
CPSC 340:
Machine Learning and Data Mining

Ensemble Methods

Fall 2017

Admin

• Welcome to the course!

• Assignment 0:

– 2 late days to hand it in tonight, 0 after that.

• Assignment 1 is due next Friday.

Last Time: K-Nearest Neighbours (KNN)

• K-nearest neighbours algorithm for classifying 𝑥i:
– Find ‘k’ values of xi that are most similar to 𝑥i.

– Use mode of corresponding yi.

• Lazy learning:
– To “train” you just store X and y.

• Non-parametric:
– Size of model grows with ‘n’ (number of examples)

– Nearly-optimal test error with infinite data.

• But high prediction cost and may need large ‘n’ if ‘d’ is large.

Decision Trees vs. Naïve Bayes vs. KNN

Application: Optical Character Recognition

• To scan documents, we want to turn images into characters:

– “Optical character recognition” (OCR).

https://www.youtube.com/watch?v=IHZwWFHWa-w

Application: Optical Character Recognition

• To scan documents, we want to turn images into characters:

– “Optical character recognition” (OCR).

– Turning this into a supervised learning problem (with 28 by 28 images):

“3”

(1,1) (2,1) (3,1) … (28,1) (1,2) (2,2) … (14,14) … (28,28)

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

char

3

6

0

9

KNN for Optical Character Recognition

KNN for Optical Character Recognition

KNN for Optical Character Recognition

KNN for Optical Character Recognition

Human vs. Machine Perception

• There is huge difference between what we see and what KNN sees:

What we see: What the computer “sees”: Actually, it’s worse:

• Are these two images “similar”?

What the Computer Sees

• Are these two images “similar”?

• KNN does not know that labels should be translation invariant.

What the Computer Sees

Difference:

Encouraging Invariance

• May want classifier to be invariant to certain feature transforms.
– Images: translations, small rotations, changes in size, mild warping,…

• The hard/slow way is to modify your distance function:
– Find neighbours that require the ‘smallest’ transformation of image.

• The easy/fast way is to just add transformed data during training:
– Add translated/rotate/resized/warped versions of training images.

– Crucial part of many successful vision systems.

– Also really important for sound (translate, change volume, and so on).

Application: Body-Part Recognition

• Microsoft Kinect:

– Real-time recognition of 31 body parts from laser depth data.

• How could we write a program to do this?

http://research.microsoft.com/pubs/158806/CriminisiForests_FoundTrends_2011.pdf

Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
– Variety of pose, age, shape, clothing, and crop.

2. Build a simulator that fills space of images by making even more images.

3. Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby.)

4. Treat classifying body part of a pixel as a supervised learning problem.

5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf

Supervised Learning Step

• ALL steps are important, but we’ll focus on the learning step.

• Do we have any classifiers that are accurate and run in real time?

– Decision trees and naïve Bayes are fast, but often not very accurate.

– KNN is often accurate, but not very fast.

• Deployed system uses an ensemble method called random forests.

Ensemble Methods

• Ensemble methods are classifiers that have classifiers as input.

– Also called “meta-learning”.

• They have the best names:

– Averaging.

– Boosting.

– Bootstrapping.

– Bagging.

– Cascading.

– Random Forests.

– Stacking.

• Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

• Remember the fundamental trade-off:

1. Etrain: How small you can make the training error.
vs.

2. Eapprox: How well training error approximates the test error.

• Goal of ensemble methods is that meta-classifier:

– Does much better on one of these than individual classifiers.

– Doesn’t do too much worse on the other.

• This suggests two types of ensemble methods:

1. Boosting: improves training error of classifiers with high Etrain.

2. Averaging: improves approximation error of classifiers with high Eapprox.

Averaging

• Input to averaging is the predictions of a set of models:

– Decision trees make one prediction.

– Naïve Bayes makes another prediction.

– KNN makes another prediction.

• Simple model averaging:

– Take the mode of the predictions (or average if probabilistic).

Why can Averaging Work?

• Consider 3 binary classifiers, each independently correct with probability 0.80:
– P(all 3 right) = 0.83 = 0.512.

– P(2 rights, 1 wrong) = 3*0.82(1-0.8) = 0.384.

– P(1 right, 2 wrongs) = 3*(1-0.8)20.8 = 0.096.

– P(all 3 wrong) = (1-0.8)3 = 0.008.

• So ensemble is right with probability 0.896 (which is 0.512+0.384).

• Notes:
– For averaging to work, classifiers need to be at least somewhat independent.

– You also want the probability of being right to be > 0.5, otherwise it will do much worse.

– Probabilities also shouldn’t be to different (otherwise, it might be better to take most accurate).

Averaging

• Consider a set of classifiers that make these predictions:
– Classifier 1: “spam”.
– Classifier 2: “spam”.
– Classifier 3: “spam”.
– Classifier 4: “not spam”.
– Classifier 5: “spam”.
– Classifier 6: “not spam”.
– Classifier 7: “spam”.
– Classifier 8: “spam”.
– Classifier 9: “spam”.
– Classifier 10: “spam”.

