CPSC 540 Assignment 4 (due October 15)

Convex Functions and Linear Classifiers

Please put your name and student number on the assignment, staple the assignment together, and you will get 1 bonus point if the assignment is *typed* rather than written.

1 Inequalities involving Norms

To analyze sequences of (possibly random) variables, we will need to start using sequences of inequalities and using various properties of norms. Please read the *Notes on Norms* document on the course webpage, then show the following:

1. "Not the triangle inequality" inequality for Euclidean norm:

$$|x+y||_{2}^{2} \leq 2||x||_{2}^{2} + 2||y||_{2}^{2}.$$

(hint: start from $||x - y||_2^2 \ge 0$, reverse inequality and expand, add right side, complete the square)

2. Triangle inequality for Euclidean norm:

$$||x+y||_2 \le ||x||_2 + ||y||_2$$

(hint: square the left-hand side, use Cauchy-Schwartz, complete the square)

3. Relationships between sizes of p-norms on vectors of length d:

$\ x\ _{\infty} \le \ x\ _1 \le d\ x\ _{\infty}$	(Hint: $ x_i \le \max_j \{ x_j \}$)
$\ x\ _{\infty} \le \ x\ _2 \le \sqrt{d} \ x\ _{\infty}$	(Hint: work with the square)
$\ x\ _2 \le \ x\ _1 \le \sqrt{d} \ x\ _2$	(Hint: $ x _1 = x^T \operatorname{sign}(x)$)

4. All norms are convex.

(hint: since norms are not differentiable you need to use the most general convexity definition).

2 Showing Functions are Convex

Use one of the definitions of convexity to show that the following functions are convex:

 $\begin{array}{ll} 1. \quad f(x) = \max_i \{x_i\} & (\text{hint: } \max_i \{a_i + b_i\} \leq \max_i \{a_i\} + \max_i \{b_i\}) \\ 2. \quad f(x) = \sum_{i=1}^d x_i \log x_i \text{ for } x_i > 0 & (\text{negative entropy}) \\ 3. \quad f(x) = \sum_{i=1}^N \log(1 + \exp(-b_i x^T a_i)) & (\text{logistic regression: use Hessian structure as with least squares}) \end{array}$

Use the results above and from class, along with the operations that preserve convexity, to show that the following functions are convex:

4.
$$f(x) = \sum_{i=1}^{N} \log(1 + \exp(-b_i x^T a_i)) + \lambda \|x\|_1$$
 (ℓ_1 -regularized logistic regression)
5.
$$f(x) = \|Ax - b\|_p + \|x\|_p$$
 (regularized regression with arbitrary *p*-norms)
6.
$$f(x) = C \sum_{i=1}^{N} \max\{0, |b_i - x^T a_i| - \epsilon\} + \frac{1}{2} \|x\|_2^2$$
 (support vector regression)

3 Gradient Methods for Logistic Regression

The function gradientDemo.m applies a simple gradient method (findMin.m) to optimize the logistic regression objective function,

$$f(w) = \sum_{i=1}^{N} \log(1 + \exp(-y_i w^T x_i)).$$

The function f and its gradient are computed by the function *LogisticLoss.m.* As input, the optimizer requires an initial guess as well as an 'anonymous' function that returns the function value and gradient of the function to optimize, in this case *LogisticLoss*. Modify *LogisticLoss* so that it takes a new parameter λ and computes the objective and gradient for ℓ_2 -regularized logistic regression,

$$f(w) = \sum_{i=1}^{N} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} ||w||^2.$$

Hand in the modified LogisticLoss.m.

