CPSC 340:
Machine Learning and Data Mining

Ensemble Methods
Fall 2017

Admin

e Welcome to the course!

* Assignment O:
— 2 late days to hand it in tonight, O after that.

* Assignment 1 is due next Friday.

Last Time: K-Nearest Neighbours (KNN)

K-nearest neighbours algorithm for classifying X:
— Find ‘k’ values of x; that are most similar to X..

— Use mode of corresponding y..

Lazy learning:

— To “train” you just store X and y.

Non-parametric:

— Size of model grows with ‘n” (number of examples)

TCC’—O'\]L\u/*c 1 (X,‘:)

— Nearly-optimal test error with infinite data.

netw eXa,\ «-‘-@1’ + + +
0 ? + @ ﬁ/ new exam ’C
0 o @®
0 9 g | © ¢ T
o

]Ce atTure | (Xii)

But high prediction cost and may need large ‘n’ if ‘d” is large.

Decision Trees vs. Naive Bayes vs. KNN

@(7 0.5)
ho

\:3 i)
aclase 2 //g ()(m;/)();zcl()‘)(e(ﬁ ’!'tc '()’)(Iac‘}asc 'Sic-k)f{ﬂ-"‘l)

(Ma“\ - é 9{)3 D\ Iacfa\Se’ 0))7 1S C{Qbe +O
(milk < (77 €49~ 2 |am‘c«5c10 sicl) so freclwf sick.

CO M O < M O 0 O © O

JIDIE@EDIF

M M I~ OO — ™M1 <A

J@@!EHIEEW

haracter recognit

Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:
— ”Optical

Application: Optical Character Recognition

* To scan documents, we want to turn images into characters:
— “Optical character recognition” (OCR).

3 —-=

— Turning this into a supervised learning problem (with 28 by 28 images):

(1121 3. 281 (12 (22)] .. | (1419) | .. [(2828) _char
"0 0 0 0 0 o0 1 0) nm)p [3)
0 0 O 0o 0 o0 1 0 E— y> 6
0 0 © 0 0 O 0 0 ——> 0
Lo o0 o0 0 0 0 1 0) o) [9 _

/

——— —~—
£ ach ’Fé’m'fule 1S jfm/sm/e in]lenSiT\/ 6t one of ‘/ﬁc 7WP'5Y€|J

KNN for Optical Character Recognition

7
?ﬁr w 4/??
7 M

KNN for Optical Character Recognition

7
)7 » ¥

J “

7

KNN for Optical Character Recognition

KNN for Optical Character Recognition

Human vs. Machine Perception

* There is huge difference between what we see and what KNN sees:

What we see: What the computer “sees”: Actually, it’s worse:

.rl'.r|: .

What the Computer Sees

* Are these two images “similar”?

What the Computer Sees

* Are these two images “similar”? .
Difference:

-
-

-

e KNN does not know that labels should be translation invariant.

Encouraging Invariance

* May want classifier to be invariant to certain feature transforms.
— Images: translations, small rotations, changes in size, mild warping,...

* The hard/slow way is to modify your distance function:
— Find neighbours that require the ‘smallest’ transformation of image.

* The easy/fast way is to just add transformed data during training:
— Add translated/rotate/resized/warped versions of training images.

3=—3 33

— Crucial part of many successful vision systems.
— Also really important for sound (translate, change volume, and so on).

Application: Body-Part Recognition

* Microsoft Kinect:
— Real-time recognition of 31 body parts from laser depth data.

 How could we write a program to do this?

Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
— Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.

ba 1o €5 20 LA
?pﬁ f s e A

3. Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby:.)

4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

' ¢ f . s 2

3 '.".,. =’ \ Y

' AVAN L

real (test)

synthetic (train & test)

Supervised Learning Step

* ALL steps are important, but we’ll focus on the learning step.

Do we have any classifiers that are accurate and run in real time?
— Decision trees and naive Bayes are fast, but often not very accurate.
— KNN is often accurate, but not very fast.

* Deployed system uses an ensemble method called random forests.

