
CPSC 540 Assignment 2 (due September 24)

Gaussians and Linear Regression

This assignment has three purposes:

1. To give you practice using and manipulating Gaussian distributions.

2. To give you some practice computing gradients and Hessians.

3. To let you experiment with issues related to linear regression.

As before, updates/clarifications following the first version of this document will be highlighted in red.

1 Further logistics information

Write your name, student number, and whether you are registered/auditting/crashing CPSC 540. Also,
please staple your homework together for the sake of the marker.

2 Properties of Gaussians

2.1 Maximum Likelihood Estimation

Assume we have a dataset D = {(xi, yi)}Ni=1 where each xi ∈ R and yi ∈ {1, 2} (i.e., we have a single
continuous feature and a binary label). We will consider a Gaussian discrimnant analysis (GDA) model of
this data under the linear discriminant analysis (LDA) assumption that σ1 = σ2, so that

xi|yi = 1 ∼ N (µ1, σ
2), xi|yi = 2 ∼ N (µ2, σ

2), yi ∼ Ber(θ),

and thus

p(xi|yi = 1, µ1, σ
2) =

1

σ
√

2π
exp

(
− (xi − µ1)2

2σ2

)
,

p(xi|yi = 2, µ2, σ
2) =

1

σ
√

2π
exp

(
− (xi − µ2)2

2σ2

)
.

Derive the maximum likelihood estimate (MLE) for the parameters {µ1, µ2, σ} in the corresponding Gaussian
discriminant analysis (GDA) model. Show your work..

1

Hint: The log-likelihood can be written

log p(D|µ1, µ2, σ
2, θ) =

N∑
i=1

log p(xi, yi|µ1, µ2, σ
2, θ)

=

N∑
i=1

[
log
(
p(xi|yi, µ1, µ2, σ

2, θ)p(yi|µ1, µ2, σ
2, θ)

)]
(product rule)

=

N∑
i=1

[
log p(xi|yi, µ1, µ2, σ

2, θ) + log p(yi|µ1, µ2, σ
2, θ)

]
(log(ab) = log(a) + log(b))

=

N∑
i=1

[log p(xi|yi, µyi , σ
2) + log p(yi|θ)] (xi|yi depends on {µyi , σ

2}, yi depends on θ)

=

N∑
i=1

[I(yi = 1) log p(xi|yi = 1, µ1, σ
2) + I(yi = 2) log p(xi|yi = 2, µ2, σ

2) + log p(yi|θ)].

We already know that the MLE for θ is N1/N (where N1 is the number of times yi = 1). You can find the
MLE for the other parameters by first equating its derivative with respect to µ1 to 0 and solving (observe
that the derivative of log p(yi|θ) with respect to µ1 is 0), then doing the same for µ2 and finally for σ (this
stationary point happens to be the maximizer of the likelihood, but you don’t need to show this).

2.2 Self-Conjugacy for the Mean Parameter

If x is distributed according to a Gaussian with mean µ,

x ∼ N (µ, σ2),

and we assume that µ itself is distributed according to a Gaussian

µ ∼ N (α, γ2),

then the posterior µ|x also follows a Gaussian distribution.1 Derive the form of the (Gaussian) distribution
for p(µ|x, α, σ2, γ2). You can assume that σ = 1 and γ = 1.

Hint: Use Bayes rule to get

p(µ|x, α, σ2, γ2) =
p(x|µ, α, σ2, γ2)p(µ|α, σ2, γ2)

p(x|α, σ2, γ2)

=
p(x|µ, σ2)p(µ|α, γ2)

p(x|α, σ2, γ2)

∝ p(x|µ, σ2)p(µ|α, γ2).

From here, the ‘proportional to’ sign (∝) is your friend on this question. Above we used it to get rid of
p(x|α, σ2, γ2) since it doesn’t depend on µ (it just contributes to making sure that

∫∞
−∞ p(µ|x, α, σ2, γ2) = 1).

Compute the product above but use ∝ to get rid of other terms that don’t depend on µ.

1We say that the Gaussian distribution is the ‘conjugate prior’ for the Gaussian mean parameter (we’ll formally discuss
conjugate priors later in the course). Another reason the Gaussian distribution is important is that is the only (non-trivial)
continuous distribution that has this ‘self-conjugacy’ property.

