Tutorial 6

Convexity and Regularization

Adapted from Issam Laradji's Slides



Outline

» Convex Functions
» Regularization
» Assignment Code



Definition of convexity: Jensen's Inequality
» A function f is convex if Vxi,x € R;Vt € [0, 1]

f(tX]_ + (1 - t)Xz) S tf(X]_) + (1 - t)f(Xz)

fix)=x?, x;==3,x;=4,t€[0,1]

25 — fix)=x?
— gl)=ftxi+(1-t)x)
— h(t)=t-fix))+(1- 0 fixa)

20 4




Intuition and Proofs

» Why do we like convex functions?
» Hint: What does Jensen's inequality say about optima?

» How do we prove that functions are convex?



1. Linear functions are convex

» f(x) = Ax is a convex function
» where A is some 2D matrix in R
» proof.

» A function f is convex if for Vx1,x € R;Vt € [0,1]
f(txi + (1 — t)xo) < tf(x1) + (1 — t)f(x2)

» By definition, a linear function is:

f(txa+ (1 —t)xo) = A(txs + (1 — t)x2)
= tAx1 + (1 — t)AX2 (1)
= tf(x1) + (1 — t)f(x)

» Therefore, the linear function satisfies the convex
inequality



2. Affine functions are convex
» f(x) = Ax + b is convex where b is some vector in R
» An Affine transformation is a linear transformation Ax plus

translation b
» All linear functions are affine functions but not vice versa

» proof.
» A function f is convex if for Vx1,x € R;Vt € [0,1]

f(ba + (1 —t)x) < tf(x1) + (1 — t)f(x)

» By definition, an affine function is:

f(txa+ (1 —t)x) =A(txa + (1 —t)x) + b
=tAxy +thb+ (1 —t)Axx+ (1 —t)b
=tf(x1) + (1 — t)f(x2)
(2)
» Therefore, the affine function satisfies the convex
inequality



3. Adding two convex functions results in a convex
function
» f(x) = h(x) + g(x) is a convex function
» if h(x) and g(x) are convex

» proof.
» A function f is convex if for ¥xi,x2 € R;Vt € [0, 1]

f(ba + (1 —t)x) < tf(x1) + (1 — t)f(x)

» Adding two convex functions:

f(txa + (1 —t)x2) = h(txy + (1 — t)x2) + g(tx1 + (1 — t)x2)
< th(x1) + tg(x1) + (1 — )h(x)+
(1-t)g(x)
= tf(x1) + (1 — t)f(x2)
(3)



4. Composition with an affine mapping

» f(x) = g(Ax + b) is convex if g is convex
» proof.

f(txa+ (1 —t)x) = g(A(tx + (1 — t)x) + b)
g(t(Axy + b) + (1 — t)(Axa + b))
g(Axy + b) + (1 — t)g(Ax2 + b)
f

t,
t (Xl) + (1 - t)f(XQ)

<

(4)

» Therefore, knowing that Ax + b is convex it is sufficient to
show that f(z) is convex by replacing Ax + b with z.

» might be helpful in the assignment.



5. Pointwise maximum

» The max of two convex functions is convex
» f = max(f, f) is convex
» proof.

f(txa + (1 — t)xo) = max(fA(txs + (1 — t)x2), Lo(txs + (1 — t)x2))
< max(th(x1) + (1 — t)Aa(x), th(xi) + (1 — t)h(x))
< max(th(x1), th(x))+
max((1 - t)f(x), (1 - t)h(x))
= tf(x) + (1 - t)f(x)



5. Norms are convex functions

> For all norms ||x||, = (X%, |x,-|p)% where p > 1 the
following properties hold:
» ||x|| > 0,¥x € R9
» ||Ix]|=0iff x=0
» ||ax|| = |al||x]|,Ya € R,x € RY (Homogeniety)
> |x1 + x| < x| + |1x2|], Vx1, %2 € RY (Triangle
inequality)

» proof. Norm functions are convex:

|tx1 + (1 — t)xo|| < ||txa]| + ||(1 — t)x2|| (Triangle Inequality)
= t||x¢|| + (1 — t)||x2|| (Homogeniety)

(6)



6. Second-derivative test

» If the second derivative of a function f(x) is positive
Vx € R then f is convex

» proof.

