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Convexity and Regularization

Adapted from Issam Laradji’s Slides
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I Regularization
I Assignment Code



Definition of convexity: Jensen’s Inequality
I A function f is convex if ∀x1, x2 ∈ R;∀t ∈ [0, 1]

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)



Intuition and Proofs

I Why do we like convex functions?
I Hint: What does Jensen’s inequality say about optima?

I How do we prove that functions are convex?



1. Linear functions are convex
I f (x) = Ax is a convex function

I where A is some 2D matrix in R
I proof.

I A function f is convex if for ∀x1, x2 ∈ R; ∀t ∈ [0, 1]

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

I By definition, a linear function is:

f (tx1 + (1− t)x2) = A(tx1 + (1− t)x2)
= tAx1 + (1− t)Ax2

= tf (x1) + (1− t)f (x2)
(1)

I Therefore, the linear function satisfies the convex
inequality



2. Affine functions are convex
I f (x) = Ax + b is convex where b is some vector in R
I An Affine transformation is a linear transformation Ax plus

translation b
I All linear functions are affine functions but not vice versa

I proof.
I A function f is convex if for ∀x1, x2 ∈ R; ∀t ∈ [0, 1]

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)
I By definition, an affine function is:

f (tx1 + (1− t)x2) = A(tx1 + (1− t)x2) + b
= tAx1 + tb + (1− t)Ax2 + (1− t)b
= tf (x1) + (1− t)f (x2)

(2)
I Therefore, the affine function satisfies the convex

inequality



3. Adding two convex functions results in a convex
function

I f (x) = h(x) + g(x) is a convex function
I if h(x) and g(x) are convex

I proof.
I A function f is convex if for ∀x1, x2 ∈ R; ∀t ∈ [0, 1]

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

I Adding two convex functions:

f (tx1 + (1− t)x2) = h(tx1 + (1− t)x2) + g(tx1 + (1− t)x2)
≤ th(x1) + tg(x1) + (1− t)h(x2)+
(1− t)g(x2)
= tf (x1) + (1− t)f (x2)

(3)



4. Composition with an affine mapping

I f (x) = g(Ax + b) is convex if g is convex
I proof.

f (tx1 + (1− t)x2) = g(A(tx1 + (1− t)x2) + b)
= g(t(Ax1 + b) + (1− t)(Ax2 + b))
≤ tg(Ax1 + b) + (1− t)g(Ax2 + b)
= tf (x1) + (1− t)f (x2)

(4)

I Therefore, knowing that Ax + b is convex it is sufficient to
show that f (z) is convex by replacing Ax + b with z .

I might be helpful in the assignment.



5. Pointwise maximum

I The max of two convex functions is convex
I f = max(f1, f2) is convex
I proof.

f (tx1 + (1− t)x2) = max(f1(tx1 + (1− t)x2), f2(tx1 + (1− t)x2))
≤ max(tf1(x1) + (1− t)f1(x2), tf2(x1) + (1− t)f2(x2))
≤ max(tf1(x1), tf2(x1))+
max((1− t)f1(x2), (1− t)f2(x2))
= tf (x1) + (1− t)f (x2)

(5)



5. Norms are convex functions

I For all norms ||x ||p = (∑d
i=1 |xi |p)

1
p where p ≥ 1 the

following properties hold:
I ||x || ≥ 0, ∀x ∈ Rd

I ||x || = 0 iff x = 0
I ||ax || = |a|||x ||, ∀a ∈ R, x ∈ Rd (Homogeniety)
I ||x1 + x2|| ≤ ||x1||+ ||x2||,∀x1, x2 ∈ Rd (Triangle

inequality)
I proof. Norm functions are convex:

||tx1 + (1− t)x2|| ≤ ||tx1||+ ||(1− t)x2|| (Triangle Inequality)
= t||x1||+ (1− t)||x2|| (Homogeniety)

(6)