2

You can then ‘complete the square’ to make the product look like a Gaussian distribution, e.g. when you
have exp(ax2 − bx+ const) you can factor out an a and add/subtract (b/2a)2 to re-write it as

exp
(
ax2 − bx+ const

)
∝ exp

(
ax2 − bx

)
= exp

(
a(x2 − (b/a)x)

)
∝ exp

(
a(x2 − (b/a)x+ (b/2a)2)

)
= exp

(
a(x− (b/2a))2

)
.

Note that multiplying by factors that do not depend on µ within the exponent does not change the dis-
tribution. In this question you will want to complete the square to get the distribution on µ, rather than
x.

Once it looks proportional to a Gaussian, use that the normalizing constant is going to be the value that
satisfies

∫∞
−∞ p(x) = 1. And since we’ve already been told it will be a Gaussian, we can use∫ ∞

−∞

1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
= 1,

or equivalently that ∫ ∞
−∞

exp

(
− (x− µ)2

2σ2

)
= σ
√

2π.

You may find it easier to solve thie problem if you parameterize the Gaussians in terms of their ‘precision’
parameters (e.g., λ = 1/σ2, λ0 = 1/γ2) rather than their variances σ and γ.

2.3 Unsupervised Gaussian Density Models

Expand the file ass2.zip, switch to the created directory, and (in Matlab) run the script gaussianDemo. This
script:

1. Loads two datasets, X1 and X2, each containing samples of two variables.

2. Displays a 3 by 2 plot, where the left column entries show X1 and the right entries show X2.

3. The top row displays the contours of the Gaussian probability density function (PDF) using the MLE
assuming a covariance Σ that is a scalar times the identity matrix, Σ = βI (analogous to Section 2.1
above).

Modify this demo so that the middle row displays the PDF contours for the MLE when Σ is only constrained
to be a diagonal matrix (e.g., we make the independent variables assumption as in naive Bayes), and so that
the bottom row displays the PDF contours for the MLE when Σ is a general matrix (Σ̂ from class). Hand
in your updated 3 by 2 plot.

3 Gradients and Hessians

Let f be a real-valued function with domain Rd (e.g., f(x) = xTAx+ bTx). Let ∂f
∂xi

be the partial derivative
of f with respect to variable i. The gradient vector is defined as the length-d (column-)vector of first partial
derivatives.

∇f(x) =

∂f
∂x1
∂f
∂x2

...
∂f
∂xd

3

The Hessian is defined as the d-by-d matrix of second partial derivatives,

∇2f(x) =

∂2f

∂x1x1

∂2f
∂x1x2

· · · ∂2f
∂x1xd

∂2f
∂x2x1

∂2f
∂x2x2

· · · ∂2f
∂x2xd

...
...

...
...

∂2f
∂xdx1

∂2f
∂xdx2

· · · ∂2f
∂xdxd

3.1 Linear and Quadratic Functions

Derive the gradient and Hessian of the following linear and quadratic real-valued functions (where α is a
scalar, a and b are vectors of lenth d, A is a matrx of size d-by-d, and W is a symmetric matrix of size
d-by-d), and express the result in vector/matrix notation (e.g., there should be no summation notation in
the final results).

1. f(x) = xTa+ α (linear)
2. f(x) = aTx+ aTAx+ xTAb (more linear forms)
3. f(x) = ‖x‖2 (squared Euclidean norm)
4. f(x) = xTAx (quadratic - N.B., A may not be symmetric)
5. f(x) = 1

2 (Ax− b)TW (Ax− b) (weighted least squares)

Hint: As a sanity check make sure that the dimensions of your result are correct. For linear terms: use that
xTa =

∑d
i=1 aixi, take the partial derivative with respect to a general element i, then write out the vector

containing these elements (remember that Ab is a vector so xTAb is a linear term too). For quadratic terms:
use that

xTAx = xT

∑d

j=1 a1jxj∑d
j=1 a2jxj

...∑d
j=1 adjxj

 =

d∑
i=1

xi

d∑
j=1

aijxj .

