CPSC 340: Machine Learning and Data Mining

Admin

- Assignment 4:
 - 1 late day for tonight, 2 late days for Wednesday.

- Assignment 5:
 - Due Monday of next week.
- Final:
 - Details and previous exams posted on Piazza.

Last Time: Multi-Dimensional Scaling

- PCA for visualization:
 - We're using PCA to get the location of the z_i values.
 - We then plot the z_i values as locations in a scatterplot.
- Multi-dimensional scaling (MDS) is a crazy idea:
 - Let's directly optimize the pixel locations of the z_i values.
 - "Gradient descent on the points in a scatterplot".
 - Needs a "cost" function saying how "good" the z_i locations are.

• Traditional MDS cost function:

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \text{ distances match high-dimensional distance}$$

$$\int_{i=1}^{n} \int_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \text{ distance between points}$$

$$\int_{i=1}^{n} \int_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \text{ distance between points}$$

$$\int_{i=1}^{n} \int_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \text{ distance between points}$$

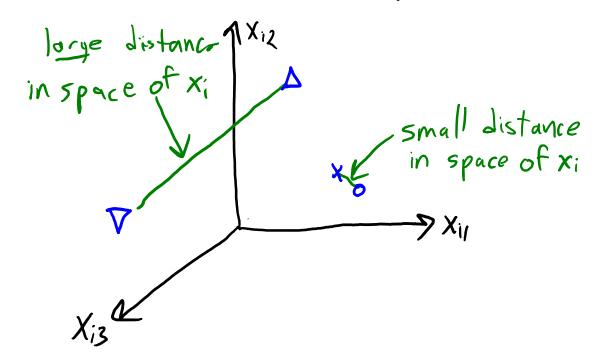
$$\int_{i=1}^{n} \int_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \text{ distance between points}$$

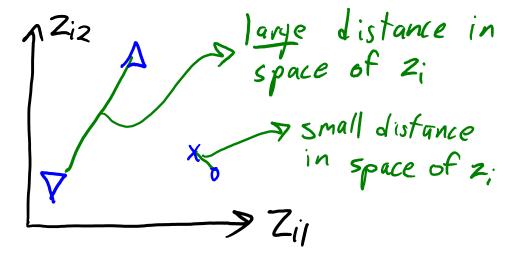
$$\int_{i=1}^{n} \int_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \text{ distance between points}$$

$$\int_{i=1}^{n} \int_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2 \text{ distance between points}$$

- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$

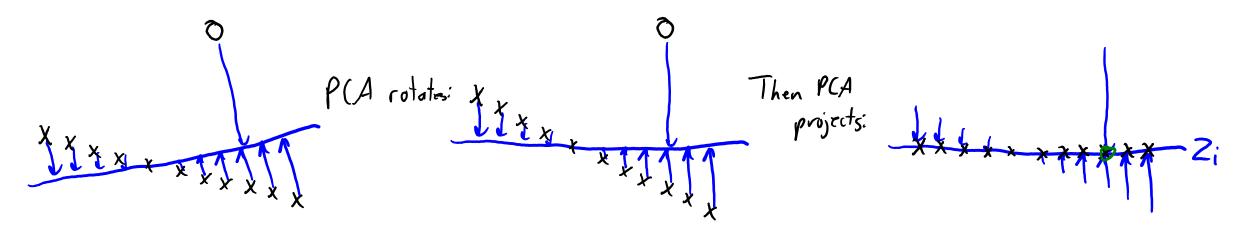




- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$

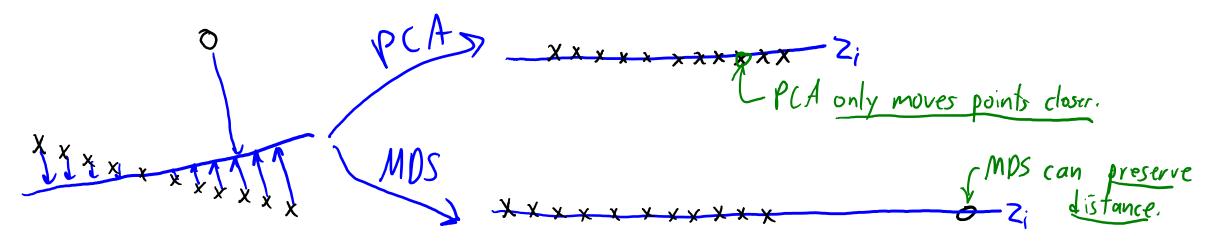
- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$

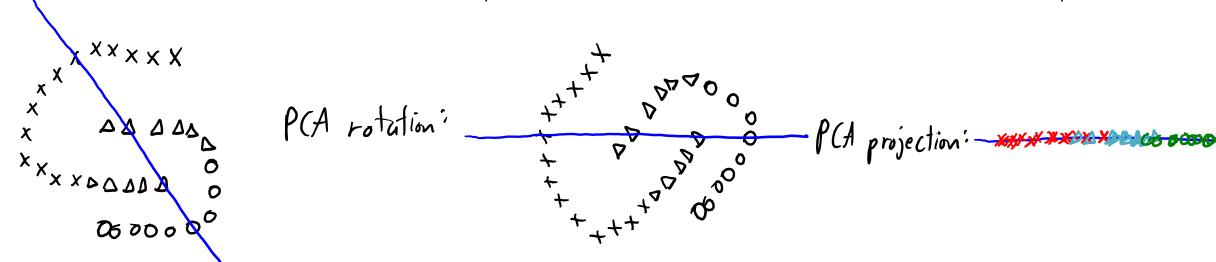
- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$

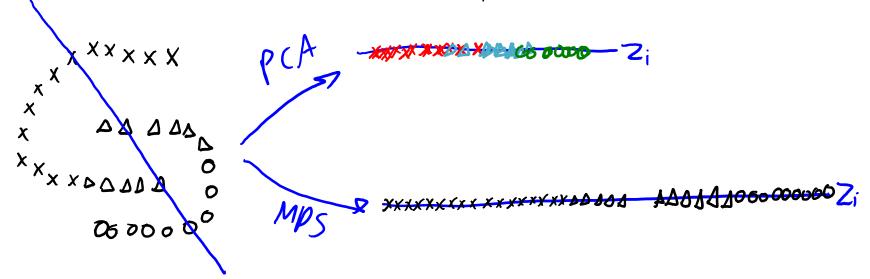
- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Cannot use SVD to compute solution:
 - Instead, do gradient descent on the z_i values.
 - You "learn" a scatterplot that tries to visualize high-dimensional data.
 - Not convex and sensitive to initialization.