Ensemble Methods

* Ensemble methods are classifiers that have classifiers as input.
— Also called “meta-learning”.

* They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

* Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

e Remember the fundamental trade-off:

1. E,.,,: How small you can make the training error.
VS.

2. E.oorox: HOW well training error approximates the test error.

e Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.

* This suggests two types of ensemble methods:

1. Boosting: improves training error of classifiers with high E,_ ...

2. Averaging: improves approximation error of classifiers with high E_ ...

Averaging

* |nput to averaging is the predictions of a set of models:
— Decision trees make one prediction.
— Naive Bayes makes another prediction.
— KNN makes another prediction.

* Simple model averaging:
— Take the mode of the predictions (or average if probabilistic).

"

ﬁ ABC*S:.OY‘ ffef’ — ,/V\b'/' Sfmw\ \
Xi ’__,__—_9}/\0‘;\,6 @“)"'5 —) /’Sf)nm‘ — ’/S/oﬁml
\FK’M«N# r\ﬂ"()uzowff —) /lsf“""“ ’_/

Why can Averaging Work?

* Consider 3 binary classifiers, each independently correct with probability 0.80:
— P(all 3 right) =0.83=0.512.
— P(2 rights, 1 wrong) = 3*0.8%(1-0.8) = 0.384.
— P(1 right, 2 wrongs) = 3*(1-0.8)%0.8 = 0.096.
— P(all 3 wrong) = (1-0.8)3 = 0.008.

* So ensemble is right with probability 0.896 (which is 0.512+0.384).

* Notes:
— For averaging to work, classifiers need to be at least somewhat independent.
— You also want the probability of being right to be > 0.5, otherwise it will do much worse.
— Probabilities also shouldn’t be to different (otherwise, it might be better to take most accurate).

Averaging

* Consider a set of classifiers that make these predictions:

— Classifier 1: “spam”.

— Classifier 2: “spam”.

— Classifier 3: “spam”.

— Classifier 4: “not spam”.
— Classifier 5: “spam”.

— Classifier 6: “not spam”.
— Classifier 7: “spam”.

— Classifier 8: “spam”.

— Classifier 9: “spam”.

— Classifier 10: “spam”.

* If these independently get 80% accuracy, mode will be close to 100%.
— In practice errors won’t be completely independent (due to noise in labels).

Stacking

* |nput to averaging is the predictions of a set of models:

. . del
— Decision trees make one prediction. h”f‘”yf / ;;1,/7 ,.;oJ,lz Fffw lab,/
oo " 4m 5 parn
— Naive Bayes makes another prediction. v Spam Sprm s,a/m\ .- 3/,:”,.
— KNN makes another prediction. ot spam pol spaun pen /| P
* Stacking: ‘ o |

— Fit another classifier that uses the predictions as features. |
Trained wilh mod s

o /) " /*(e[.'(,{l‘ows oS Fea'/u/d.
/7 ABC:S:OY‘ free —_—) y\o7L S'Mm \ /_/L"q
\
/ \

—_— decision tree #2 -——9"graw\'

)(‘ ,_ﬁ?nmivc ’g"‘)"'S /-—§ ’Sf)nw\\

(

k'nem# r\ﬂ"()\ofgov\rj r——ﬁ /’squm\ /

Averaging and Stacking

Averaging/stacking often performs better than individual models:
— Averaging/stacking typically used by Kaggle winners.
— E.g., Netflix S1M user-rating competition winner was stacked classifier.

Why does this work?
Consider classifiers that tend to overfit (like deep decision trees):
— If they all overfit in exactly the same way, averaging does nothing.

But if they make independent errors:
— Probability of error of average can be lower than individual classifiers.
— Less attention to specific overfitting of each classifier.

Random Forests

 Random forests average a set of deep decision trees.

— Tend to be one of the best “out of the box” classifiers.
e Often close to the best performance of any method on the first run.

— And predictions are very fast.

* Do deep decision trees make independent errors?
— No: with the same training data you’ll get the same decision tree.

* Two key ingredients in random forests:
— Bootstrapping.
— Random trees.

