Tutorial 2

CPSC 340: Machine Learning and Data Mining

Fall 2017

1/13

Overview

o Decision Tree
@ Decision Stump
@ Decision Tree

o Training, Testing, and Validation Set

2/13

Decision Stump

@ Decision stump: simple decision tree with 1 splitting rule based
on 1 feature.

@ Binary example:

(windows==1?)

N/ \Y‘es
topic=talk.* topic=comp.*
@ Assigns a label to each leaf based on the most frequent label.

@ How to find the best splitting rule?

e score the rules
e intuitive score: classification accuracy.

3/13

The Dataset

@ X: A matrix
@ each row corresponds to a city

@ first column corresponds to longitude
@ second column corresponds to latitude

@ y: class label
o 1 for blue states, 2 for red states.

@ Given new city Xtest
o predict label ytest

a4/13

exampledecisionStump.jl

example_decisionStump. jl

using JLD
X = load("citiesSmall.j1d"
y = load("citiesSmall.jld"

(n,d) = size(X)

include("majorityPredictor.j1")
model = majorityPredictor(X,y)

yhat = model.predict(X)
trainError = sum(yhat .!= y)/n
@printf("Error with majority predictor: %.2f\n",trainError);

include("decisionStump.j1")
model = decisionStumpEquality(X,y)

yhat = model.predict(X)
trainError = sum(yhat .!= y)/n
@printf("Error with equality-rule decision stump: %.2f\n",trainError);

include("plot2Dclassifier.j1")
plot2Dclassifier(X,y,model)

decisionStump.jl

decisionStump.ji decisionStump.jl

include("nisc.j1")
yhatlyes] = y_yes
yhatl. tyes] = y_no

type StumpModel
sun(yhat .
P
basesplit
if trainError < minError
minError = trainError
function decisionstumpEquality(X,y) splitvariable = j
splitvalue = val
splitYes = y_yes
splitho = y_no
(n,d) = size(X)

X = round. (X)

y_mode = mode(y) function split(Xhat)

minError = sun(y . (t,d) = size(Xhat)
splitvariable = [1; Xhat = round. (Xhat)
splitvalue = [1; if isempty(splitvariable)
splitYes = y_mode; return fill(true,t)
splitho = [else

return (Xhat[:,splitVariable] .= splitValue)

yhat = zeros(n)
for j in 1:d

for val in unique(X[:,31) function predict(xhat)
(t,d) = size(xhat)
split(Xhat)
yes = X[:,3] yi Fill(splitNo, t)
yhatlyes] = splitves
return yhat
y_yes = mode(y[yes]) end
y_no = mode(y[. tyes])
return StumpHodel(predict, split, isempty(splitNo))

Decision Tree

@ Decision stumps have only 1 rule based on only 1 feature.

e Very limited class of models: usually not very accurate for most
tasks.

@ Decision trees allow sequences of splits based on multiple
features.

e Very general class of models: can get very high accuracy.
e However, it's computationally infeasible to find the best decision
tree.

@ Most common decision tree learning algorithm in practice:

e Greedy recursive splitting.

7/13

exampleDecisionTree.jl and decisionTree.||

example_decisionTree.jl decisionTree.ji
include("decisionStump.j1")

using JLD
X = load("citiesSmall.j1ld function decisionTree(X,y,depth)
y = load("citiessnall. jld
n = size(x,1)

(n,d) = size(X)

include("decisionTree. j1")
depth = 2
model = decisionTree(X,y,depth) splitModel = decisionstump(X,y)

if depth <= 1 || splitModel.baseSplit

yhat = model. predict(X)
trainError = sum(yhat .

@rintf("Error with depth-%d decision tree: %.3f\n",depth, trainError)

return splitModel
else

include("plot2Dclassifier. j1")
plot2Dclassifier(X,y,model) yes = splitModel.split(X)

yeshodel = decisionTree(XIyes, :1,ylyes],depth-1)
noModel = decisionTree(X[. Iyes,:1,y[. tyes],depth-1)

function predict(Xhat)
(t,d) = size(Xhat)
yhat = zeros(t)

yes = splitModel.split(Xhat)

yhat [yes] = yesModel.predict(Xhat [yes,:])
yhat[. lyes] = noModel.predict (Xhat[. yes,:])
return yhat

end

return GenericModel(predict)

Rewriting a decision tree using if/else statements

@ Decision tree:

feature98==1?)

V o Yes

feature89==1? feature6==1?

r:/ \r‘es N:/ &is
class4 class2 class1 class2

9/13

Rewriting a decision tree using if/else statements

@ Decision tree:

feature98==1?)

v T

feature89==1? feature6==1?
r:/ \r‘es N:/ &is
class4 class2 class1 class2

@ If-else statement:

if X(i,g8) =1
if X (i, 8)==1
return 2
else
recurn 1
end
else
if X(i,89)==1
return 2
else
return 4
end
end

9/13

Training, Testing, and Validation Set

@ Given training data, we would like to learn a model to minimize
error on the testing data

@ How do we decide decision tree depth?
@ We care about test error.

@ But we can’t look at test data.

10/13

Training, Testing, and Validation Set

@ Given training data, we would like to learn a model to minimize
error on the testing data

@ How do we decide decision tree depth?
@ We care about test error.

@ But we can’t look at test data.

@ One answer: Use part of your train data to approximate test error.
@ Split training objects into training set and validation set:

e Train model on the training data.
e Test model on the validation data.

10/13

Cross-Validation

@ Isn't it wasteful to only use part of your data?
@ k-fold cross-validation:

e Train on k-1 folds of the data, validate on the other fold.
o Repeat this k times with different splits, and average the score.

[t 110000 01000000000000000
[ferston 2} DO OV IDIIDT 090000000

E==E ooooooocomaooco

[Rertion ea— 00000000000000033333

Figure 1: Adapted from Wikipedia.

@ Note: if examples are ordered, split should be random.

11/13

Problem: 2-Fold Cross Validation

@ Modify the code below to compute the 2-fold cross-validation
scores on the training data alone.

@ Find the depth that would be chosen by cross-validation.

% Load X and y wvariable
load newsgroups.mat
[H,D] = =size (X);

T = length(ytest);

depth = 5;

model = .decisionTree (X,vy,depth);
yhat = model.predictFunc (model, X)
errorTrain = sum(vhat ~= y)/N;

yvhat =model.predictFunc (model, Xtest) ;
errorTest = sum(yvhat ~= ytest)/T;

12/13

Solution: 2-Fold Cross Validation

¥ wvariable

7SJroups.mat

[N,D] = size(X);

Xtest = ¥ (floor(N/2) + 1 M , :):
ytest= y (floor(N/2) +1 : N) :

¥ = X ([1:flooc(H/2) , :) H

v =y (1: floor(M/2)):

mindepth = -1 ; minError = Inf;

for depth =1 :15
errorTrain = Q; errorlest = 0;
for i =1:2
[N,D] = size(X):;
T = length(vtest):
model = decisionTree (X, y,depth):
vhat = model.predictFunc (model,X);
errorTrain = errorTrain +sum(vhat ~= y)/H;
vhat = model.predictFunc (model,Xtest):
errorTest = errorTest + sum(yhat ~= ytest)/T;
[X, Xtest]=mySwap (Xtest, X);
[v,vtest] = mySwap (vtest,v) -
end
dispierrorTest/2) ;
if errorTest/2 < minError
minError= errorTest/2;
mindepth = depth;
end
end
disp (minFrror); disp(mindepth);

13/13

	Decision Tree
	Decision Stump
	Decision Tree

	Training, Testing, and Validation Set

