\[f(z, w) \] is symmetric in \(w, z \)
02) Use geodesic distance instead of L_2 distance

$D(i,j) = ||u_i - u_j||_2$

[same as before]

2) Construct a graph A → adjacency matrix G

$G_{ij} = \text{Edge from } i \rightarrow j$ if j is a k-nearest neighbour of i

write the distance in D

3) Need a distance metric G for Dijkstra code

G_{ij}: compute the shortest distance d_{ij} from $i \rightarrow j$ on the graph

Input to Dijkstra code → matrix G

$G_{ij} = \infty$ if i is not connected to j

else $G_{ij} = d_{ij}$

4) Use distance d_{ij} [output from Dijkstra] instead of D_{ij} in the MOS code.

Subtleties

G needs to be symmetric (graph needs to be undirected)

Don't include the point i in its nearest neighbours $\Rightarrow D(i,i) = \infty$

if graph is disconnected, there might be (i,j) s.t. $d_{ij} = \infty$ in this case just d_{ij} → maximum finite distance across (i,j)