Tutorial 6

Convexity and Regularization

Adapted from Issam Laradji's Slides

Outline

- Convex Functions
- Regularization
- Assignment Code

Definition of convexity: Jensen's Inequality

• A function f is convex if $\forall x_1, x_2 \in \mathbb{R}; \forall t \in [0, 1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Intuition and Proofs

- Why do we like convex functions?
 - Hint: What does Jensen's inequality say about optima?
- How do we prove that functions are convex?

1. Linear functions are convex

- f(x) = Ax is a convex function
 - where A is some 2D matrix in $\mathbb R$
- ▶ proof.
 - A function f is convex if for $\forall x_1, x_2 \in \mathbb{R}; \forall t \in [0, 1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

By definition, a linear function is:

$$f(tx_1 + (1 - t)x_2) = A(tx_1 + (1 - t)x_2)$$

= $tAx_1 + (1 - t)Ax_2$ (1)
= $tf(x_1) + (1 - t)f(x_2)$

 Therefore, the linear function satisfies the convex inequality

2. Affine functions are convex

- f(x) = Ax + b is convex where b is some vector in \mathbb{R}
- An Affine transformation is a linear transformation Ax plus translation b
 - > All linear functions are affine functions but not vice versa
- proof.
 - A function f is convex if for $\forall x_1, x_2 \in \mathbb{R}; \forall t \in [0, 1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

By definition, an affine function is:

$$f(tx_1 + (1 - t)x_2) = A(tx_1 + (1 - t)x_2) + b$$

= $tAx_1 + tb + (1 - t)Ax_2 + (1 - t)b$
= $tf(x_1) + (1 - t)f(x_2)$
(2)

 Therefore, the affine function satisfies the convex inequality

3. Adding two convex functions results in a convex function

- f(x) = h(x) + g(x) is a convex function
 - if h(x) and g(x) are convex
- ▶ proof.
 - A function f is convex if for $\forall x_1, x_2 \in \mathbb{R}; \forall t \in [0, 1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Adding two convex functions:

$$f(tx_{1} + (1 - t)x_{2}) = h(tx_{1} + (1 - t)x_{2}) + g(tx_{1} + (1 - t)x_{2})$$

$$\leq th(x_{1}) + tg(x_{1}) + (1 - t)h(x_{2}) + (1 - t)g(x_{2})$$

$$= tf(x_{1}) + (1 - t)f(x_{2})$$
(3)

4. Composition with an affine mapping

- f(x) = g(Ax + b) is convex if g is convex
- proof.

$$\begin{split} f(tx_1+(1-t)x_2) &= g(A(tx_1+(1-t)x_2)+b) \\ &= g(t(Ax_1+b)+(1-t)(Ax_2+b)) \\ &\leq tg(Ax_1+b)+(1-t)g(Ax_2+b) \\ &= tf(x_1)+(1-t)f(x_2) \end{split}$$

- ► Therefore, knowing that Ax + b is convex it is sufficient to show that f(z) is convex by replacing Ax + b with z.
 - might be helpful in the assignment.

5. Pointwise maximum

- The max of two convex functions is convex
- $f = \max(f_1, f_2)$ is convex

► proof.

$$f(tx_{1} + (1 - t)x_{2}) = \max(f_{1}(tx_{1} + (1 - t)x_{2}), f_{2}(tx_{1} + (1 - t)x_{2}))$$

$$\leq \max(tf_{1}(x_{1}) + (1 - t)f_{1}(x_{2}), tf_{2}(x_{1}) + (1 - t)f_{2}(x_{2}))$$

$$\leq \max(tf_{1}(x_{1}), tf_{2}(x_{1})) +$$

$$\max((1 - t)f_{1}(x_{2}), (1 - t)f_{2}(x_{2}))$$

$$= tf(x_{1}) + (1 - t)f(x_{2})$$
(5)

5. Norms are convex functions

- For all norms ||x||_p = (∑^d_{i=1} |x_i|^p)^{1/p} where p ≥ 1 the following properties hold:
 - $||x|| \ge 0, \forall x \in R^d$
 - ||x|| = 0 iff x = 0
 - ► $||ax|| = |a|||x||, \forall a \in R, x \in R^d$ (Homogeniety)
 - ▶ $||x_1 + x_2|| \le ||x_1|| + ||x_2||, \forall x_1, x_2 \in R^d$ (Triangle inequality)
- **proof.** Norm functions are convex:

