Admin

• Assignment 3:
 – 2 late days to hand in tonight.

• Assignment 4:
 – Due Friday of next week.
Last Time: MAP Estimation

- **MAP estimation** maximizes posterior:
 \[p(w \mid X, y) \propto p(y \mid X, w) p(w) \]

- **Likelihood** measures probability of labels ‘y’ given parameters ‘w’.
- **Prior** measures probability of parameters ‘w’ before we see data.
- For **IID training data and independent priors**, equivalent to using:
 \[
 f(w) = -\sum_{i=1}^{n} \log(p(y_i \mid x_i, w)) - \sum_{j=1}^{d} \log(p(w_j))
 \]

- So **log-likelihood** is an error function, and **log-prior** is a regularizer.
 - Squared error comes from Gaussian likelihood.
 - L2-regularization comes from Gaussian prior.
End of Part 3: Key Concepts

• **Linear models** predict based on linear combination(s) of features:
 \[w^\top x_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_d x_{id} \]

• We model non-linear effects using a change of basis:
 – Replace d-dimensional \(x_i \) with k-dimensional \(z_i \) and use \(v^\top z_i \).
 – Examples include polynomial basis and (non-parametric) RBFs.

• **Regression** is supervised learning with continuous labels.
 – Logical error measure for regression is **squared error**:
 \[f(w) = \frac{1}{2} \| X w - y \|^2 \]
 – Can be solved as a **system of linear equations**.
End of Part 3: Key Concepts

• We can reduce over-fitting by using **regularization**:

\[f(w) = \frac{1}{2} \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2 \]

• Squared error is **not always right** measure:
 – Absolute error is less sensitive to outliers.
 – Logistic loss and hinge loss are better for binary \(y_i \).
 – Softmax loss is better for multi-class \(y_i \).

• **MLE/MAP** perspective:
 – We can view loss as log-likelihood and regularizer as log-prior.
 – Allows us to define losses based on probabilities.
End of Part 3: Key Concepts

• **Gradient descent** finds local minimum of smooth objectives.
 – Converges to a global optimum for **convex functions**.
 – Can use smooth approximations (*Huber*, *log-sum-exp*)

• **Stochastic gradient** methods allow huge/infinite ‘n’.
 – Though very sensitive to the step-size.

• **Kernels** let us use similarity between examples, instead of features.
 – Let us use some exponential- or infinite-dimensional features.

• **Feature selection** is a messy topic.
 – Classic method is **forward selection** based on **L0-norm**.
 – **L1-regularization** simultaneously regularizes and selects features.
The Story So Far...

• Part 1: Supervised Learning.
 – Methods based on counting and distances.

• Part 2: Unsupervised Learning.
 – Methods based on counting and distances.

• Part 3: Supervised Learning (just finished).
 – Methods based on linear models and gradient descent.

• Part 4: Unsupervised Learning (starting today).
 – Methods based on linear models and gradient descent.
Motivation: Human vs. Machine Perception

• Huge difference between what we see and what computer sees:
 What we see: What the computer “sees”:
 3

• But maybe images shouldn’t be written as combinations of pixels.
Motivation: Pixels vs. Parts

• Can view 28x28 image as **weighted sum** of “single pixel on” images:

\[
\begin{array}{c}
3 \\
\end{array}
= 1 \begin{array}{c} . \\
\end{array} + 0 \begin{array}{c} . \\
\end{array} + 1 \begin{array}{c} . \\
\end{array} + 0.6 \begin{array}{c} . \\
\end{array} + 0 \begin{array}{c} . \\
\end{array} + \ldots
\]

– We have one image for each pixel.
– The **weights** specify “how much of this pixel is in the image”.
 • A weight of zero means that pixel is white, a weight of 1 means it’s black.

• This is **non-intuitive**, isn’t a “3” made of small number of “parts”?

\[
\begin{array}{c}
3 \\
\end{array}
\approx 1 \begin{array}{c} - \\
\end{array} + 1 \begin{array}{c} - \\
\end{array}
\]

– Now the weights are “how much of this part is in the image”.
Motivation: Pixels vs. Parts

- We could represent other digits as different combinations of “parts”:

\[
\begin{align*}
3 &= 1 - +1 - +1 - +1 - +0 +0 \\
5 &= 1 - +0 - +1 - +1 - +1 - +0 +1 \\
8 &= 1 - +1 - +1 - +1 - +1 - +1 +1
\end{align*}
\]

- Consider replacing images \(x_i\) by the weights \(z_i\) of the different parts:
 - The 784-dimensional \(x_i\) for the “5” image is replaced by 7 numbers: \(z_i = [1 \ 0 \ 1 \ 1 \ 0 \ 1]\).
 - Features like this could make learning much easier.
Part 4: Latent-Factor Models

- The “part weights” are a change of basis from x_i to some z_i.
 - But in high dimensions, it can be hard to find a good basis.
- Part 4 is about learning the basis from the data.

