
CPSC 340 Assignment 2 (due Friday October 13 ATE)

1 Random Forests

1.1 Implementation

Thefile vowels.jld contains a supervised learning dataset where we are trying to predict which of the 11
“steady-state” English vowels that a speaker is trying to pronounce.

You are provided with a decisionTree as well as a randomTree function in decisionTree.jl (both based
on information gain). The random tree model differs from the decision tree model in two ways: it takes
a bootstrap sample of the data before fitting and when fitting individual stumps it only considers b

√
dc

randomly-chosen features1 In other words, RandomTree is the model we discussed in class that is combined
to make up a random forest.

If you run example randomTree.jl, it will fit both models to the dataset, and you will notice that it overfits
badly.

1. If you set the depth parameter to Inf, why do the training functions terminate?

2. Why doesn’t the random tree model with a depth of Inf have a training error of 0?

3. Create a function randomForest that takes in hyperparameters depth and nTrees (number of trees),
and fits nTrees random trees each with maximum depth depth. For prediction, have all trees predict
and then take the mode. Hand in your function. Hint: you can define an array for holding 10
GenericModel types using:
subModels = Array{GenericModel}(10).

4. Using 50 trees, and a depth of ∞, report the training and testing error. Compare this to what we
got with a single DecisionTree and with a single RandomTree. Are the results what you expected?
Discuss.

1.2 Very-Short Answer Questions

1. What is a a disadvantage of using a very-large number of trees in a random forest classifier?

2. Your random forest classifier has a training error of 0 and a very high test error. Which ones of the
following could help performance?

(a) Increase the maximum depth of the trees in your forest.

(b) Decrease the maximum depth of the trees in your forest.

(c) Increase the amout of data you consider for each tree (Collect more data and use 2n objects
instead of n).

(d) Decrease the amount of data you consider for each tree (Use 0.8n objects instead of n).

1The notation bxc means the “floor” of x, or “x rounded down”.
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(e) Increase the number of features you consider for each tree.

(f) Decrease the number of features you consider for each tree.

3. Suppose that you were training on raw audio segments and trying to recognize vowel sounds. What
could you do to encourage the final classifier to be invariant to translation?

2 K-Means Clustering

If you run the function example Kmeans, it will load a dataset with two features and a very obvious clustering
structure. It will then apply the k-means algorithm with a random initialization. The result of applying the
algorithm will thus depend on the randomization, but a typical run might look like this:

(Note that the colours are arbitrary due to the label switching problem.) But the ‘correct’ clustering (that
was used to make the data) is something more like this:

2.1 Selecting among k-means Initializations

If you run the demo several times, it will find different clusterings. To select among clusterings for a fixed
value of k, one strategy is to minimize the sum of squared distances between examples xi and their means
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wyi ,

f(w1, w2, . . . , wk, y1, y2, . . . , yn) =

n∑
i=1

‖xi − wyi‖22 =

n∑
i=1

d∑
j=1

(xij − wyij)2.

where yi is the index of the closest mean to xi. This is a natural criterion because the steps of k-means
alternately optimize this objective function in terms of the wc and the yi values.

1. Write a new function called kMeansError that a dataset X, a set of cluster assignments y, and a set
of cluster means W , and computes this objective function. Hand in your code.

2. Instead of printing the number of labels that change on each iteration, what trend do you observe if
you print the value of kMeansError after each iteration of the k-means algorithm?

3. Using the clustering2Dplot file, output the clustering obtained by running k-means 50 times (with
k = 4) and taking the one with the lowest error. Note that the k-means training function will run
much faster if you set doPlot = false or just remove this argument.

2.2 Selecting k in k-means

We now turn to the task of choosing the number of clusters k.

1. Explain why the kMeansError function should not be used to choose k.

2. Explain why even evaluating the kMeansError function on test data still wouldn’t be a suitable ap-
proach to choosing k.

3. Hand in a plot of the minimum error found across 50 random initializations, as you vary k from 1 to
10.

4. The elbow method for choosing k consists of looking at the above plot and visually trying to choose
the k that makes the sharpest “elbow” (the biggest change in slope). What values of k might be
reasonable according to this method? Note: there is not a single correct answer here; it is somewhat
open to interpretation and there is a range of reasonable answers.