3.2 Logistic Regression

The logistic regression likelihood for a single data point has the form

p(yi|xi, w) =
1

1 + exp(−yiwTxi))
,

4

where each xi ∈ Rd, yi ∈ {−1, 1}, and w ∈ Rd. Thus, the log-likelihood for an IID data-set will be

log p(Y |X,w) = log

N∏
i=1

p(yi|xi, w) (IID assumption)

=

N∑
i=1

log p(yi|xi, w) (log(ab) = log(a) + log(b))

=

N∑
i=1

log

(
1

1 + exp(−yiwTxi)

)
(logistic regression assumption)

=

N∑
i=1

log(1)− log(1 + exp(yiw
Txi)) (log(a/b) = log(a)− log(b)

=

N∑
i=1

− log(1 + exp(yiw
Txi)), (log(1) = 0)

and the negative log-likelihood (NLL) has the form

f(w) =

N∑
i=1

log(1 + exp(−yiwTxi)).

Compute the gradient and Hessian of this function. Express the result in terms a matrix X (where each
row contains and xi), a vector Y (where each element contains a yi), and a vector p(w) (where each element
contains p(yi|xi, w)). Use the notation diag(v) to denote a diagonal matrix that has the elements of a vector
v along its diagonal.

Hint: you may want to use these formulas:

1

1 + exp(−yiwTxi)
=

exp(yiw
Txi)

1 + exp(yiwTxi)
, p(yi|xi, w) = 1− p(−yi|xi, w).

3.3 Sum of compositions of general and linear functions

Let A be an n-by-d matrix, x be a column vector with length d, g be a twice-differentiable function from R
to R, and f be defined as

f(x) =

n∑
i=1

g(xTai),

where ai is a (column-)vector formed from the rows i of A. Express the gradient and Hessian of f in terms
of A, a vector G′ where element i of the vector contains the derivative g′(ui) with ui = xTai, and a vector
G′′ containing the deriatives g′′(ui).

4 Linear Regression

The script linearRegressionDemo does the following

1. Loads a design matrix X and target vector y, and corresponding Xtest and ytest.

5

2. Fits a least-squares linear regression model to the dataset,

arg min
w

N∑
i=1

1

2
(wTxi − yi)2

using the function fitL2.

3. Plots the dataset and the fitted model, and reports the test error.

Unfortunately, the fit of the model to this data set is quite poor because the dataset contains outlier (points
that do not fit the overall trend in the dataset).

4.1 Bias variable

Notice that in the first column of X, all values are set to 1. What is the purpose of including this column?

4.2 Weighted Linear Regression

The outlier datapoints are the last 100 rows of X. Write a new function fitWeightedL2(X,y,z) that solves
the weighted linear regression problem,

arg min
w

N∑
i=1

zi
2

(wTxi − yi)2,

where z is a vetcor with the weights zi. Hand in this new function. Set the weight zi is set to 1/10 for the
outlier datapoints and 1 for the remaining datapoints. Report the test set error under this weighting.

4.3 Robust Linear Regression

In high-dimensions, it may be difficult to determine whether points are indeed outliers. In such cases, it is
preferable to replace the squared error with an error that is more robust to outliers. Write a new function,
fitL1(X,y), that minimizes the absolute error instead of the square error,

arg min
w

N∑
i=1

|wTxi − yi|.

You can use the formulation from class or the formulation in Section 7.4 of MLAPP to formulate this problem
as a linear program. To solve the linear program, you can use linprog. Hand in the new function and report
the test set error under this weighting.

5 Non-Linear Regression

The script basisDemo load another regression training set and displays the result of applying a simple linear
regression model. This time, the model is problematic because the target is a non-linear function of the
input. Write a new function, polyBasis(X,degree), that takes a (column-vector) X and the polynomial order

6

degree, and returns a new design Xpoly where each row contains the values (Xi)
j for j = 0 up to degree.

E.g., polyBasis(X,3) should return

Xpoly =

1 X1 (X1)2 (X1)3

1 X2 (X2)2 (X2)3

...
1 XN (XN)2 (XN)3

Hand in the new function and a 3 by 3 plot showing the fit for degree = 0 up to degree = 8.

7

