Admin

• **Assignment 0** is due tonight: you should be almost done.
 – 1 late day to hand it in Monday, 2 late days for Wednesday.
• **Assignment 1** is coming Monday: start early.

• Important webpages:
Last Time: Training, Testing, and Validation

- **Training step:**

 Input: set of 'n' training examples x_i with labels y_i
 Output: a model that maps from arbitrary x_i to y_i

- **Prediction step:**

 Input: set of 't' testing examples \hat{x}_i and a model
 Output: predictions \hat{y}_i for the testing examples

- What we are interested in is the **test error:**
 - Error made by prediction step on new data.
Last Time: Fundamental Trade-Off

• We decomposed test error to get a fundamental trade-off:

\[
E_{\text{test}} = E_{\text{approx}} + E_{\text{train}}
\]

— Where \(E_{\text{approx}} = (E_{\text{test}} - E_{\text{train}}) \).

• \(E_{\text{train}} \) goes down as model gets complicated:
 — Training error goes down as a decision tree gets deeper.

• But \(E_{\text{approx}} \) goes up as model gets complicated:
 — Training error becomes a worse approximation of test error.
Last Time: Validation Error

- **Golden rule**: we can’t look at test data during training.
- But we can approximate E_{test} with a validation error:
 - Error on a set of training examples we “hid” during training.

\[
X = \begin{bmatrix}
\vdots & \vdots & \ddots & \vdots & \vdots
\end{bmatrix} \quad Y = \begin{bmatrix}
\vdots \\
\vdots
\end{bmatrix}
\]

- Find the decision tree based on the “train” rows.
- Validation error is the error of the decision tree on the “validation” rows.
Should you trust them?

• Scenario 1:
 – “I built a model based on the data you gave me.”
 – “It classified your data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably not:
 – They are reporting training error.
 – This might have nothing to do with test error.
 – E.g., they could have fit a very deep decision tree.

• Why ‘probably’?
 – If they only tried a few very simple models, the 98% might be reliable.
 – E.g., they only considered decision stumps with simple 1-variable rules.
Should you trust them?

• Scenario 2:
 – “I built a model based on half of the data you gave me.”
 – “It classified the other half of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably:
 – They computed the validation error once.
 – This is an unbiased approximation of the test error.
 – Trust them if you believe they didn’t violate the golden rule.
Should you trust them?

• Scenario 3:
 – “I built 10 models based on half of the data you gave me.”
 – “One of them classified the other half of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably:
 – They computed the validation error a small number of times.
 – Maximizing over these errors is a biased approximation of test error.
 – But they only maximized it over 10 models, so bias is probably small.
 – They probably know about the golden rule.
Should you trust them?

• Scenario 4:
 – “I built 1 billion models based on half of the data you gave me.”
 – “One of them classified the other half of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably not:
 – They computed the validation error a huge number of times.
 – Maximizing over these errors is a biased approximation of test error.
 – They tried so many models, one of them is likely to work by chance.

• Why ‘probably’?
 – If the 1 billion models were all extremely-simple, 98% might be reliable.
Should you trust them?

• Scenario 5:
 – “I built 1 billion models based on the first third of the data you gave me.”
 – “One of them classified the second third of the data with 98% accuracy.”
 – “It also classified the last third of the data with 98% accuracy.”
 – “It should get 98% accuracy on the rest of your data.”

• Probably:
 – They computed the first validation error a huge number of times.
 – But they had a second validation set that they only looked at once.
 – The second validation set gives unbiased test error approximation.
 – This is ideal, as long as they didn’t violate golden rule on the last third.
 – And assuming you are using IID data in the first place.
Validation Error and Optimization Bias

• **Optimization bias is small if you only compare a few models:**
 – Best decision tree on the training set among depths, 1, 2, 3,..., 10.
 – Risk of overfitting to validation set is low if we try 10 things.

• **Optimization bias is large if you compare a lot of models:**
 – All possible decision trees of depth 10 or less.
 – Here we’re using the validation set to pick between a billion+ models:
 • Risk of overfitting to validation set is high: could have **low validation error by chance**.