2.3 k-Medians

The data in clusterData2.mat is the exact same as the above data, except it has 4 outliers that are very far
away from the data.

1. Using the clustering2Dplot function, output the clustering obtained by running k-means 50 times (with
k = 4) on clusterData2.mat and taking the one with the lowest error. Are you satisfied with the result?

2. What values of k might be chosen by the elbow method for this dataset?

3. Implement the k-medians algorithm, which assigns examples to the nearest wc in the L1-norm and to
updates the wc by setting them to the “median” of the points assigned to the cluster (we define the
d-dimensional median as the concatenation of the median of the points along each dimension). Hand
in your code and plot obtained with 50 random initializations for k = 4.

4. Using the L1-norm version of the error (where yi now represents the closest median in the L1-norm),

f(w1, w2, . . . , wk, y1, y2, . . . , yn) =

n∑
i=1

‖xi − wyi‖1 =

n∑
i=1

d∑
j=1

|xij − wyij |,

what value of k would be chosen by the elbow method under this strategy? Are you satisfied with this
result?
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2.4 Very-Short Answer Questions

1. Does the standard k-means clustering algorithm always yield the optimal clustering solution for a given
k?

2. If your set out to minimize the distance between each point and its mean in a k-means clustering, what
value of k minimizes this cost? Is this value useful?

3. Describe a dataset with k clusters where k-means would not be able to find the true clusters.

3 More Unsupervised Learning

3.1 Density-Based Clustering

If you run the function example dbCluster, it will apply the basic density-based clustering algorithm to the
dataset from the previous part. The final output should look like this:

(The right plot is zoomed in to show the non-outlier part of the data.) Even though we know that each
object was generated from one of four clusters (and we have 4 outliers), the algorithm finds 6 clusters and
does not assign some of the original non-outlier objects to any cluster. However, the clusters will change
if we change the parameters of the algorithm. Find and report values for the two parameters (radius and
minPts) such that the density-based clustering method finds:

1. The 4 “true” clusters.

2. 3 clusters (merging the top two, which also seems like a reasonable interpretaition).

3. 2 clusters.

4. 1 cluster (consisting of the non-outlier points).

3.2 Vector Quantization

Discovering object groups is one motivation for clustering. Another motivation is vector quantization, where
we find a prototype point for each cluster and replace points in the cluster by their prototype. If our inputs
are images, we could use vector quantization on the set of RGB pixel values as a simple image compression
algorithm.
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Your task is to implement this simple image compression algorithm by writing a quantizeImage and a
deQuantizeImage function. The quantizeImage function should take the name of an image file (like
“dog.png” for the provided image) and a number b as input. It should use the pixels in the image as
examples and the 3 colour channels as features, and run k-means clustering on this data with 2b clusters.
The code should store the cluster means and return four arguments: the cluster assignments y, the means
W , the number of rows in the image nRows, and the number of columns nCols. The deQuantizeImage

function should take these four arguments and return a version of the image (the same size as the original)
where each pixel’s original colour is replaced with the nearest prototype colour.

To understand why this is compression, consider the original image space. Say the image can take on the
values 0, 1, . . . , 254, 255 in each colour channel. Since 28 = 256 this means we need 8 bits to represent each
colour channel, for a total of 24 bits per pixel. Using our method, we are restricting each pixel to only take
on one of 2b colour values. In other words, we are compressing each pixel from a 24-bit colour representation
to a b-bit colour representation by picking the 2b prototype colours that are “most representative” given the
content of the image. So, for example, if b = 6 then we have 4x compression.

Note: you can read the image using “imread” function in the PyPlot package (it takes a file name and
returns a nRows by nCols by 3 array containing the images RGB values). Similarly, the “imshow” function
can display an image represented in this format. You may find it help to use the “reshape” function.

1. Hand in your quantizeImage and deQuantizeImage functions.

2. Show the image obtained if you encode the colours using 1, 2, 4, and 6 bits per pixel (instead of the
original 24-bits).

3.3 Very-Short Answer Questions

1. Suppose that you had only two features and that they have very-different scales (like kilograms vs.
milligrams). How would this affect the result of density-based clustering?