Different MDS Cost Functions

MDS default objective: squared difference of Euclidean norms:

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (||z_i - z_j|| - ||x_i - x_j||)^2$$

• But we can make z_i match different distances/similarities:

$$f(2) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} d_3(d_2(z_{ij}, z_{j}) - d_1(x_{ij}, x_{j}))$$

- Where the functions are not necessarily the same:
 - d₁ is the high-dimensional distance we want to match.
 - d₂ is the low-dimensional distance we can control.
 - d₃ controls how we compare high-/low-dimensional distances.

Different MDS Cost Functions

MDS default objective function with general distances/similarities:

$$f(2) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} d_3(d_2(z_{ij}, z_{j}) - d_1(x_{ij}, x_{j}))$$

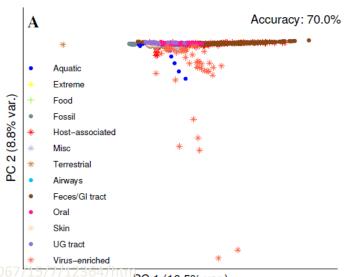
- "Classic" MDS uses $d_1(x_i,x_j) = x_i^Tx_j$ and $d_2(z_i,z_j) = z_i^Tz_j$.
 - We obtain PCA in this special case (for centered x_i).
 - Not a great choice because it's a linear model.

Different MDS Cost Functions

MDS default objective function with general distances/similarities:

$$f(2) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} d_3(d_2(z_i, z_j) - d_1(x_i, x_j))$$

- Another possibility: $d_1(x_i,x_j) = ||x_i-x_j||_1$ and $d_2(z_i,z_j) = ||z_i-z_j||_1$.
 - The z_i approximate the high-dimensional L_1 -norm distances.





ttp://www.mapi.com/1422-006//15/7/12364/htmPC 1 (16.5% var.)

PC 1 (16.9% var.)

Sammon's Mapping

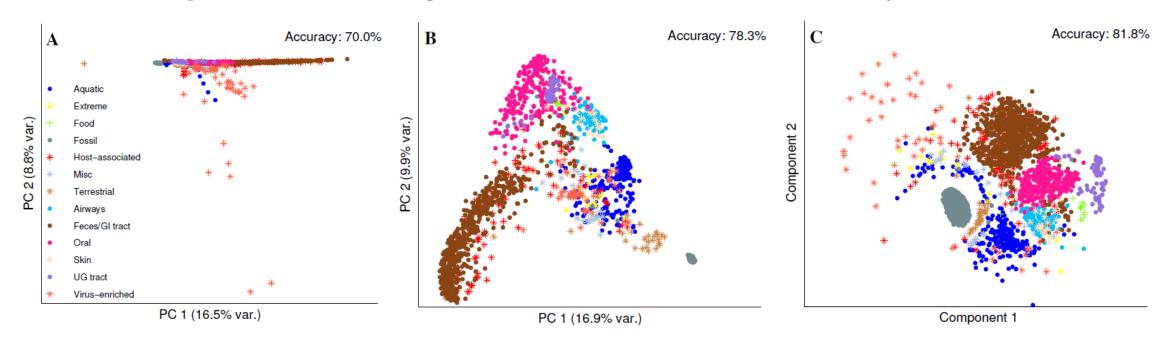
- Challenge for most MDS models: they focus on large distances.
 - Leads to "crowding" effect like with PCA.
- Early attempt to address this is Sammon's mapping:
 - Weighted MDS so large/small distances are more comparable.

$$f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(\frac{d_2(z_{i,2j}) - d_1(x_{i,2j})}{d_1(x_{i,2}x_{i,2})} \right)^2$$

- Denominator reduces focus on large distances.

Sammon's Mapping

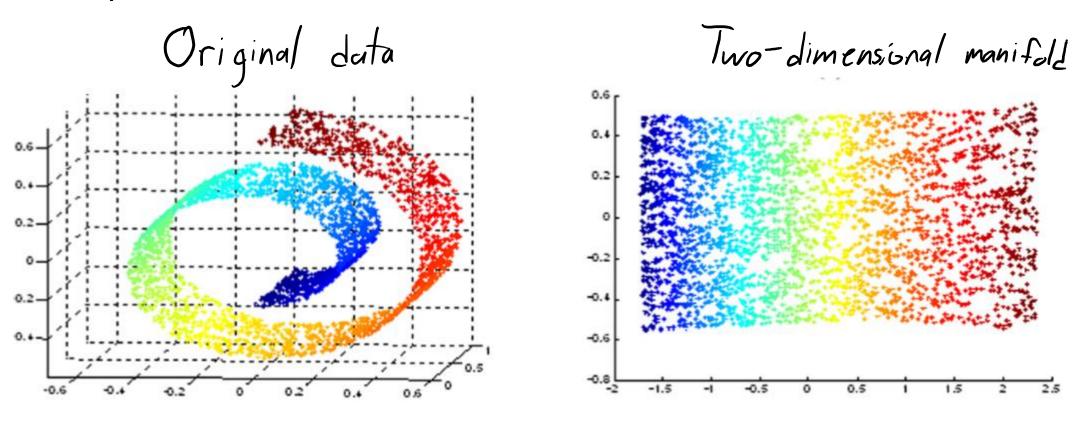
- Challenge for most MDS models: they focus on large distances.
 - Leads to "crowding" effect like with PCA.
- Early attempt to address this is Sammon's mapping:
 - Weighted MDS so large/small distances are more comparable.



(pause)

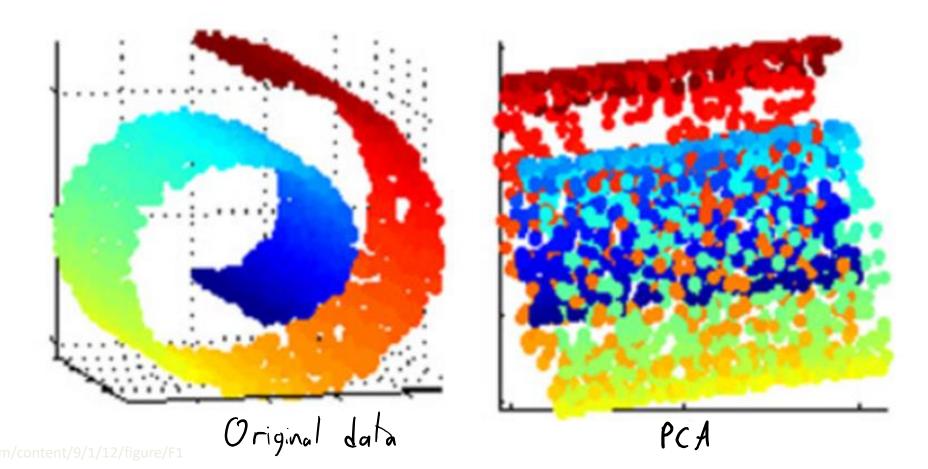
Learning Manifolds

- Consider data that lives on a low-dimensional "manifold".
- Example is the 'Swiss roll':



