CPSC 340: Tutorial 8

Aaron Mishkin

UBC

W2017

Aaron Mishkin (UBC)

CPSC 340: Tutorial 8

W2017 1 / 11

- ∢ ∃ ▶

Image: A matrix and a matrix

1 Multi-Class Classification

2 Assignment Code

Image: Image:

3 🕨 🖌 3

• There is a feature vector x_i and a categorical label y_i for every example i = 1...n.

- There is a feature vector x_i and a categorical label y_i for every example i = 1...n.
- In binary classification every label y_i was either -1 or 1.

- There is a feature vector x_i and a categorical label y_i for every example i = 1...n.
- In binary classification every label y_i was either -1 or 1.
- In multi-class classification every label y_i is one of k classes. For example:

- There is a feature vector x_i and a categorical label y_i for every example i = 1...n.
- In binary classification every label y_i was either -1 or 1.
- In multi-class classification every label y_i is one of k classes. For example:

•
$$y_i \in \{1, 2, ..., k\}$$

- There is a feature vector x_i and a categorical label y_i for every example i = 1...n.
- In binary classification every label y_i was either -1 or 1.
- In multi-class classification every label y_i is one of k classes. For example:
 - $y_i \in \{1, 2, ..., k\}$
 - $y_i \in \{ \text{dog}, \text{cat}, \text{canary}... \}$

- There is a feature vector x_i and a categorical label y_i for every example i = 1...n.
- In binary classification every label y_i was either -1 or 1.
- In multi-class classification every label y_i is one of k classes. For example:
 - $y_i \in \{1, 2, ..., k\}$
 - $y_i \in \{ dog, cat, canary... \}$
 - etc.

- There is a feature vector x_i and a categorical label y_i for every example i = 1...n.
- In binary classification every label y_i was either -1 or 1.
- In multi-class classification every label y_i is one of k classes. For example:
 - $y_i \in \{1, 2, ..., k\}$
 - $y_i \in \{ dog, cat, canary... \}$
 - etc.
- Our basic goal remains the same: train a model to correctly predict classes for new examples.

• A separate binary classifier is trained for each class in "One vs All" logistic regression.

- A separate binary classifier is trained for each class in "One vs All" logistic regression.
- This requires fitting k weight vectors. We use w_c to refer the weight vector trained to predict class c.

- A separate binary classifier is trained for each class in "One vs All" logistic regression.
- This requires fitting k weight vectors. We use w_c to refer the weight vector trained to predict class c.
- The parameter for the overall model is the matrix *W*:

$$W = \begin{bmatrix} \vdots & \vdots & & \vdots \\ w_1 & w_2 & \dots & w_k \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

- A separate binary classifier is trained for each class in "One vs All" logistic regression.
- This requires fitting k weight vectors. We use w_c to refer the weight vector trained to predict class c.
- The parameter for the overall model is the matrix W:

$$W = \begin{bmatrix} \vdots & \vdots & & \vdots \\ w_1 & w_2 & \dots & w_k \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

• The dimensions of W are $d \times k$.

To predict on example x_i we compute w_c[⊤]x_i for every class c and predict y_i = argmax_c{w_c[⊤]x_i}.

- To predict on example x_i we compute w_c[⊤]x_i for every class c and predict y_i = argmax_c{w_c[⊤]x_i}.
- This is equivalent to $y_i = \operatorname{argmax}_c \{x_i^\top W\}$.

- To predict on example x_i we compute w_c[⊤]x_i for every class c and predict y_i = argmax_c{w_c[⊤]x_i}.
- This is equivalent to $y_i = \operatorname{argmax}_c \{x_i^\top W\}$.
 - We are taking the maximum over elements of the row vector.

- To predict on example x_i we compute w_c[⊤]x_i for every class c and predict y_i = argmax_c{w_c[⊤]x_i}.
- This is equivalent to $y_i = \operatorname{argmax}_c\{x_i^\top W\}$.
 - We are taking the maximum over elements of the row vector.
- To predict multiple examples at once:

$$Y = argmax_c \{XW\}$$

.