Boostrap Sampling

e L L L.

2

O

o

(¢0)

@)

(@\|

5';._&*0000.0_

r—l—rﬂ.,r l_ *o e

@)

4

C-o)-o)

YL 55 BI
c YV o Q

|m O O O O

c €2 €2

C

c B c Bc

b S5 &3

aaa M @©

c Lo e

tp.l p.l

= E5 ES

(q0) . .

&1 N

°

> <=
> -
[u(\ - S t —
= < > ' B -
+ & > i -
> <le +]e " »
o - -t T =
= <] * -
- & > -+ >
> <) -~ -
= - om 72 =m e —
> < *
- & > > *]l 4+ >
- 'v - -
i sz _ < s e
L > > <] ' K4 -
e - - e
- ES L e
L

cer>
sess
T
T 0
oc D
O O
Q
€ ¢
|m._L
c £
O v
)
M @©
eb
3 =
)
mu
wn =2
™

52. Sample a random card:

(which may be a repeat)

Bootstrap Sampling

. FORC T H T O) LI FOR N I R R 50‘0
.Th . “d b I ’ o | e 004004:0:4:::
IS IS Cadlled d OOtStrapsalllpe. el eil vl v wle wletule wfete:
: i v Ly vy vlv vliv vLiv vlv vliv vlv v
Y v v v
Y v Y VY VIV VY VIVvY Y
A A [y .
) O AL A AL A AL AL A ALA ALA AMLA AMINEIAINREM
b v ¢ IR AR Y RS TR HERE DS Das] 5
’X‘ o Lo oloto]tet]s m
‘ 'Y KA :
] B B FE Y EEEH R R B B L aG bac ¥
r - : : - . T —
H I F d e 410 e 4l A4 4 Ie 8 AT
4 LN E PN KN _ ,
+ + + + d 1 414 4 +§* ++¢ P t
Ao vl wtle wle wle wle vl ol e vl el T e

— Some cards will be missing, and some cards will be duplicated.

* So calculations on the bootstrap sample will give different results than original data.
— However, the bootstrap sample roughly maintains trends:

* Roughly 25% of the cards will be diamonds.

* Roughly 3/13 of the cards will be “face” cards.

* There will be roughly four “10” cards.
— Common use: compute a statistic based on several bootstrap samples.

* Gives you an idea of how the statistic varies as you vary the data.

Random Forest Ingredient 1: Bootstrap

e Bootstrap sample of a list of ‘'n’ objects:
— A new set of size ‘n’ chosen independently with replacement.

-ror (N ['n

\'): ral\é(lfﬂ) #‘01(/‘/01 randomn number From ?/)2)--.)n§
X,,od,w[)):] = X[J)) H#ouse The randomn Samf/f

— Gives new dataset of ‘n’ objects, with some duplicated and some missing.
e Approximately 63% of original objects will be included for large ‘n’.

— Very common in statistics to estimate sensitivity of statistic to data.
e Bagging: using bootstrap samples for ensemble learning.
— Generate several bootstrap samples of the objects (x,Y,).

— Fit a classifier to each bootstrap sample.
— At test time, average the predictions.

Decijiw\ 1{9_(5 Wl” yn,,/(c

A\ H\emﬂ S/Jh"’f,

Random Forest Ingredient 2: Random Trees

* For each splitin a random tree model:
— Randomly sample a small number of possible features.
— Only consider these random features when searching for the optimal rule.

RQV\AON\ +Vt'6’ I: Mar\jpm T{ez’ 2.’
- de‘fﬂle (yy\}’/(-) @rqnjﬁ) @ ‘Sqwrf ’e (e?77 'qc fase)

Random Forest Ingredient 2: Random Trees

* For each splitin a random tree model:
— Randomly sample a small number of possible features.
— Only consider these random features when searching for the optimal rule.