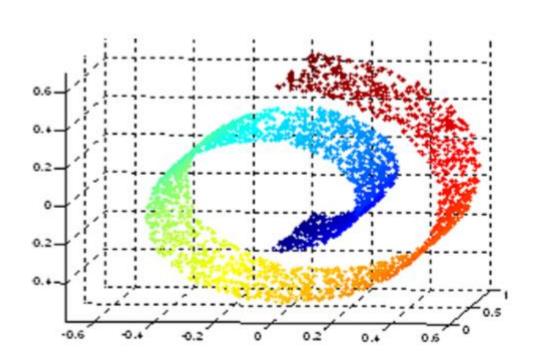
Learning Manifolds

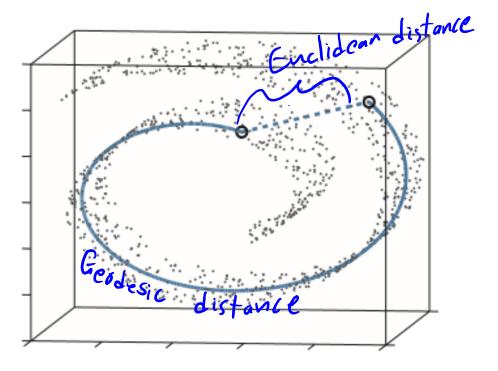
- Consider data that lives on a low-dimensional "manifold".
 - With usual distances, PCA/MDS will not discover non-linear manifolds.



Learning Manifolds

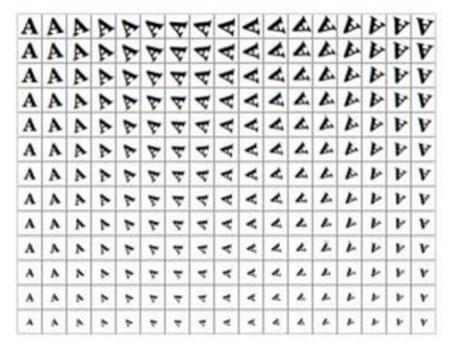
- Consider data that lives on a low-dimensional "manifold".
 - With usual distances, PCA/MDS will not discover non-linear manifolds.
- We need geodesic distance: the distance through the manifold.





Manifolds in Image Space

Consider slowly-varying transformation of image:



- Images are on a manifold in the high-dimensional space.
 - Euclidean distance doesn't reflect manifold structure.
 - Geodesic distance is distance through space of rotations/resizings.

ISOMAP

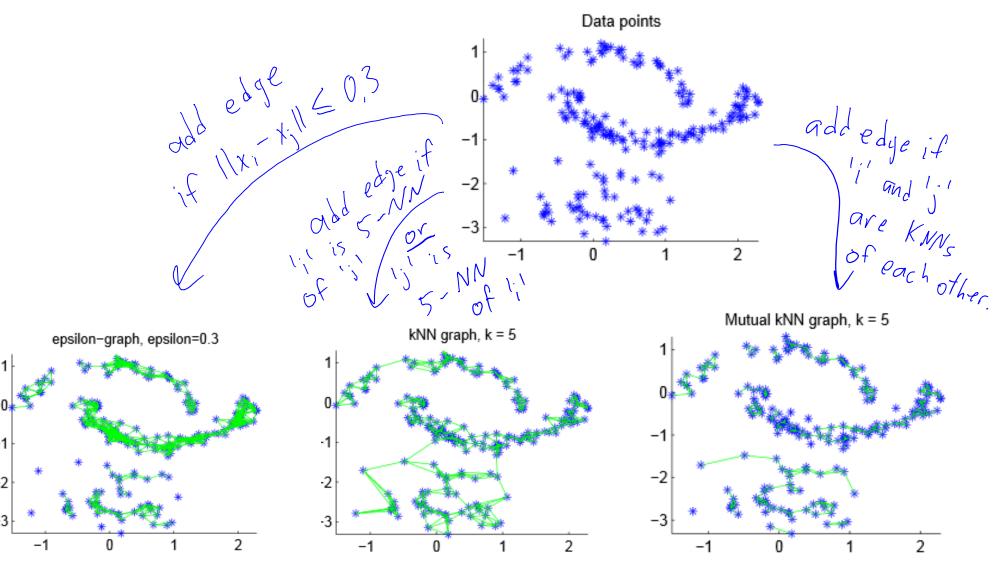
ISOMAP is latent-factor model for visualizing data on manifolds:

ISOMAP 2; values in 10 or 20

Digression: Constructing Neighbour Graphs

- Sometimes you can define the graph/distance without features:
 - Facebook friend graph.
 - Connect YouTube videos if one video tends to follow another.
- But we can also convert from features x_i to a "neighbour" graph:
 - Approach 1 ("epsilon graph"): connect x_i to all x_i within some threshold ε .
 - Like we did with density-based clustering.
 - Approach 2 ("KNN graph"): connect x_i to x_i if:
 - x_i is a KNN of x_i OR x_i is a KNN of x_j .
 - Approach 2 ("mutual KNN graph"): connect x_i to x_i if:
 - x_i is a KNN of x_i AND x_i is a KNN of x_i .

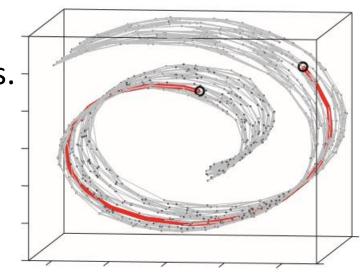
Converting from Features to Graph



http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pdf

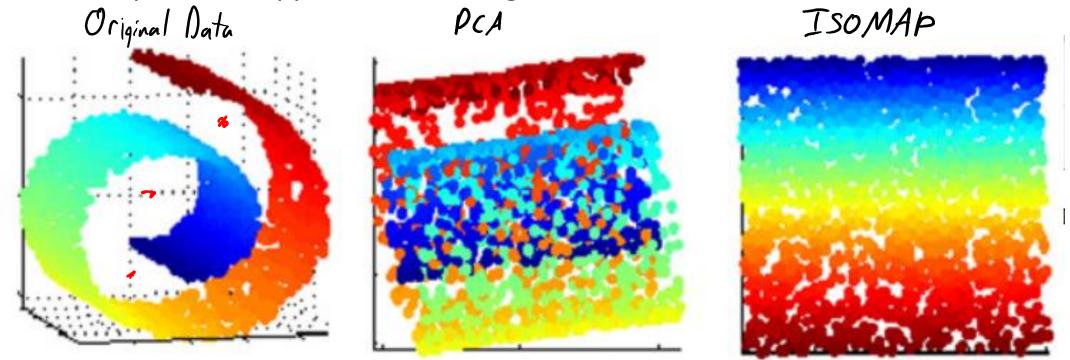
ISOMAP

- ISOMAP is latent-factor model for visualizing data on manifolds:
 - 1. Find the neighbours of each point.
 - Usually "k-nearest neighbours graph", or "epsilon graph".
 - 2. Compute edge weights:
 - Usually distance between neighbours.
 - 3. Compute weighted shortest path between all points.
 - Dijkstra or other shortest path algorithm.
 - 4. Run MDS using these distances.