• If these independently get 80% accuracy, mode will be close to 100%.
– In practice errors won’t be completely independent (due to noise in labels).

Stacking

• Input to averaging is the predictions of a set of models:

– Decision trees make one prediction.

– Naïve Bayes makes another prediction.

– KNN makes another prediction.

• Stacking:

– Fit another classifier that uses the predictions as features.

Averaging and Stacking

• Averaging/stacking often performs better than individual models:

– Averaging/stacking typically used by Kaggle winners.

– E.g., Netflix $1M user-rating competition winner was stacked classifier.

• Why does this work?

• Consider classifiers that tend to overfit (like deep decision trees):

– If they all overfit in exactly the same way, averaging does nothing.

• But if they make independent errors:

– Probability of error of average can be lower than individual classifiers.

– Less attention to specific overfitting of each classifier.

Random Forests

• Random forests average a set of deep decision trees.
– Tend to be one of the best “out of the box” classifiers.

• Often close to the best performance of any method on the first run.

– And predictions are very fast.

• Do deep decision trees make independent errors?
– No: with the same training data you’ll get the same decision tree.

• Two key ingredients in random forests:
– Bootstrapping.

– Random trees.

Boostrap Sampling

• Start with a standard deck of 52 cards:

1. Sample a random card:
(put it back in the deck)

2. Sample a random card:
(put it back in the deck)

3. Sample a random card:
(put it back in the deck)

– …

52. Sample a random card:
(which may be a repeat)

• We now have a new deck of 52 cards:
https://commons.wikimedia.org/wiki/File:English_pattern_playing_cards_deck.svg

Bootstrap Sampling

• This is called a bootstrap sample:

– Some cards will be missing, and some cards will be duplicated.
• So calculations on the bootstrap sample will give different results than original data.

– However, the bootstrap sample roughly maintains trends:
• Roughly 25% of the cards will be diamonds.

• Roughly 3/13 of the cards will be “face” cards.

• There will be roughly four “10” cards.

– Common use: compute a statistic based on several bootstrap samples.
• Gives you an idea of how the statistic varies as you vary the data.

Random Forest Ingredient 1: Bootstrap

• Bootstrap sample of a list of ‘n’ objects:
– A new set of size ‘n’ chosen independently with replacement.

– Gives new dataset of ‘n’ objects, with some duplicated and some missing.
• Approximately 63% of original objects will be included for large ‘n’.

– Very common in statistics to estimate sensitivity of statistic to data.

• Bagging: using bootstrap samples for ensemble learning.
– Generate several bootstrap samples of the objects (xi,yi).

– Fit a classifier to each bootstrap sample.

– At test time, average the predictions.

Random Forest Ingredient 2: Random Trees

• For each split in a random tree model:

– Randomly sample a small number of possible features.

– Only consider these random features when searching for the optimal rule.

Random Forest Ingredient 2: Random Trees

• For each split in a random tree model:

– Randomly sample a small number of possible features.

– Only consider these random features when searching for the optimal rule.

Random Forest Ingredient 2: Random Trees

• For each split in a random tree model:

– Randomly sample a small number of possible features.

– Only consider these random features when searching for the optimal rule.

• Splits will tend to use different features in different trees.

– They will still overfit, but hopefully make *independent* errors.

• So the average tends to have a much lower test error.

• Empirically, random forests are one of the “best” classifiers.

• Fernandez-Delgado et al. [2014]:

– Compared 179 classifiers on 121 datasets.

– Random forests are most likely to be the best classifier.

Summary

• Encouraging invariance:
• Add transformed data to be insensitive to the transformation.

• Ensemble methods take classifiers as inputs.
• Try to reduce either Etrain or Eapprox without increasing the other much.

• Averaging:
• Improves predictions of multiple classifiers if errors are independent.

• Random forests:
• Averaging of deep randomized decision trees.

• One of the best “out of the box” classifiers.

• Next time:
• We start unsupervised learning.

Text Example 1: Language Identification

• Consider data that doesn’t look like this:

• But instead looks like this:

• How should we represent sentences using features?

A (Bad) Universal Representation

• Treat character in position ‘j’ of the sentence as a categorical feature.
• “fais ce que tu veux” => xi = [f a i s ‘’ c e ‘’ q u e ‘’ t u ‘’ v e u x .]

• “Pad” end of the sentence up to maximum #characters:
• “fais ce que tu veux” => xi = [f a i s ‘’ c e ‘’ q u e ‘’ t u ‘’ v e u x . γ γ γ γ γ γ γ γ …]

• Advantage:
– No information is lost, KNN can eventually solve the problem.

• Disadvantage: throws out everything we know about language.
– Needs to learn that “veux” starting from any position indicates “French”.

• Doesn’t even use that sentences are made of words (this must be learned).

– High overfitting risk, you will need a lot of examples for this easy task.