 – If you did this, you might want a **second validation set** to detect overfitting.
Cross-Validation (CV)

• Isn’t it wasteful to only use part of your data?
• 5-fold cross-validation:
 – Train on 80% of the data, validate on the other 20%.
 – Repeat this 5 more times with different splits, and average the score.

\[
X = \begin{bmatrix}
 \vdots \\
 \vdots \\
 \vdots \\
\end{bmatrix} \\
Y = \begin{bmatrix}
 \text{"fold" 1} \\
 \text{"fold" 2} \\
 \text{"fold" 3} \\
 \text{"fold" 4} \\
 \text{"fold" 5} \\
\end{bmatrix}
\]

1. Train on folds \{1,2,3,4\}, compute error on fold 5.
2. Train on folds \{1,2,3,5\}, compute error on fold 4.
3. Train on folds \{1,2,4,5\}, compute error on fold 3.
4. Take average of the 5 errors.
Cross-Validation (CV)

• You can take this idea further:
 – 10-fold cross-validation: train on 90% of data and validate on 10%.
 • Repeat 10 times and average.
 – Leave-one-out cross-validation: train on all but one training example.
 • Repeat n times and average.

• Gets more accurate but more expensive with more folds.
 – To choose depth we compute the cross-validation score for each depth.

• As before, if data is ordered then folds should be random splits.
 – Randomize first, then split into fixed folds.
(pause)
The “Best” Machine Learning Model

• Decision trees are not always most accurate on test error.
• What is the “best” machine learning model?
• First we need to define generalization error:
 – Test error restricted to new feature combinations (no x_i from train set).
• No free lunch theorem:
 – There is no “best” model achieving the best generalization error for every problem.
 – If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.
• This question is like asking which is “best” among “rock”, “paper”, and “scissors”.
The “Best” Machine Learning Model

• Implications of the lack of a “best” model:
 – We need to learn about and try out multiple models.
• So which ones to study in CPSC 340?
 – We’ll usually motivate each method by a specific application.
 – But we’re focusing on models that have been effective in many applications.

• Caveat of no free lunch (NFL) theorem:
 – The world is very structured.
 – Some datasets are more likely than others.
 – Model A really could be better than model B on every real dataset in practice.
• Machine learning research:
 – Large focus on models that are useful across many applications.
Application: E-mail Spam Filtering

• Want a build a system that detects spam e-mails.
 – Context: spam used to be a big problem.

• Can we formulate as supervised learning?
Spam Filtering as Supervised Learning

- Collect a large number of e-mails, gets users to label them.

<table>
<thead>
<tr>
<th></th>
<th>$</th>
<th>Hi</th>
<th>CPSC</th>
<th>340</th>
<th>Vicodin</th>
<th>Offer</th>
<th>...</th>
<th>Spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- We can use \((y_i = 1)\) if e-mail ‘i’ is spam, \((y_i = 0)\) if e-mail is not spam.

- Extract features of each e-mail (like **bag of words**).
 - \((x_{ij} = 1)\) if word/phrase ‘j’ is in e-mail ‘i’, \((x_{ij} = 0)\) if it is not.
Feature Representation for Spam

• Are there better features than bag of words?
 – We add **bigrams** (sets of two words):
 • “CPSC 340”, “wait list”, “special deal”.
 – Or **trigrams** (sets of three words):
 • “Limited time offer”, “course registration deadline”, “you’re a winner”.
 – We might include the sender domain:
 • `<sender domain == “mail.com”>`.
 – We might include **regular expressions**:
 • `<your first and last name>`.