RQV\AON\ +Vt'£ I: Mar\jpm T{ez’ 2.’
“Samfﬂ’e (milk, 0(010){53 @ ‘SQM/"L' (:777 chfase) @

/
Sa fe (lac/7f(()9)u}Pn>
Sangle (eggy €3fnet

AT

Random Forest Ingredient 2: Random Trees

For each split in a random tree model:
— Randomly sample a small number of possible features.
— Only consider these random features when searching for the optimal rule.

Splits will tend to use different features in different trees.
— They will still overfit, but hopefully make *independent* errors.

So the average tends to have a much lower test error.
Empirically, random forests are one of the “best” classifiers.

Fernandez-Delgado et al. [2014]:
— Compared 179 classifiers on 121 datasets.
— Random forests are most likely to be the best classifier.

Summary

Encouraging invariance:

* Add transformed data to be insensitive to the transformation.
Ensemble methods take classifiers as inputs.

* Try toreduce either E
Averaging:

* Improves predictions of multiple classifiers if errors are independent.
Random forests:

* Averaging of deep randomized decision trees.
 One of the best “out of the box” classifiers.

or E without increasing the other much.

train approx

Next time:
e We start unsupervised learning.

Text Example 1: Language Identification

e Consider data that doesn’t look like this:
C0.5377 0.3188 3.5784 FEy
y_ | 18339 13077 2.7604 . |-
— | —2.2588 —0.4336 —1.3499|°® Y~ |—1
| 0.8622 0.3426 3.0349 +1|

e But instead looks like this:

[Do you want to go for a drink sometime? | ESij
J'achéte du pain tous les jours. —1
X = . k=
Fais ce que tu veux. - —1
| There are inner products between sentences? [+1
* How should we represent sentences using features?

A (Bad) Universal Representation

Treat character in position ‘j” of the sentence as a categorical feature.
* “faiscequetuveux”=>x=[fais“ce“que“tu“veux.]

“Pad” end of the sentence up to maximum #characters:
 “faiscequetuveux”=>x=[fais“ce”’que“tu”veux.yyyyvyvvy..]

Advantage:
— No information is lost, KNN can eventually solve the problem.

Disadvantage: throws out everything we know about language.

— Needs to learn that “veux” starting from any position indicates “French”.
* Doesn’t even use that sentences are made of words (this must be learned).

— High overfitting risk, you will need a lot of examples for this easy task.

Bag of Words Representation

* Bag of words represents sentences/documents by word counts:

The International Conference on Machine Learning (ICML) is the
leading international academic conference in machine learning

- w
1 2 2 2 2 1 1

* Bag of words loses a ton of information/meaning:

— But it easily solves language identification problem

https://en.wikipedia.org/wiki/Academic_conference
https://en.wikipedia.org/wiki/Machine_learning

Universal Representation vs. Bag of Words

 Why is bag of words better than “string of characters” here?

— |t needs less data because it captures invariances for the task:
* Most features give strong indication of one language or the other.
* It doesn’t matter where the French words appear.

— It overfits less because it throws away irrelevant information.

e Exact sequence of words isn’t particularly relevant here.

Text Example 2: Word Sense Disambiguation

* Consider the following two sentences:
— “The cat ran after the mouse.”
— “Move the mouse cursor to the File menu.”

* Word sense disambiguation (WSD): classify “meaning” of a word:
— A surprisingly difficult task.

* You can do ok with bag of words, but it will have problems:
— “Her mouse clicked on one cat video after another.”
— “We saw the mouse run out from behind the computer.”
— “The mouse was gray.” (ambiguous without more context)

Bigrams and Trigrams

A bigram is an ordered set of two words:
— Like “computer mouse” or “mouse ran”.

A trigram is an ordered set of three words:
— Like “cat and mouse” or “clicked mouse on”.

These give more context/meaning than bag of words:
— Includes neighbouring words as well as order of words.
— Trigrams are widely-used for various language tasks.

General case is called n-gram.
— Unfortunately, coupon collecting becomes a problem with larger ‘n’.

Why does Bootstrapping select approximately 63%?