2. Name a key advantage and drawback of using a supervised outlier detection method rather than an
unsupervised method?

3. Given an n×2 matrix X and a test query x̂, what is the cost of finding all rows i in X where ‖xi−x̂‖ ≤ r
for some r > 0? How does this cost change if I give you a hash table that assigns rows of X to keys that
divide the space into a 2D grid of squares with radius r, if we use k to denote the maximum number
of points hashed to the same key value?

4 Matrix Notation and Linear Regression

4.1 Converting to Matrix/Vector/Norm Notation

Using our standard supervised learning notation (X, y, w) express the following functions in terms of vectors,
matrices, and norms (there should be no summations or maximums).

1.
∑n
i=1 |wTxi − yi|.

2. maxi∈{1,2,...,n} |wTxi − yi|+ λ
2

∑d
j=1 w

2
j .

3.
∑n
i=1 vi(w

Txi − yi)2 + λ
∑d
j=1 |wj |.

You can use V to denote a diagonal matrix that has the (non-negative) values vi along the diagonal. The
“regularization parameter” λ is a non-negative scalar.

5



4.2 Minimizing Quadratic Functions as Linear Systems

Write finding a minimizer w of the functions below as a system of linear equations (using vector/matrix
notation and simplifying as much as possible). Note that all the functions below are convex so finding a w
with ∇f(w) = 0 is sufficient to minimiize the functions (but show your work in getting to this point).

1. f(w) = 1
2‖w − u‖

2.

2. f(w) = 1
2‖w‖

2 + wTXT y .

3. f(w) = 1
2‖Xw − y‖

2 + 1
2w

TΛw.

4. f(w) = 1
2

∑n
i=1 vi(w

Txi − yi)2.

Above we assume that u is a d by 1 vector, and Λ is a d by d diagonal matrix with positive entries along the
diagonal.

Hint: Once you convert to vector/matrix notation, you can use the results from class to quickly compute
these quantities term-wise. As a sanity check for your derivation, make sure that your results have the right
dimensions.

4.3 Linear Regresion with Bias Variable

If you run the script example nonLinear, it will:

1. Load a one-dimensional regression dataset.

2. Fit a least-squares linear regression model.

3. Report the training error.

4. Report the test error (on a dataset not used for training).

5. Draw a figure showing the training data and what the linear model looks like.

Unfortunately, this is an awful model of the data. The average squared training error on the data set is over
28000 (as is the test error), and the figure produced by the demo confirms that the predictions are usually
nowhere near the training data:
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The y-intercept of this data is clearly not zero (it looks like it’s closer to 200), so we should expect to improve
performance by adding a bias variable, so that our model is

yi = wTxi + w0.

instead of
yi = wTxi.

Write a new function, leastSquaresBias, that has the same input/model/predict format as the leastSquares
function, but that adds a bias variable w0. Hand in your new function, the updated plot, and the updated
training/test error.

Hint: recall that adding a bias w0 is equivalent to adding a column of ones to the matrix X. Don’t forget
that you need to do the same transformation in the predict function.

4.4 Linear Regression with Polynomial Basis

Adding a bias variable improves the prediction substantially, but the model is still problematic because the
target seems to be a non-linear function of the input. Write a new function, leastSquaresBasis(x,y,p), that
takes a data vector x (i.e., assuming we only have one feature) and the polynomial order p. The function
should perform a least squares fit based on a matrix Z where each of its rows contains the values (xi)

j for
j = 0 up to p. E.g., leastSquaresBasis(x,y,3) should form the matrix

Z =


1 x1 (x1)2 (x1)3

1 x2 (x2)2 (x2)3

...
1 xn (xn)2 (xN )3

 ,
and fit a least squares model based on it. Hand in the new function, and report the training and test error
for p = 0 through p = 10. Explain the effect of p on the training error and on the test error.

Note: for this question we’ll assume d = 1 (we’ll discuss polynomial bases with more input features later in
the course).

Hints: To keep the code simple and reduce the chance of having errors, you may want to write a new function
polyBasis that you can use for transforming both the training and testing data.

4.5 Manual Search for Optimal Basis

Polynomials are a flexible class of functions, but there is structure in this data that is not well-modelled by
polynomials. Try to find a nonlinear basis that gives the best performance on this dataset in terms of test
error. Report the basis that you use and the training/test score that you achieve.