- To predict on example x_i we compute w_c[⊤]x_i for every class c and predict y_i = argmax_c{w_c[⊤]x_i}.
- This is equivalent to $y_i = \operatorname{argmax}_c\{x_i^\top W\}$.
 - We are taking the maximum over elements of the row vector.
- To predict multiple examples at once:

$$Y = \operatorname{argmax}_{c} \{XW\}$$

• We will use w_{y_i} to refer to the column of W corresponding to the correct label for x_i .

• What can go wrong with "one vs all" logistic regression?

Softmax Loss

- What can go wrong with "one vs all" logistic regression?
- The **softmax loss** is the objective used in multi-class logistic regression:

$$f(W) = \sum_{i=1}^{n} \left[-w_{y_i}^{\top} x_i + \log\left(\sum_{c=1}^{k} \exp(w_c^{\top} x_i)\right) \right]$$

- What can go wrong with "one vs all" logistic regression?
- The **softmax loss** is the objective used in multi-class logistic regression:

$$f(W) = \sum_{i=1}^{n} \left[-w_{y_i}^{\top} x_i + \log\left(\sum_{c=1}^{k} \exp(w_c^{\top} x_i)\right) \right]$$

• The log-sum-exp is a smooth approximation to the max function. This means soft max loss is a differentiable approximation to:

$$\sum_{i=1}^{n} \left[-w_{y_i}^\top x_i + \max_{c=1}^{k} (w_c^\top x_i) \right]$$

- What can go wrong with "one vs all" logistic regression?
- The **softmax loss** is the objective used in multi-class logistic regression:

$$f(W) = \sum_{i=1}^{n} \left[-w_{y_i}^{\top} x_i + \log\left(\sum_{c=1}^{k} \exp(w_c^{\top} x_i)\right) \right]$$

• The log-sum-exp is a smooth approximation to the max function. This means soft max loss is a differentiable approximation to:

$$\sum_{i=1}^{n} \left[-w_{y_i}^{\top} x_i + \max_{c=1}^{k} (w_c^{\top} x_i) \right]$$

• In other words, we want $w_c^{\top} x_i$ to be largest for the correct label $c = y_i$.

• What are we indicating? Usually set membership or the satisfaction of a condition.

Indicator Functions

- What are we indicating? Usually set membership or the satisfaction of a condition.
- Indicator functions (also characteristic functions) are functions of the form:

$$I_A(x) = egin{cases} 1 & ext{if } x \in A \ 0 & ext{otherwise} \end{cases}$$

Indicator Functions

- What are we indicating? Usually set membership or the satisfaction of a condition.
- Indicator functions (also characteristic functions) are functions of the form:

$$I_A(x) = egin{cases} 1 & ext{if } x \in A \ 0 & ext{otherwise} \end{cases}$$

• In the case of softmax loss, the following indicator function is useful:

$$I_{y_i}(c) = egin{cases} 1 & ext{if } c = y_i \ 0 & ext{otherwise} \end{cases}$$

Indicator Functions

- What are we indicating? Usually set membership or the satisfaction of a condition.
- Indicator functions (also characteristic functions) are functions of the form:

$$I_A(x) = egin{cases} 1 & ext{if } x \in A \ 0 & ext{otherwise} \end{cases}$$

• In the case of softmax loss, the following indicator function is useful:

$$I_{y_i}(c) = \begin{cases} 1 & \text{if } c = y_i \\ 0 & \text{otherwise} \end{cases}$$

• Keep this in mind when deriving the gradient.

1 Multi-Class Classification

2 Assignment Code

< A

3 🕨 🖌 3

Let's take a look at the assignment code!

1 Multi-Class Classification

2 Assignment Code

3 🕨 🖌 3

- Recall that we denote the normal distribution by $N(\mu, \sigma^2)$
- Recall that the p.d.f for the normal distribution is:

$$p(x) = rac{1}{\sqrt{2\sigma^2\pi}}\exp(-rac{(\mu-x)^2}{2\sigma^2})$$

- Assume $y_i|x_i, w \sim N(w^T x_i, 1)$ and $w \sim N(0, 1)$.
- We can show that MAP estimation yields L₂ regularized least squares regression under these assumptions!

(1)