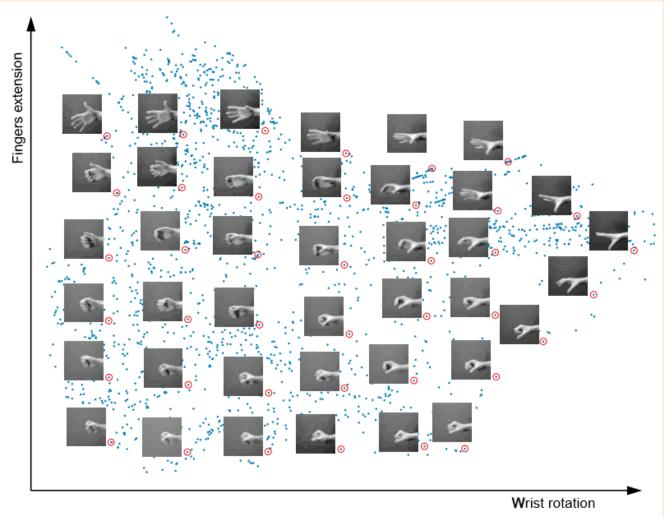
ISOMAP

- ISOMAP can "unwrap" the roll:
 - Shortest paths are approximations to geodesic distances.



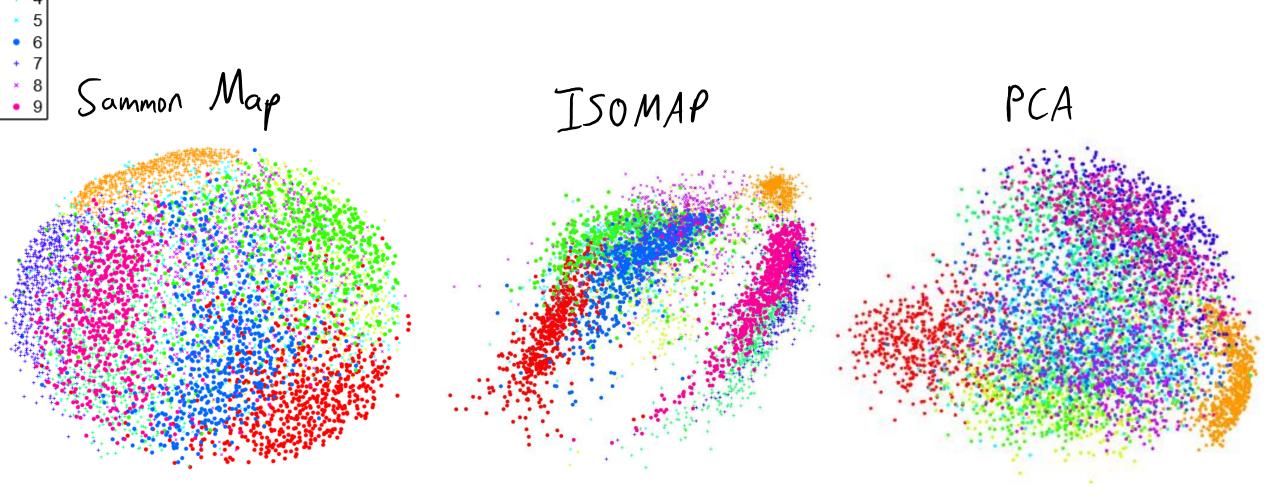
- Sensitive to having the right graph:
 - Points off of manifold and gaps in manifold cause problems.