6. Second-derivative test

- If the second derivative of a function f(x) is positive
 ∀x ∈ ℝ then f is convex
- ▶ proof.
- ► Using second order Taylor expansion, for some ∀x₁, x₂ ∈ ℝ, ∀t ∈ [0, 1]:

$$f(x_2) = f(x_1) + \nabla f(x_1)^T (x_2 - x_1) + (x_2 - x_1)^T \nabla^2 f(x_1 + t(x_2 - x_1))(x_2 - x_1)$$
(7)

• Since
$$\nabla^2 f(x) > 0$$

$$(x_2 - x_1)^T \nabla^2 f(x_1 + t(x_2 - x_1))(x_2 - x_1) \ge 0$$
 (8)

Therefore,

$$f(x_2) \ge f(x_1) + \nabla f(x_1)^T (x_2 - x_1)$$
(9)

6. Second-derivative test proof

• Let $x_1 < x_2$ and $y = tx_1 + (1 - t)x_2$, then

$$f(x_1) \ge f(y) + \nabla f(y)^T (y - x_1) f(x_2) \ge f(y) + \nabla f(y)^T (y - x_2)$$
(10)

► Multiply the first inequality by t and second by (1 − t) and add them to get,

$$tf(x_{1})+(1-t)f(x_{2}) \geq tf(y) + (1-t)f(y) + t\nabla f(y)^{T}(y-x_{1}) + (1-t)\nabla f(y)^{T}(y-x_{2}) \Rightarrow tf(x_{1}) + (1-t)f(x_{2}) \geq f(y) + \nabla f(y)^{T}((t-1)x_{1} + (1-t)x_{2}) + \nabla f(y)^{T}((t-1)x_{2} + (1-t)x_{1})$$
(11)

Therefore,

$$tf(x_1) + (1-t)f(x_2) \ge f(tx_1 + (1-t)x_2)$$
(12)

6. Second-derivative test

- Geometrically:
 - When $\nabla f(x)$ is negative, f(x) decreases as x increases.
 - When $\nabla f(x)$ is positive, f(x) increases as x increases.
 - Therefore, the minimum is at x = a where the gradient switches sign.

Warning: Products

- The product of two convex functions is not necessarily convex.
- Consider f(x) = x and g(x) = -x.
- Is $f(x)g(x) = -x^2$ a convex function?
 - Can you explain why?

Overfitting

Overfitting and Regularization

- Overfitting on the training set is a common problem and leads to worse test error.
- Models that are too "flexible" or "complex" for the available data will overfit.
 - Intuitively, the model is learning from spurious noise in the training set.
- Regularization tries to restrict the set of learnable models by adding a penalty to the loss function.

L2 Regularization

- Add the L2 norm of w to the loss function to penalize model complexity.
- The Loss function becomes

$$f(w) = L(w, X, y) + \frac{\lambda}{2} * ||w||_2^2$$

- $||w||_2^2$ will be large when the entries of w are large.
 - How does this penalize complex models?

- ▶ Penalize with the L1 norm *w* instead of the L2 norm.
- The Loss function becomes

$$f(w) = L(w, X, y) + \lambda * ||w||_1$$

- How does this differ from L2 regularization?
 - Hint: Differentiability.
 - Hint: Size of penalties.

The Geometry Behind Regularization

- ► We can view L2 regularization as constraining ||w||²₂ to be less than some radius r.
 - r is uniquely determined by the choice of λ .
- Geometrically, we are restricting w to be in a hypersphere of radius r around the origin.
- Similarly, we can view L1 regularization as restricting w to be in a hypercube of side length r.

L1 vs L2 Regularization: Feature Selection

- ► L2 regularization does not perform feature selection.
 - Generally, elements of w are only set to zero as approaches infinity.
- ► L1 regularized regression does feature selection.
 - Elements of *w* can be set exactly to 0.
- The geometric interpretation of regularization gives useful intuition.

L1 vs L2 Regularization: Unique Solutions

- ► L2 regularized regression always has a unique solution.
- Why is this true? Think about the case where two features of X are identical.
 - Uniqueness is a common motivation for L2 regularization in statistics.
- L1 regularized regression does not always have a unique solution.
 - Try considering the case above again.

Questions on Regularization?

Ask away!

Bonus Slide: Bias vs. Variance!

- Regularization is good for models with high sampling variance.
 - High Sampling Variance means the model parameters fluctuate significantly with different training sets.
- Regularization limits space of learnable models, which reduces variance.
- However, it introduces bias the learned model isn't the "best" possible according to the training error.