» Using second order Taylor expansion, for some
Vx1, % € RVt € [0,1]:

f(x) = f(x1)+Vf(x1)T(x2—x1)+(x2—xl)Tvzf(x1+t(xz—xl))(xz—?;;

» Since V2f(x) >0

(x2 = x1) TV2F(x1 + t(x2 — x1))(x2 — x1) >0 (8)

» Therefore,

f(x) > f(x1) + VF(x) (0 — x1) (9)



6. Second-derivative test proof
» Let x; < x; and y = tx; + (1 — t)xy, then

fxa) 2 f(y) + V() (v —x)

fxe) 2 f(y) + V() (v — x)

» Multiply the first inequality by ¢t and second by (1 — t) and
add them to get,

(10)

tf(xa)+(1 — t)f(x) > tf(y) + (1 — t)f(y)+
tVE(y) (v —x) + (1 = )VF(y) (v — x)
= tf(x1) + (1 — t)f () > f(y)+
V) (£ = 1)xa + (L= t)xe) + VF(y) T ((t = 1)xe + (1 — t)x1)
(11)
» Therefore,

tF(x1) + (1 — £)f(x2) > F(tx + (1 — t)x) (12)



6. Second-derivative test

» Geometrically:

» When Vf(x) is negative, f(x) decreases as x increases.

» When Vf(x) is positive, f(x) increases as x increases.

» Therefore, the minimum is at x = a where the gradient
switches sign.
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Warning: Products

» The product of two convex functions is not necessarily
convex.

» Consider f(x) = x and g(x) = —x.
» Is f(x)g(x) = —x? a convex function?

» Can you explain why?



Overfitting
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Overfitting and Regularization

» Overfitting on the training set is a common problem and
leads to worse test error.

» Models that are too “flexible” or “complex” for the
available data will overfit.

> Intuitively, the model is learning from spurious noise in
the training set.

» Regularization tries to restrict the set of learnable models
by adding a penalty to the loss function.



L2 Regularization

» Add the L2 norm of w to the loss function to penalize
model complexity.

» The Loss function becomes

A
Fw) = L(w, X, ) + 5 % [|wl

> ||w||3 will be large when the entries of w are large.

» How does this penalize complex models?



L1: A Different Flavor

» Penalize with the L1 norm w instead of the L2 norm.

» The Loss function becomes

f(w)=Lw,X,y)+ Xx||wl||1
» How does this differ from L2 regularization?

» Hint: Differentiability.
» Hint: Size of penalties.



The Geometry Behind Regularization

» We can view L2 regularization as constraining ||w||3 to be
less than some radius r.
» ris uniquely determined by the choice of .
» Geometrically, we are restricting w to be in a hypersphere
of radius r around the origin.
» Similarly, we can view L1 regularization as restricting w to
be in a hypercube of side length r.
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L1 vs L2 Regularization: Feature Selection

» L2 regularization does not perform feature selection.
» Generally, elements of w are only set to zero as A
approaches infinity.

» L1 regularized regression does feature selection.
» Elements of w can be set exactly to 0.

» The geometric interpretation of regularization gives useful
intuition.
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L1 vs L2 Regularization: Unique Solutions

» L2 regularized regression always has a unique solution.
» Why is this true? Think about the case where two features
of X are identical.

» Uniqueness is a common motivation for L2 regularization
in statistics.

» L1 regularized regression does not always have a unique
solution.

» Try considering the case above again.



Questions on Regularization?

» Ask away!



Bonus Slide: Bias vs. Variance!

» Regularization is good for models with high sampling
variance.

» High Sampling Variance means the model parameters
fluctuate significantly with different training sets.

» Regularization limits space of learnable models, which
reduces variance.

» However, it introduces bias - the learned model isn't the
“best” possible according to the training error.