• Also, note that we **only need list of non-zero features** for each x_i.
Review of Supervised Learning Notation

We have been using the notation ‘X’ and ‘y’ for supervised learning:

- X is matrix of all features, y is vector of all labels.
 - We use y_i for the label of object ‘i’ (element ‘i’ of ‘y’).
 - We use x_{ij} for feature ‘j’ of object ‘i’.
 - We use x_i as the list of features of object ‘i’ (row ‘i’ of ‘X’).

\[X = \begin{bmatrix}
 1 & 1 & 0 & 0 & 1 & 0 & \ldots \\
 0 & 0 & 0 & 0 & 1 & 1 & \ldots \\
 0 & 1 & 1 & 1 & 0 & 0 & \ldots \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{bmatrix} \]

\[y = \begin{bmatrix}
 1 \\
 1 \\
 0 \\
 \vdots \\
\end{bmatrix} \]

So in the above $x_3 = [0 \ 1 \ 1 \ 1 \ 0 \ 0 \ \ldots]$.
Probabilistic Classifiers

• For years, best spam filtering methods used naïve Bayes.
 – A probabilistic classifier based on Bayes rule.
 – It tends to work well with bag of words.
 – Last year shown to improve on state of the art for CRISPR “gene editing” (link).

• Probabilistic classifiers model the conditional probability, \(p(y_i \mid x_i) \).
 – “If a message has words \(x_i \), what is probability that message is spam?”

• Classify it has spam if probability of spam is higher than not spam:
 – If \(p(y_i = \text{‘spam’} \mid x_i) > p(y_i = \text{‘not spam’} \mid x_i) \)
 • return “spam”.
 – Else
 • return “not spam”.
Spam Filtering with Bayes Rule

• To model conditional probability, naïve Bayes uses Bayes rule:

\[p(y_i = "\text{spam}\) \mid x_i) = \frac{p(x_i \mid y_i = "\text{spam}\) \cdot p(y_i = "\text{spam}\) \cdot p(x_i)}{p(x_i)} \]

• So we need to figure out three types of terms:
 – Marginal probabilities \(p(y_i) \) that an e-mail is spam.
 – Marginal probability \(p(x_i) \) that an e-mail has the set of words \(x_i \).
 – Conditional probability \(P(x_i \mid y_i) \) that a spam e-mail has the words \(x_i \).
 • And the same for non-spam e-mails.
Spam Filtering with Bayes Rule

\[p(y_i = \text{"spam"} \mid x_i) = \frac{p(x_i \mid y_i = \text{"spam"}) p(y_i = \text{"spam"})}{p(x_i)} \]

• What do these terms mean?

ALL E-MAILS
(including duplicates)
Spam Filtering with Bayes Rule

\[
p(y_i = \text{"spam"} \mid x_i) = \frac{p(x_i \mid y_i = \text{"spam"}) p(y_i = \text{"spam"})}{p(x_i)}
\]

- \(p(y_i = \text{‘spam’}) \) is probability that a random e-mail is spam.
 - This is easy to approximate from data: use the proportion in your data.

This is a “maximum likelihood estimate”, a concept we’ll discuss in detail later. If you’re interested in a proof, see here.
Spam Filtering with Bayes Rule

\[p(y_i = \text{"spam"} \mid x_i) = \frac{p(x_i \mid y_i = \text{"spam"})p(y_i = \text{"spam"})}{p(x_i)} \]

- \(p(x_i) \) is probability that a random e-mail has features \(x_i \):
 - This is hard to approximate (there are so many possible e-mails).

ALL E-MAILS
(including duplicates)

\[p(x_i) = \frac{\# e-mails \ with \ features \ x_i}{\# e-mails \ total} \]
Spam Filtering with Bayes Rule

\[
p(y_i = "\text{spam}" \mid x_i) = \frac{p(x_i \mid y_i = "\text{spam}") p(y_i = "\text{spam}")}{p(x_i)}
\]

- \(p(x_i) \) is probability that a random e-mail has features \(x_i \):
 - This is hard to approximate (there are so many possible e-mails), but it turns out we can ignore it:

Naive Bayes returns "spam" if

\[
p(y_i = "\text{spam}" \mid x_i) > p(y_i = "\text{not spam}" \mid x_i).
\]