6. Second-derivative test
I If the second derivative of a function f (x) is positive
∀x ∈ R then f is convex

I proof.
I Using second order Taylor expansion, for some
∀x1, x2 ∈ R,∀t ∈ [0, 1]:

f (x2) = f (x1)+∇f (x1)T (x2−x1)+(x2−x1)T∇2f (x1 +t(x2−x1))(x2−x1)
(7)

I Since ∇2f (x) > 0

(x2 − x1)T∇2f (x1 + t(x2 − x1))(x2 − x1) ≥ 0 (8)

I Therefore,

f (x2) ≥ f (x1) +∇f (x1)T (x2 − x1) (9)



6. Second-derivative test proof
I Let x1 < x2 and y = tx1 + (1− t)x2, then

f (x1) ≥ f (y) +∇f (y)T (y − x1)
f (x2) ≥ f (y) +∇f (y)T (y − x2)

(10)

I Multiply the first inequality by t and second by (1− t) and
add them to get,

tf (x1)+(1− t)f (x2) ≥ tf (y) + (1− t)f (y)+
t∇f (y)T (y − x1) + (1− t)∇f (y)T (y − x2)
⇒ tf (x1) + (1− t)f (x2) ≥ f (y)+
∇f (y)T ((t − 1)x1 + (1− t)x2) +∇f (y)T ((t − 1)x2 + (1− t)x1)

(11)

I Therefore,

tf (x1) + (1− t)f (x2) ≥ f (tx1 + (1− t)x2) (12)



6. Second-derivative test
I Geometrically:

I When ∇f (x) is negative, f (x) decreases as x increases.
I When ∇f (x) is positive, f (x) increases as x increases.
I Therefore, the minimum is at x = a where the gradient

switches sign.



Warning: Products

I The product of two convex functions is not necessarily
convex.

I Consider f (x) = x and g(x) = −x .
I Is f (x)g(x) = −x2 a convex function?

I Can you explain why?



Overfitting



Overfitting and Regularization

I Overfitting on the training set is a common problem and
leads to worse test error.

I Models that are too “flexible” or “complex” for the
available data will overfit.

I Intuitively, the model is learning from spurious noise in
the training set.

I Regularization tries to restrict the set of learnable models
by adding a penalty to the loss function.



L2 Regularization

I Add the L2 norm of w to the loss function to penalize
model complexity.

I The Loss function becomes

f (w) = L(w ,X , y) + λ

2 ∗ ||w ||
2
2

I ||w ||22 will be large when the entries of w are large.
I How does this penalize complex models?



L1: A Different Flavor

I Penalize with the L1 norm w instead of the L2 norm.
I The Loss function becomes

f (w) = L(w ,X , y) + λ ∗ ||w ||1
I How does this differ from L2 regularization?

I Hint: Differentiability.
I Hint: Size of penalties.



The Geometry Behind Regularization
I We can view L2 regularization as constraining ||w ||22 to be

less than some radius r.
I r is uniquely determined by the choice of λ.

I Geometrically, we are restricting w to be in a hypersphere
of radius r around the origin.

I Similarly, we can view L1 regularization as restricting w to
be in a hypercube of side length r.



L1 vs L2 Regularization: Feature Selection
I L2 regularization does not perform feature selection.

I Generally, elements of w are only set to zero as λ
approaches infinity.

I L1 regularized regression does feature selection.
I Elements of w can be set exactly to 0.

I The geometric interpretation of regularization gives useful
intuition.



L1 vs L2 Regularization: Unique Solutions

I L2 regularized regression always has a unique solution.
I Why is this true? Think about the case where two features

of X are identical.
I Uniqueness is a common motivation for L2 regularization

in statistics.
I L1 regularized regression does not always have a unique

solution.
I Try considering the case above again.



Questions on Regularization?

I Ask away!



Bonus Slide: Bias vs. Variance!

I Regularization is good for models with high sampling
variance.

I High Sampling Variance means the model parameters
fluctuate significantly with different training sets.

I Regularization limits space of learnable models, which
reduces variance.

I However, it introduces bias - the learned model isn’t the
“best” possible according to the training error.