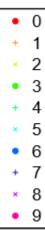
ISOMAP on Hand Images

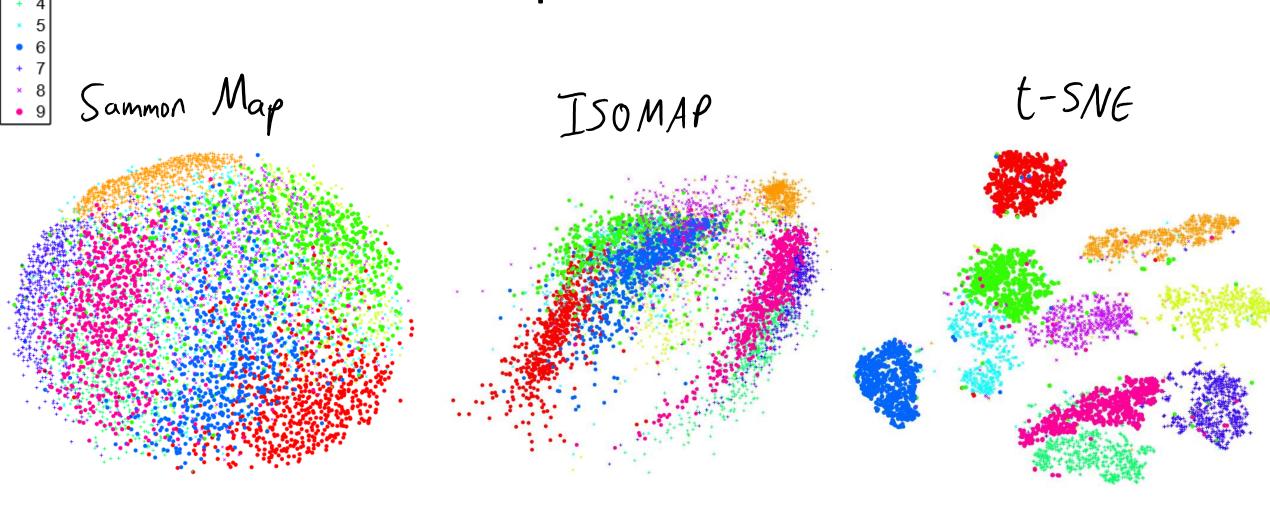


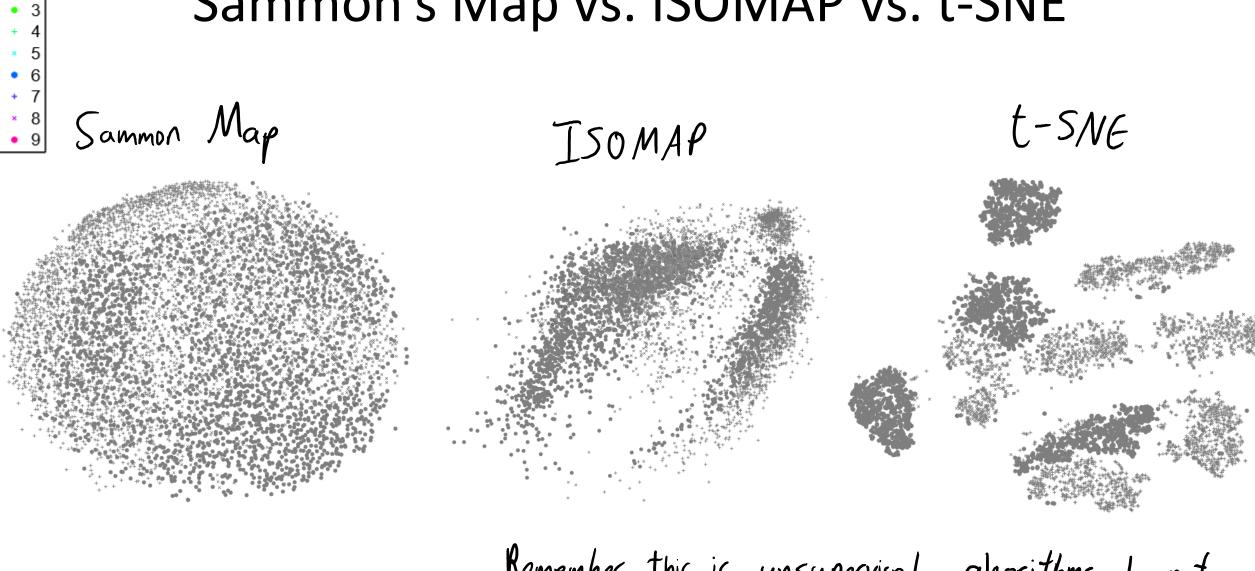
Related method is "local linear embedding".

Sammon's Map vs. ISOMAP vs. PCA

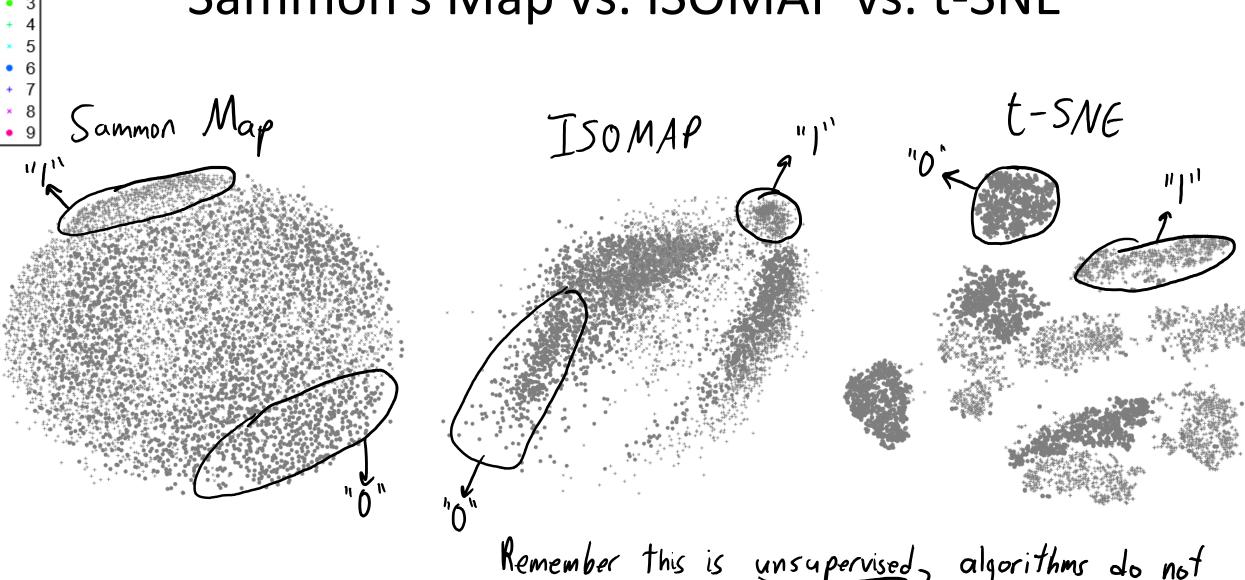








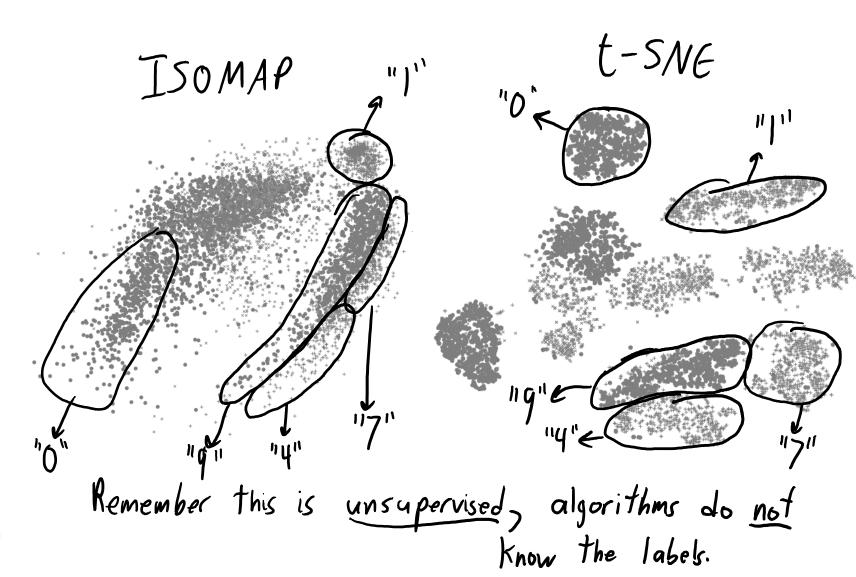
Remember this is unsupervised, algorithms do not know the labels.