By Bayes rule this means

\[
\frac{p(x_i \mid y_i = "\text{spam}") p(y_i = "\text{spam}")}{p(x_i)} > \frac{p(x_i \mid y_i = "\text{not spam}") p(y_i = "\text{not spam}")}{p(x_i)}
\]

Multiply both sides by \(p(x_i) \):

\[
p(x_i \mid y_i = "\text{spam}") p(y_i = "\text{spam}") > p(x_i \mid y_i = "\text{not spam}") p(y_i = "\text{not spam}")
\]
Spam Filtering with Bayes Rule

\[p(y_i = "\text{spam}" \mid x_i) = \frac{p(x_i \mid y_i = "\text{spam}")p(y_i = "\text{spam}")}{p(x_i)} \]

- \(p(x_i \mid y_i = \text{‘spam’}) \) is probability that spam has features \(x_i \).

- Also hard to estimate.
 - And we need it.
Naïve Bayes

• Naïve Bayes makes a big assumption to make things easier:

\[
p(\text{hello, vicodin, CPSC 340} \mid \text{spam}) \sim p(\text{hello} \mid \text{spam}) p(\text{vicodin} \mid \text{spam}) p(\text{CPSC 340} \mid \text{spam})
\]

• We assume all features x_i are conditionally independent given label y_i.
 – Once you know it’s spam, probability of “vicodin” doesn’t depend on “CPSC 340”.
 – Definitely not true, but sometimes a good approximation.

• And now we only need easy quantities like $p(\text{‘vicodin’} = 1 \mid y_i = \text{‘spam’})$.
Naïve Bayes

• $p(\text{vicodin} = 1 \mid \text{spam} = 1)$ is probability of seeing ‘vicodin’ in spam.

• Easy to estimate:

$$p(\text{vicodin}=1 \mid \text{spam}=1) = \frac{\# \text{spam messages w/ vicodin}}{\# \text{spam messages}}$$
Naïve Bayes

- Naïve Bayes more formally:

\[
p(y_i \mid x_i) = \frac{p(x_i \mid y_i) p(y_i)}{p(x_i)} \quad \text{(First use Bayes rule)}
\]

\[
\propto p(x_i \mid y_i) p(y_i) \quad \text{("denominator doesn't matter")}
\]

\[
\approx \frac{d}{11} \left[p(x_{ij} \mid y_i) \right] p(y_i) \quad \text{(Conditional independence assumption)}
\]

Only needs easy probabilities.

- Post-lecture slides: how to train/test by hand on a simple example.
Summary

• **Optimization bias**: using a validation set too much overfits.
• **Cross-validation**: allows better use of data to estimate test error.
• **No free lunch theorem**: there is no “best” ML model.
• **Probabilistic classifiers**: try to estimate \(p(y_i | x_i) \).
 – Naïve Bayes: simple probabilistic classifier based on counting.
 – Uses conditional independence assumptions to make training practical.

• Next time:
 – A “best” machine learning model as ‘\(n \)’ goes to \(\infty \).
Naïve Bayes Training Phase

- Training a naïve Bayes model:

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times ($y_i = c$).

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
Naïve Bayes Training Phase

- Training a naïve Bayes model:
 1. Set n_c to the number of times $(y_i = c)$.
 2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.

\[
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \quad y =
\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times ($y_i = c$).
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.
3. Set n_{ck} as the number of times ($y_i = c \land X_{ij} = k$)
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set \(n_c \) to the number of times \(y_i = c \).
2. Estimate \(p(y_i = c) \) as \(\frac{n_c}{n} \).
3. Set \(n_{cjk} \) as the number of times \(y_i = c \), \(X_{ij} = k \).
4. Estimate \(p(x_i = k \mid y_i = c) \) as \(\frac{n_{cjk}}{n} \).
Naïve Bayes Training Phase

• Training a naïve Bayes model:

1. Set n_c to the number of times ($y_i = c$).
2. Estimate $p(y_i = c)$ as $\frac{n_c}{n}$.
3. Set n_{cjk} as the number of times ($y_i = c, X_{ij} = k$).
4. Estimate $p(x_i = k \mid y_i = c)$ as $\frac{n_{cjk}}{n}$.
5. Use that $p(x_i = k \mid y_i = c) = \frac{p(x_i = k, y_i = c)}{p(y_i = c)}$

 $= \frac{n_{cjk} / n}{n_c / n} = \frac{n_{cjk}}{n_c}$

\[
p(y_i = 1) = \frac{6}{10} \quad n_i = 6
\]

\[
X = \begin{bmatrix}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
p(x_i = 1, y_i = 1) = \frac{4}{16} = \frac{1}{4}
\]

\[
p(x_i = 1 \mid y_i = 1) = \frac{1}{4} = \frac{2}{3}
\]

\[
p(y_i = 0) = \frac{4}{10} = \frac{2}{5}
\]

\[
n_0 = 4
\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Given a test example \(\hat{x} \) we want to find the 'c' maximizing \(p(\hat{x} | \hat{y} = c) \)

Under the naïve Bayes assumption we can maximize:

\[
p(\hat{y} = c | \hat{x}) \propto \prod_{i=1}^{d} \left[p(x_i | \hat{y} = c) \right] p(y = c)
\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider $\hat{x} = [1 \ 1]$ in this data set

\[
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0
\end{bmatrix}, \quad \begin{bmatrix}
y \\
y
\end{bmatrix} = 0.\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider $\hat{x} = [1, 1]$ in this data set

\[
p(\hat{y} = 0 | \hat{x}) \propto p(\hat{x}_1 = 1 | \hat{y} = 0) p(\hat{x}_2 = 1 | \hat{y} = 0) p(\hat{y} = 0)
\]

\[
= (1)(0.25)(0.4) = 0.1
\]

\[
X = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
1 & 0 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider $\hat{x} = [1 \ 1]$ in this data set:

\[
p(\hat{y}=0 | \hat{x}) \propto p(\hat{x}_1=1 | \hat{y}=0) \cdot p(\hat{x}_2=1 | \hat{y}=0) \cdot p(\hat{y}=0) = (1) \cdot (0.25) \cdot (0.4) = 0.1
\]

\[
p(\hat{y}=1 | \hat{x}) \propto p(\hat{x}_1=1 | \hat{y}=1) \cdot p(\hat{x}_2=1 | \hat{y}=1) \cdot p(\hat{y}=1) = (0.5) \cdot (0.666...) \cdot (0.6) = 0.2
\]

\[
X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\]
Naïve Bayes Prediction Phase

• Prediction in a naïve Bayes model:

Consider $\hat{x} = [1 1]$ in this data set:

$$p(\hat{y} = 0 | \hat{x}) \propto p(\hat{x}_1 = 1 | \hat{y} = 0)p(\hat{x}_2 = 1 | \hat{y} = 0)p(\hat{y} = 0)$$
$$= (1) (0.25) (0.4) = 0.1$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$p(\hat{y} = 1 | \hat{x}) \propto p(\hat{x}_1 = 1 | \hat{y} = 1)p(\hat{x}_2 = 1 | \hat{y} = 1)p(\hat{y} = 1)$$
$$= (0.5) (0.666...) (0.6) = 0.2$$

Since $p(\hat{y} = 1 | \hat{x})$ is bigger than $p(\hat{y} = 0 | \hat{x})$, naïve Bayes predicts $\hat{y} = 1$.

(Don't sum to 1 because we're ignoring $p(x)$)
Avoiding Underflow

• During the prediction, the probability can underflow:
\[p(y = c | x_i) \propto \prod_{j=1}^{d} \left[p(x_{ij} | y = c) \right] p(y = c) \]

 All these are \(< 1\) so the product gets very small!