* Probability of an arbitrary x, being selected in a bootstrap sample:

IO(Se/acf-eJ af Jeast once in ' frm@
- "’ P("\d’ Se /057[@.4(in ol of n' 7lr£alg>

= \ -—Q,(Nﬁ Selected in one fr'wt’)}n (Triab ase Mm?‘)
== (=) (proh = 5 For chunsing

any of fre n-l ,17’_}\&/ 5-.9—.//7)

- |
~ e ((/'%)“—"76~' s n"700>

~ 063

2

Bonus Slide: Why Random Forests Work

Consider ‘k” independent classifiers, whose errors have a variance of o2.

If the errors are IID, the variance of the average is o0%/k.

— So the more classifiers you average, the more you decrease error variance.
(And the more the training error approximates the test error.)

Generalization to case where classifiers are not independent is:

co't U=-cde”
k

— Where ‘c’ is the correlation.
So the less correlation you have the closer you get to independent case.
Randomization in random forests decreases correlation between trees.

— See also “Sensitivity of Independence Assumptions”.

https://www.naftaliharris.com/blog/sensitivity-of-independence-assumption/

Boosting: Key ldeas

* |nput to boosting is classifier that:
— |s simple enough that it doesn’t overfit much.
— Can obtain >50% weighted training accuracy.

 Example: decision stumps or low-depth decision trees.

Boosting: Key ldeas

* Basic steps:
1. Fit a classifier on the training data.
2. Give a higher weight to examples that the classifier got wrong.
3. Fit a classifier on the weighted training data.
4. Go back to 2.

* Final prediction: weighted vote of individual classifier predictions.
* Boosted decision trees are very fast/accurate classifiers.

— “AdaBoost”: classic boosting method.
— “XGBoost”: recent method that has been winning Kaggle competitions.

How these concepts often show up in practice

* Here is a recent e-mail related to many ideas we’ve recently covered:

— “However, the performance did not improve while the model goes deeper and with
augmentation. The best result | got on validation set was 80% with LeNet-5 and NO
augmentation (LeNet-5 with augmentation | got 79.15%), and later 16 and 50 layer
structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract
numerical information for me, so | trained the same dataset with nearly 100 features on
random forest with 500 trees. The accuracy was 90% on validation set.

| really don't understand that how could deep learning perform worse as the number of
hidden layers increases, in addition to that | have changed from VGG to ResNet, which
are theoretically trained differently. Moreover, why deep learning algorithm cannot
surpass machine learning algorithm?”

 Above there is data augmentation, validation error, effect of the fundamental
trade-off, the no free lunch theorem, and the effectiveness of random forests.

Bonus Slide: Bayesian Model Averaging

* Recall the key observation regarding ensemble methods:
— If models overfit in “different” ways, averaging gives better performance.

e But should all models get equal weight?

— E.g., decision trees of different depths, when lower depths have low
training error.

— E.g., a random forest where one tree does very well (on validation error)
and others do horribly.

— In science, research may be fraudulent or not based on evidence.

* |n these cases, naive averaging may do worse.

Bonus Slide: Bayesian Model Averaging

* Suppose we have a set of ‘m’ probabilistic binary classifiers w..
* |f each one gets equal weight, then we predict using:

f >‘ mf(V /LV)/> M}p(\//[(wy)c)»% ¢ o« 4(/14)[0(//\-)wm)(2>

ﬁss e
* Bayesian model averaging treats model w;" as a random variable:" T
| — —
() /)= Z r(y >WJ[>(> (a/ ij)xﬂ W [xﬂ«—jé lu//)y) /w>

* So we should weight by probability that w; is the correct model:
— Equal weights assume all models are equally probable.

Bonus Slide: Bayesian Model Averaging, .

Can get better weights by conditioning on training set:

The ‘likelihood’ p(y | w;, X) makes sense:
— We should give more weight to models that predict ‘v’ well.
— Note that hidden denominator penalizes complex models.

The “prior’ p(w;) is our ‘belief’ that w; is the correct model.
This is how rules of probability say we should weigh models.

— The ‘correct” way to predict given what we know.
— But it makes some people unhappy because it is subjective.

o