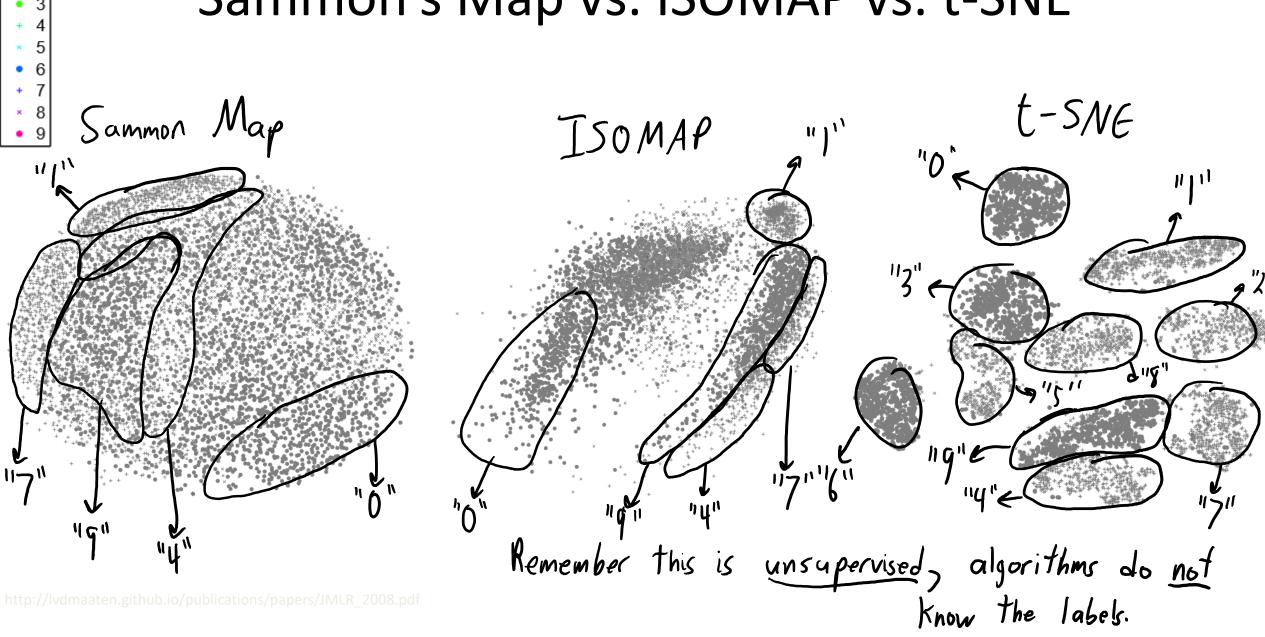


Remember this is unsupervised, algorithms do not know the labels.

Sammon Map

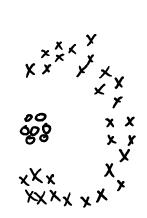
Sammon's Map vs. ISOMAP vs. t-SNE

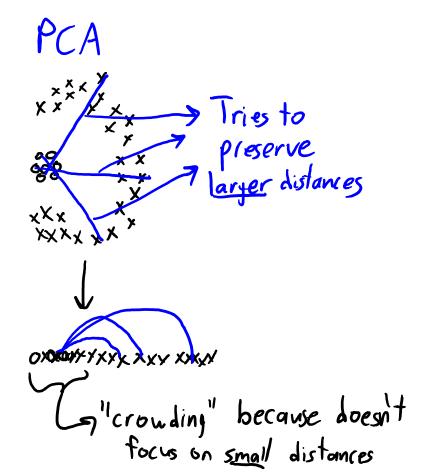


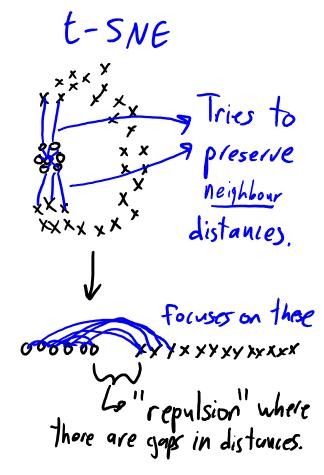


t-Distributed Stochastic Neighbour Embedding

- One key idea in t-SNE:
 - Focus on neighbour distances by allowing large variance in large distances.



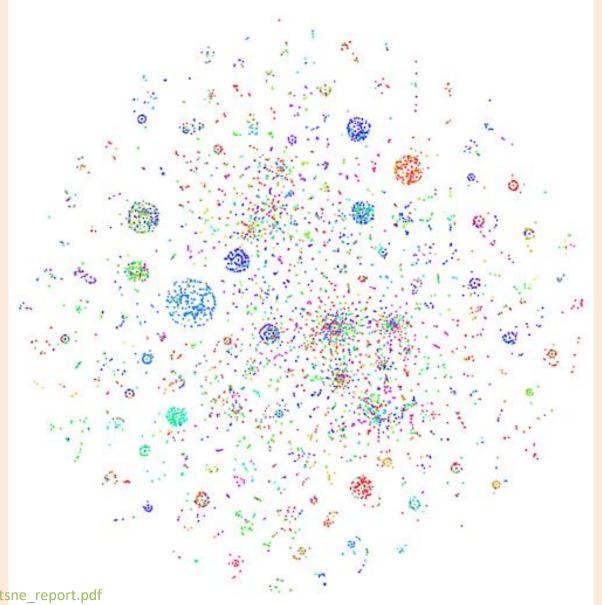




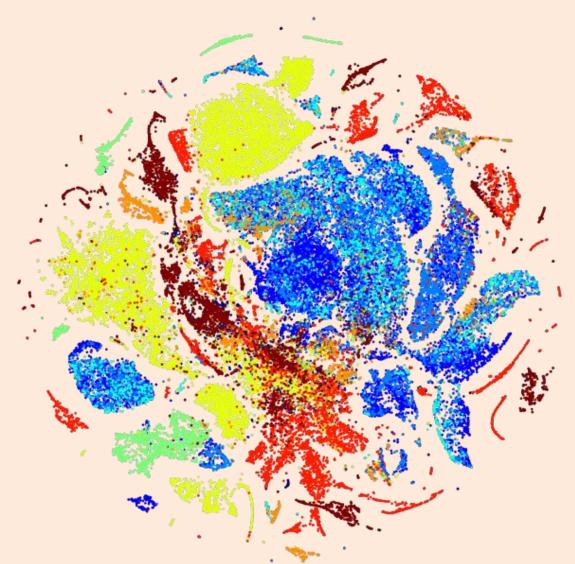
t-Distributed Stochastic Neighbour Embedding