Bag of Words Representation

• Bag of words represents sentences/documents by word counts:

• Bag of words loses a ton of information/meaning:

– But it easily solves language identification problem

The International Conference on Machine Learning (ICML) is the
leading international academic conference in machine learning

ICML International Conference Machine Learning Leading Academic

1 2 2 2 2 1 1

https://en.wikipedia.org/wiki/Academic_conference
https://en.wikipedia.org/wiki/Machine_learning

Universal Representation vs. Bag of Words

• Why is bag of words better than “string of characters” here?

– It needs less data because it captures invariances for the task:

• Most features give strong indication of one language or the other.

• It doesn’t matter where the French words appear.

– It overfits less because it throws away irrelevant information.

• Exact sequence of words isn’t particularly relevant here.

Text Example 2: Word Sense Disambiguation

• Consider the following two sentences:
– “The cat ran after the mouse.”

– “Move the mouse cursor to the File menu.”

• Word sense disambiguation (WSD): classify “meaning” of a word:
– A surprisingly difficult task.

• You can do ok with bag of words, but it will have problems:
– “Her mouse clicked on one cat video after another.”

– “We saw the mouse run out from behind the computer.”

– “The mouse was gray.” (ambiguous without more context)

Bigrams and Trigrams

• A bigram is an ordered set of two words:
– Like “computer mouse” or “mouse ran”.

• A trigram is an ordered set of three words:
– Like “cat and mouse” or “clicked mouse on”.

• These give more context/meaning than bag of words:
– Includes neighbouring words as well as order of words.

– Trigrams are widely-used for various language tasks.

• General case is called n-gram.
– Unfortunately, coupon collecting becomes a problem with larger ‘n’.

Why does Bootstrapping select approximately 63%?

• Probability of an arbitrary xi being selected in a bootstrap sample:

Bonus Slide: Why Random Forests Work

• Consider ‘k’ independent classifiers, whose errors have a variance of σ2.

• If the errors are IID, the variance of the average is σ2/k.

– So the more classifiers you average, the more you decrease error variance.
(And the more the training error approximates the test error.)

• Generalization to case where classifiers are not independent is:

– Where ‘c’ is the correlation.

• So the less correlation you have the closer you get to independent case.

• Randomization in random forests decreases correlation between trees.

– See also “Sensitivity of Independence Assumptions”.

https://www.naftaliharris.com/blog/sensitivity-of-independence-assumption/

Boosting: Key Ideas

• Input to boosting is classifier that:

– Is simple enough that it doesn’t overfit much.

– Can obtain >50% weighted training accuracy.

• Example: decision stumps or low-depth decision trees.

Boosting: Key Ideas

• Basic steps:

1. Fit a classifier on the training data.

2. Give a higher weight to examples that the classifier got wrong.

3. Fit a classifier on the weighted training data.

4. Go back to 2.

• Final prediction: weighted vote of individual classifier predictions.

• Boosted decision trees are very fast/accurate classifiers.

– “AdaBoost”: classic boosting method.

– “XGBoost”: recent method that has been winning Kaggle competitions.

How these concepts often show up in practice

• Here is a recent e-mail related to many ideas we’ve recently covered:
– “However, the performance did not improve while the model goes deeper and with

augmentation. The best result I got on validation set was 80% with LeNet-5 and NO
augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer
structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract
numerical information for me, so I trained the same dataset with nearly 100 features on
random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of
hidden layers increases, in addition to that I have changed from VGG to ResNet, which
are theoretically trained differently. Moreover, why deep learning algorithm cannot
surpass machine learning algorithm?”

• Above there is data augmentation, validation error, effect of the fundamental
trade-off, the no free lunch theorem, and the effectiveness of random forests.

Bonus Slide: Bayesian Model Averaging

• Recall the key observation regarding ensemble methods:

– If models overfit in “different” ways, averaging gives better performance.

• But should all models get equal weight?

– E.g., decision trees of different depths, when lower depths have low
training error.

– E.g., a random forest where one tree does very well (on validation error)
and others do horribly.

– In science, research may be fraudulent or not based on evidence.

• In these cases, naïve averaging may do worse.

Bonus Slide: Bayesian Model Averaging

• Suppose we have a set of ‘m’ probabilistic binary classifiers wj.

• If each one gets equal weight, then we predict using:

• Bayesian model averaging treats model ‘wj’ as a random variable:

• So we should weight by probability that wj is the correct model:

– Equal weights assume all models are equally probable.

Bonus Slide: Bayesian Model Averaging

• Can get better weights by conditioning on training set:

• The ‘likelihood’ p(y | wj, X) makes sense:

– We should give more weight to models that predict ‘y’ well.

– Note that hidden denominator penalizes complex models.

• The ‘prior’ p(wj) is our ‘belief’ that wj is the correct model.

• This is how rules of probability say we should weigh models.

– The ‘correct’ way to predict given what we know.

– But it makes some people unhappy because it is subjective.

