 = 0. The latter

is a full vector operation but you only need to do it once.

3