- t-SNE is a special case of MDS (specific d₁, d₂, and d₃ choices):
 - $-d_1$: for each x_i , compute probability that each x_i is a 'neighbour'.
 - Computation is similar to k-means++, but most weight to close points (Gaussian).
 - Doesn't require explicit graph.
 - $-d_2$: for each z_i , compute probability that each z_i is a 'neighbour'.
 - Similar to above, but uses student's t (grows really slowly with distance).
 - Avoids 'crowding', because you have a huge range that large distances can fill.
 - $-d_3$: Compare x_i and z_i using an entropy-like measure:
 - How much 'randomness' is in probabilities of x_i if you know the z_i (and vice versa)?
- Interactive demo: https://distill.pub/2016/misread-tsne

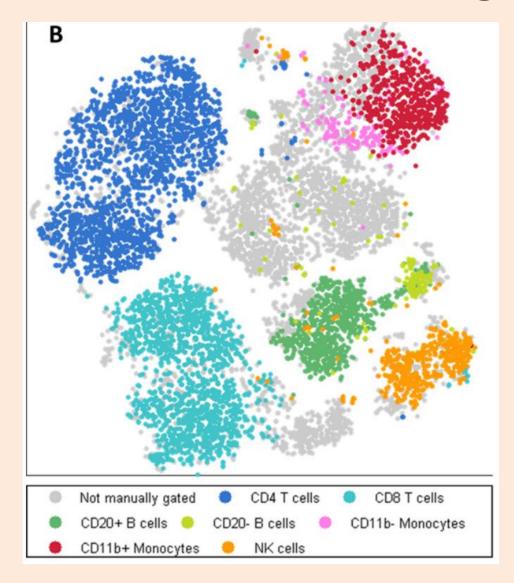
t-SNE on Wikipedia Articles



t-SNE on Product Features



t-SNE on Leukemia Heterogeneity



End of Part 4: Key Concepts

We discussed linear latent-factor models:

$$f(W,z) = \sum_{i=1}^{2} \sum_{j=1}^{d} ((w_{i})^{T}z_{i} - x_{ij})^{2}$$

$$= \sum_{i=1}^{d} ||W^{T}z_{i} - x_{i}||^{2}$$

$$= ||ZW - X||_{F}^{2}$$

- Represent 'X' as linear combination of latent factors 'w_c'.
 - Latent features 'z_i' give a lower-dimensional version of each 'x_i'.
 - When k=1, finds direction that minimizes squared orthogonal distance.
- Applications:
 - Outlier detection, dimensionality reduction, data compression, features for linear models, visualization, factor discovery, filling in missing entries.

End of Part 4: Key Concepts

We discussed linear latent-factor models:

$$f(W,z) = \sum_{i=1}^{n} \sum_{j=1}^{d} ((w_i)^T z_i - x_{ij})^2$$

- Principal component analysis (PCA):
 - Often uses orthogonal factors and fits them sequentially (via SVD).
- Non-negative matrix factorization:
 - Uses non-negative factors giving sparsity.
 - Can be minimized with projected gradient.
- Many variations are possible:
 - Different regularizers (sparse coding) or loss functions (robust/binary PCA).
 - Missing values (recommender systems) or change of basis (kernel PCA).

End of Part 4: Key Concepts

- We discussed multi-dimensional scaling (MDS):
 - Non-parametric method for high-dimensional data visualization.
 - Tries to match distance/similarity in high-/low-dimensions.
 - "Gradient descent on scatterplot points".
- Main challenge in MDS methods is "crowding" effect:
 - Methods focus on large distances and lose local structure.
- Common solutions:
 - Sammon mapping: use weighted cost function.
 - ISOMAP: approximate geodesic distance using via shortest paths in graph.
 - T-SNE: give up on large distances and focus on neighbour distances.

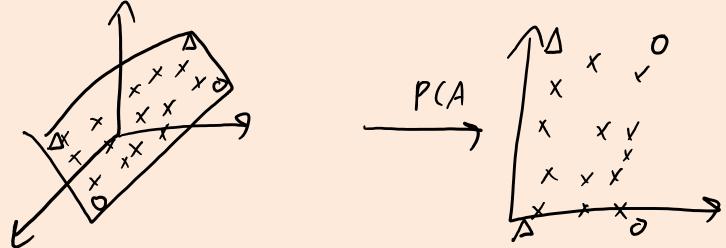
Summary

- Different MDS distances/losses/weights usually gives better results.
- Manifold learning focuses on low-dimensional curved structures.
- ISOMAP is most common approach:
 - Approximates geodesic distance by shortest path in weighted graph.
- t-SNE is promising new data MDS method.

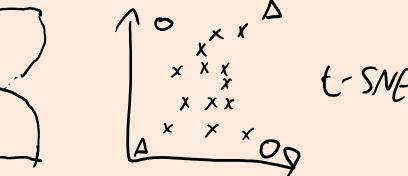
Next time: deep learning.

Does t-SNE always outperform PCA?

Consider 3D data living on a 2D hyper-plane:



- PCA can perfectly capture the low-dimensional structure.
- T-SNE can capture the local structure, but can "twist" the plane.
 - It doesn't try to get long distances correct.



Latent-Factor Representation of Words

- For natural language, we often represent words by an index.
 - E.g., "cat" is word 124056 among a "bag of words".
- But this may be inefficient:
 - Should "cat" and "kitten" share parameters in some way?
- We want a latent-factor representation of individual words:
 - Closeness in latent space should indicate similarity.
 - Distances could represent meaning?
- Recent alternative to PCA/NMF is word2vec...

Using Context

- Consider these phrases:
 - "the <u>cat</u> purred"
 - "the <u>kitten</u> purred"
 - "black <u>cat</u> ran"
 - "black <u>kitten</u> ran"
- Words that occur in the same context likely have similar meanings.

Word2vec uses this insight to design an MDS distance function.

Word2Vec

- Two variations on objective in word2vec:
 - Try to predict word from surrounding words (continuous bag of words).
 - Try to predict surrounding words from word (skip-gram).

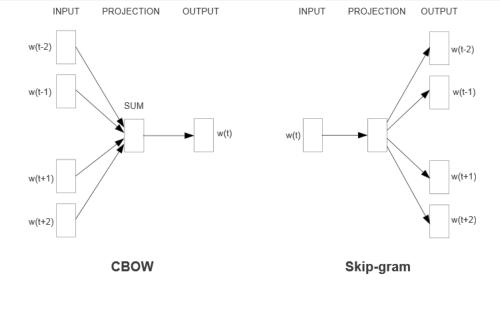


Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

Train latent-factors to solve one of these supervised learning tasks.