3.1 Smarter Step-Size Choices

To determine the step-size, at each iteration find Min.m first tries $\alpha_t = 1$ and then 'backtracks' (decreases the step-size) by halving the step-size until the following 'Armijo' condition is satisfied,

$$f(w^{t+1}) \le f(w^t) - \gamma \alpha_t \|\nabla f(w^t)\|^2.$$

This textbook strategy guarantees convergence (for $\gamma \leq 1/2$), but in practice often requires too many evaluations of the function. There are much more clever ways to choose the values of α_t to try, and in this question you will implement two such tricks:

1. When we try a value of α_t and it fails, instead of just dividing it by 2 we can use queries to the function that we have available to propose smarter choices. In particular, if have a value α_0 that fails the Armijo condition, we could next test the minimizer of the quadratic function that interpolates $f(w^t)$ and $f(w^t - \alpha_0 \nabla f(w^t))$ and agrees with the directional derivative of f at w^t in the negative-gradient direction. This value is given by

$$\alpha_t = \frac{\alpha_0^2 \|\nabla f(w^t)\|^2}{2[f(w^t - \alpha_0 \nabla f(w^t)) - f(w^t) + \alpha_0 \|\nabla f(w^t)\|^2]}.$$

Modify the line-search so that instead of trying $\alpha_t = \alpha_0/2$ in half, it uses this choice.

2. We could also consider initializing α_t using quadratic interpolation, but a smarter choice is set it to satisfy the 'quasi-Newton' conditions in a least squares sense (the 'Barzilai-Borwein' step-size). This choice of step-size typically gives much better practical performance. It is given by

$$\alpha_t = -\alpha_{t-1} \frac{(y^t)^T \nabla f(w^{t-1})}{\|y^t\|^2},$$

where we have used

$$y^t = \nabla f(w^t) - \nabla f(w^{t-1})$$

Modify the optimization code so that instead of re-setting α to one on each iteration, it uses this choice. (Reset the step-size to one if the value of α is not in a reasonable range, such as $\alpha \notin [10^{-10}, 10^{10}]$.)

Hand in the modified *findMin.m* implementing these modifications.

4 Efficient Sparse Stochastic subgradient for SVMs

The function stochGradDemo.m applies a stochastic subgradient method to optimize the SVM objective function. However, in this demo the dataset is very sparse (each feature vector x_i only has a few nonzero entries) so the iterations are relatively expensive because the gradient of the regularizer is dense (this happens, for example, with text data where each feature could represent whether a particular English word is present). We can make the iterations only depend on the number of non-zero features in the randomly chosen x_i by representing our parameter vector as $w = \beta v$, where β is a scalar and v is a vector. Modify the demo to use this representation, so that the iteration cost is proportional to the number of non-zero elements in the selected x_i rather and not the total number of variables d. Hand in the modified part of the code.

Hint:

The update can be written

$$w^{t+1} = w^t - \alpha_t (g(w^t) + \lambda w^t),$$

where $g(w^t)$ is a subgradient of the hinge loss at w^t . This subgradient is sparse but the problem comes because adding λw^t is a dense operation. Let's re-write the iteration as

$$w^{t+1} = (1 - \alpha_t \lambda) w^t - \alpha_t g(w^t),$$

and then let's split the update into two parts:

$$w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g(w^t).$$

The second part is fine, but we want to implement the first part without doing a full-vector operation. Using the representation $w = \beta v$, we can implement the above two updates to maintain $w = \beta v$ using

$$\begin{split} \beta^{t+\frac{1}{2}} &= (1-\alpha_t\lambda)\beta^t, \quad v^{t+\frac{1}{2}} = v^t, \\ \beta^{t+1} &= \beta^{t+\frac{1}{2}}, \quad v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+1}}g(\beta^t v^t). \end{split}$$

The second line uses that we want v^{t+1} to satisfy $w^{t+1} = \beta^{t+1}v^{t+1} = \beta^{t+1}v^{t+\frac{1}{2}} - \alpha_t g(\beta^t v^t)$. The update of v depends on the sparsity of $g(x^t)$ but the update of β is constant time, so these updates don't depend on the total number of variables.

A problem with this update is if $(1 - \alpha_t \lambda) = 0$ then you set $\beta^{t+\frac{1}{2}} = 0$. You need to test for this case, and if it occurs an alternate update then maintains $\beta^{t+\frac{1}{2}}v^{t+\frac{1}{2}} = w^{t+\frac{1}{2}}$ is to set $\beta^{t+\frac{1}{2}} = 1$ and $v^{t+\frac{1}{2}} = 0$. The latter is a full vector operation but you only need to do it once.