Hint: the data seems to have periodic behaviour, and it’s possible to obtain training and test errors below
60.

4.6 Very-Short Answer Questions

1. In this question, why are we computing the squared error (yi − ŷi)
2 and not testing the equality

(yi = ŷi)?

2. Describe a simple 2-feature (d = 2) case where the least squares estimate would not be unique.
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3. What is the computational complexity of computing the closed-form (exact) solution to a linear least
squares problem where we have one feature (d = 1) and use polynomial basis of degree p?

4. In what circumstance would a regression tree with linear regressions at the leaves be a better choice
than a linear least squares regression model?

5 Robust Regression and Gradient Descent

The script example outliers loads a one-dimensional regression dataset that has a non-trivial number of
‘outlier’ data points. These points do not fit the general trend of the rest of the data, and pull the least
squares model away from the main downward trend that most data points exhibit:

5.1 Weighted Least Squares in One Dimension

One of the most common variations on least squares is weighted least squares. In this formulation, we have
a weight vi for every training example. To fit the model, we minimize the weighted squared error,

f(w) =
1

2

n∑
i=1

vi(w
Txi − yi)2.

In this formulation, the model focuses on making the error small for examples i where vi is high. Similarly,
if vi is low then the model allows a larger error.

Write a model function, weightedLeastSquares(X,y,v), that implements this model (note that a previous
question asks you to show how this formulation can be solved as a linear system). Apply this model to the
data containing outliers, setting vi = 1 for the first 400 data points and vi = 0.1 for the last 100 data points
(which are the outliers). Hand in your function and the updated plot.
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5.2 Smooth Approximation to the L1-Norm

Unfortunately, we typically do not know the identities of the outliers. In situations where we suspect that
there are outliers, but we do not know which examples are outliers, it makes sense to use a loss function that
is more robust to outliers. In class, we discussed using the sum of absolute values objective,

f(w) =

n∑
i=1

|wTxi − yi|.

This is less sensitive to outliers than least squares, but it is non-differentiable and harder to optimize.
Nevertheless, there are various smooth approximations to the absolute value function that are easy to
optimize. One possible approximation is to use the log-sum-exp approximation of the max function2

|r| ≈ log(exp(r) + exp(−r)).

Using this approximation, we obtain an objective of the form

f(w) =
n∑
i=1

log
(
exp(wTxi − yi) + exp(yi − wTxi)

)
.

which is smooth but less sensitive to outliers than the squared error. Derive the gradient ∇f of this function
with respect to w. You should show your work but you do not have to express the final result in matrix
notation.

5.3 Robust Regression

The function example gradient is the same as example outlier, except that it fits the least squares model
using a gradient descent method. You’ll see that it produces the same fit as we obtained using the normal
equations.

The typical input to a gradient method is a function that, given w, returns f(w) and ∇f(w). See funObj
in the leastSquaresGradient function for an example. Note that leastSquaresGradient also has a numerical
check that the gradient code is approximately correct, since implementing gradients is often error-prone.3

An advantage of gradient-based strategies is that they are able to solve problems that do not have closed-
form solutions, such as the formulation from the previous section. The function robustRegression has most
of the implementation of a gradient-based strategy for fitting the robust regression model under the log-sum-
exp approximation. The only part missing is the function and gradient calculation inside the funObj code.
Modify this function to implement the objective function and gradient based on the smooth approximation
to the absolute value function (from the previous section). Hand in your code, as well as the plot obtained
using this robust regression appraoch.

5.4 Very-Short Answer Questions

1. In class we considered 4 general strategies for outlier detection (model-based, graph-based, cluster-
based, distance-based). Pick two of these and describe whether they would be effective for detecting
the outliers in this dataset.

2Other possibilities are the Huber loss, |r| ≈
√
r2 + ε for some small ε.

3Though sometimes the numerical gradient checker itself can be wrong. For a lot more on numerical differentiation you can
take CPSC 303.
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2. When should we consider using gradient descent to approximate the solution to the least squares
problem instead of exactly solving it with the closed form solution?

3. Why are we smoothing the absolute value? Why can’t we just set the gradient to 0 and solve a linear
system?
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