Word2Vec

- In both cases, each word 'i' is represented by a vector z_i.
- In continuous bag of words, we optimize the following likelihood:

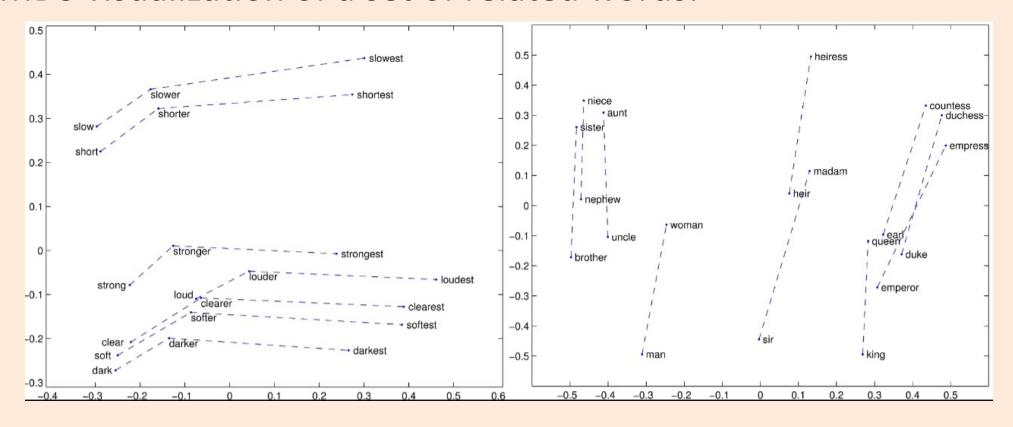
$$p(x_{i} | x_{surround}) = \prod_{j \in surround} p(x_{i} | x_{j}) \qquad (independence assumption)$$

$$= \prod_{j \in surround} \frac{exp(z_{i}^{T}z_{j})}{\sum_{c \in I} exp(z_{c}^{T}z_{j})} \qquad (softmax over all words)$$

- Apply gradient descent to logarithm:
 - Encourages $z_i^T z_j$ to be big for words in same context (making z_i close to z_1).
 - Encourages $z_i^T z_i$ to be small for words not appearing in same context (makes z_i and z_i far).
- For CBOW, denominator sums over all words.
- For skip-gram it will be over all possible surrounding words.
 - Common trick to speed things up: sample terms in denominator.
 - "Negative sampling".

Word2Vec Example

MDS visualization of a set of related words:



Distances between vectors might represent semantics.

Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

$$Z_{frunce}^{-2}P_{aris}^{-2}$$

+ Z_{Italy}^{-2}

Table 8 shows words that follow various relationships. We follow the approach described above: the relationship is defined by subtracting two word vectors, and the result is added to another word. Thus for example, Paris - France + Italy = Rome. As it can be seen, accuracy is quite good, although

Word vectors for 157 languages <u>here</u>.

Multiple Word Prototypes

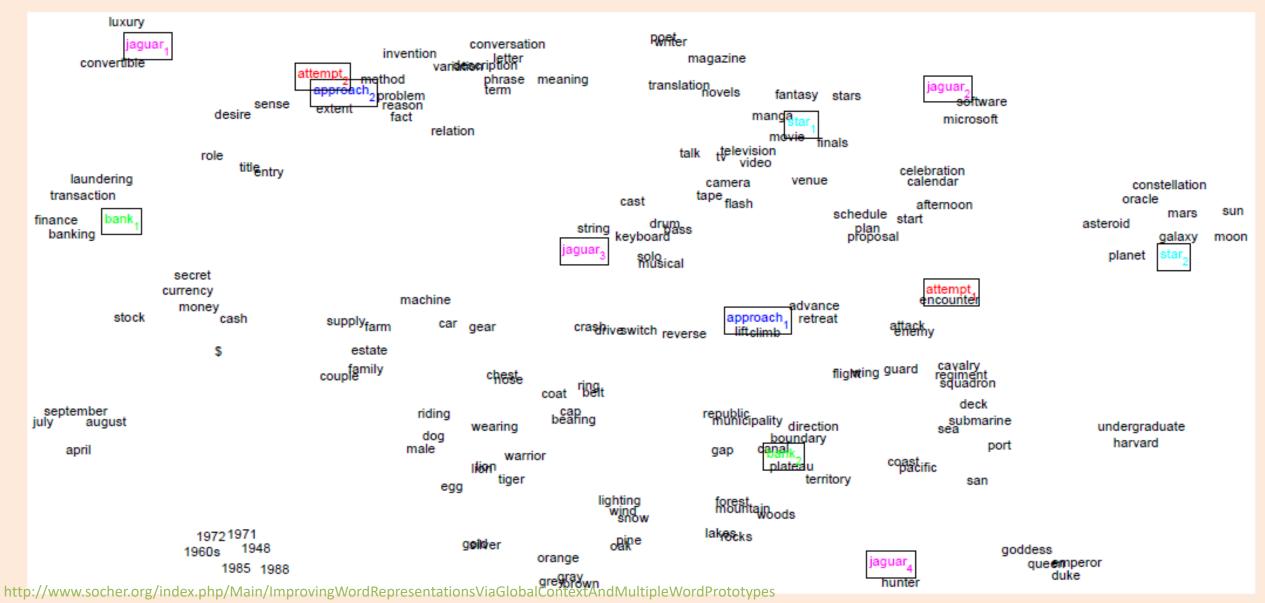
- What about homonyms and polysemy?
 - The word vectors would need to account for all meanings.

- More recent approaches:
 - Try to cluster the different contexts where words appear.

- Use different vectors for different contexts.

Exts.
$$\sum_{j=1}^{2} \frac{1}{2^{j}}$$

Multiple Word Prototypes



Graph Drawing

- A closely-related topic to MDS is graph drawing:
 - Given a graph, how should we display it?
 - Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing

Bonus Slide: Multivariate Chain Rule

Recall the univariate chain rule:

$$\frac{d}{du}\left[f(g(u))\right] = f'(g(u))g'(u)$$

The multivariate chain rule:

$$\nabla \left[f'(g(w)) \right] = f'(g(w)) \nabla g(w)$$

• Example:

$$\nabla \left(\frac{1}{2}(w^{T}x_{i}-y_{i})^{2}\right)$$

$$=\nabla \left[f\left(q(w)\right)\right]$$
with $q(w)=w^{T}x_{i}-y_{i}$

$$=\nabla \left[f\left(q(w)\right)\right]=r_{i}$$

$$=(w^{T}x_{i}-y_{i})x_{i}$$

$$=(w^{T}x_{i}-y_{i})x_{i}$$

Bonus Slide: Multivariate Chain Rule for MDS

General MDS formulation:

$$\begin{array}{ccc} & & & & & \\ & & & \\ & & & \\ & & Z \in \mathbb{R}^{n \times k} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Using multivariate chain rule we have:

$$\nabla_{z_{i}} g(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) = g'(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) \nabla_{z_{i}} d_{2}(z_{i}, z_{j})$$