• Standard fix is to (equivalently) maximize the logarithm of the probability:

 Remember that \(\log(ab) = \log(a) + \log(b) \) so \(\log(\prod a_i) = \sum_i \log(a_i) \)

 Since \(\log \) is monotonic the 'c' maximizing \(p(y = c | x_i) \) also maximizes \(\log p(y = c | x_i) \)

 So maximize \(\log \left(\prod_{j=1}^{d} \left[p(x_{ij} | y = c) \right] p(y = c) \right) = \sum_{j=1}^{d} \log(p(x_{ij} | y = c)) + \log(p(y = c)) \)
Back to Decision Trees

• Instead of validation set, you can use CV to select tree depth.

• But you can also use these to decide **whether to split**:
 – Don’t split if validation/CV error doesn’t improve.
 – Different parts of the tree will have different depths.

• Or fit deep decision tree and **use CV to prune**:
 – Remove leaf nodes that don’t improve CV error.

• Popular implementations that have these tricks and others.
Cross-Validation Theory

• **Does CV give unbiased estimate of test error?**
 – Yes!
 • Since each data point is only used once in validation, expected validation error on each data point is test error.
 – But again, if you CV to select among models then it is no longer unbiased.

• **What about variance of CV?**
 – Hard to characterize.
 – CV variance on ‘n’ data points is worse than with a validation set of size ‘n’.
 • But we believe it is close.
Handling Data Sparsity

• Do we need to store the full bag of words 0/1 variables?
 – No: only need list of non-zero features for each e-mail.

 Math/model doesn’t change, but more efficient storage.
Less-Naïve Bayes

• Given features \(\{x_1, x_2, x_3, \ldots, x_d\} \), naïve Bayes approximates \(p(y|x) \) as:

\[
p(y|x_1, x_2, \ldots, x_d) \propto p(y) p(x_1|x_2, \ldots, x_d|y) \quad \text{product rule applied repeatedly}
\]

\[
= p(y) p(x_1|y) p(x_2|x_1, y) p(x_3|x_2, x_1, y) \ldots p(x_d|x_{d-1}, \ldots, x_1, y)
\]

\[
\approx p(y) p(x_1|y) p(x_2|y) p(x_3|y) \ldots p(x_d|y) \quad \text{(naïve Bayes assumption)}
\]

• The assumption is very strong, and there are “less naïve” versions:
 – Assume independence of all variables except up to ‘k’ largest ‘j’ where \(j < i \).
 • E.g., naïve Bayes has \(k=0 \) and with \(k=2 \) we would have:
 \[
 \approx p(y) p(x_1|y) p(x_2|y) p(x_3|x_1, y) p(x_4|x_3, x_2, y) \ldots p(x_d|x_{d-2}, x_{d-1}, y)
 \]
 • Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.
 – Another practical variation is “tree-augmented” naïve Bayes.
Gaussian Discriminant Analysis

• Classifiers based on Bayes rule are called **generative classifier**:
 – They often work well when you have **tons of features**.
 – But they **need to know** $p(x_i \mid y_i)$, **probability of features given the class**.
 • How to “generate” features, based on the class label.

• To fit generative models, usually make **BIG assumptions**:
 – **Naïve Bayes (NB)** for discrete x_i:
 • Assume that each variables in x_i is independent of the others in x_i given y_i.
 – **Gaussian discriminant analysis (GDA)** for continuous x_i.
 • Assume that $p(x_i \mid y_i)$ follows a multivariate normal distribution.
 • If all classes have same covariance, it’s called “linear discriminant analysis”.
Computing $p(x_i)$ under naïve Bayes

- **Generative models** don’t need $p(x_i)$ to make decisions.
- However, it’s easy to calculate under the naïve Bayes assumption:

$$p(x_i) = \sum_{c=1}^{K} p(x_i, y = c)$$ \hspace{1cm} (marginalization rule)

$$= \sum_{c=1}^{K} p(x_i \mid y = c) \ p(y = c)$$ \hspace{1cm} (product rule)

$$= \sum_{c=1}^{K} \left[\prod_{j=1}^{d} p(x_{ij} \mid y = c) \right] \ p(y = c)$$ \hspace{1cm} (naïve Bayes assumption)

These are the quantities we compute during training.