![Latent-Factor Model](image)

- Why?
 - **Supervised learning**: we could use “part weights” as our features.
 - **Outlier detection**: it might be an outlier if isn’t a combination of usual parts.
 - **Dimension reduction**: compress data into limited number of “part weights”.
 - **Visualization**: if we have only 2 “part weights”, we can view data as a scatterplot.
 - **Interpretation**: we can try and figure out what the “parts” represent.
Previously: Vector Quantization

• Recall using **k-means for vector quantization**:
 – Run k-means to find a set of “means” w_c.
 – This gives a cluster \hat{y}_i for each object ‘i’.
 – Replace features x_i by mean of cluster: $\hat{x}_i \approx w_{\hat{y}_i}$

• This can be viewed as a (really bad) latent-factor model.
Vector Quantization (VQ) as Latent-Factor Model

• When \(d=3\), we could write \(x_i\) exactly as:

\[
\hat{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ x_{i3} \end{bmatrix} = x_{i1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_{i2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_{i3} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

(This is like “one pixel on” representation of images)

• If \(x_i\) is in cluster 2, VQ approximates \(x_i\) by mean \(w_2\) of cluster 2:

\[x_i \approx w_2 = 0w_1 + 1w_2 + 0w_3 + \ldots + 0w_k\]

• So in this example we would have \(z_i = [0 \ 1 \ 0 \ \ldots \ 0]\).

 – The “parts” are the means from k-means.

 – VQ only uses one part (the “part” from the cluster).
Vector Quantization vs. PCA

- So vector quantization is a latent-factor model:
 \[
 X = \begin{bmatrix}
 -9.0 & -7.3 \\
 -16.9 & -9.0 \\
 13.7 & 19.3 \\
 13.8 & 20.4 \\
 12.8 & 20.6 \\
 \vdots & \vdots \\
 \end{bmatrix}
 \]

- But it only uses 1 part, it’s just memorizing ‘k’ points in \(x_i\) space.
 - What we want is combinations of parts.

- PCA is a generalization that allows continuous ‘\(z_i\):’
 - It can have more than 1 non-zero.
 - It can use fractional weights and negative weights.
Principal Component Analysis (PCA) Applications

• Principal component analysis (PCA) has been invented many times:

PCA was invented in 1901 by Karl Pearson,[1] as an analogue of the principal axis theorem in mechanics; it was later independently developed (and named) by Harold Hotelling in the 1930s.[2] Depending on the field of application, it is also named the discrete Kosambi–Karhunen–Loève transform (KLT) in signal processing, the Hotelling transform in multivariate quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular value decomposition (SVD) of \mathbf{X} (Golub and Van Loan, 1983), eigenvalue decomposition (EVD) of $\mathbf{X}^\top\mathbf{X}$ in linear algebra, factor analysis (for a discussion of the differences between PCA and factor analysis see Ch. 7 of [3]), Eckart–Young theorem (Harman, 1960), or Schmidt–Mirsky theorem in psychometrics, empirical orthogonal functions (EOF) in meteorological science, empirical eigenfunction decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al., 1988), spectral decomposition in noise and vibration, and empirical modal analysis in structural dynamics.
Principal Component Analysis Notation

- **PCA** takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

\[
Z = \begin{bmatrix}
 z_1^T \\
 z_2^T \\
 \vdots \\
 z_n^T
\end{bmatrix}_{n 	imes d} \quad W = \begin{bmatrix}
 w_1^T \\
 w_2^T \\
 \vdots \\
 w_k^T
\end{bmatrix}_{k 	imes d}
\]

- For row ‘c’ of W, we use the notation \(w_c\).
 - Each \(w_c\) is a “part” (also called a “factor” or “principal component”).
- For row ‘i’ of Z, we use the notation \(z_i\).
 - Each \(z_i\) is a set of “part weights” (or “factor loadings” or “features”).
- For column ‘j’ of W, we use the notation \(w_j\).
 - Index ‘j’ of all the ‘k’ “parts” (value of pixel ‘j’ in all the different parts).
Principal Component Analysis Notation

• PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

\[
Z = \begin{bmatrix}
Z_1 \\
\vdots \\
Z_n \\
\end{bmatrix}
\quad \text{and} \quad
W = \begin{bmatrix}
\mathbf{w}_1 \\
\vdots \\
\mathbf{w}_k \\
\end{bmatrix}
\quad \text{for } k \leq d
\]

• With this notation, we can write our approximation of one \(x_{ij}\) as:

\[
\hat{x}_{ij} = z_{i1} \mathbf{w}_{j1} + z_{i2} \mathbf{w}_{j2} + \cdots + z_{ik} \mathbf{w}_{jk} = \sum_{c=1}^{k} z_{ic} \mathbf{w}_{cj} = (\mathbf{w}_j^T \mathbf{z}_i)
\]

 – K-means: “take index ‘j’ of closest mean”.
 – PCA: “use \(z_i\) to weight index ‘j’ of all means”.

• We can write approximation of the vector \(x_i\) as:

\[
\hat{x}_i = \begin{bmatrix}
(w_1)^T z_i \\
(w_2)^T z_i \\
\vdots \\
(w_k)^T z_i \\
\end{bmatrix} = W^T \mathbf{z}_i
\]
PCA Objective Function

- K-means and PCA both use the same objective function:
 \[f(W, z) = \sum_{i=1}^{n} \| W^T z_i - x_i \|^2 \]
 - In k-means, \(z_i \) has a single ‘1’ value and all other entries are zero.
 - In PCA, \(z_i \) can be any real number.

- We don’t just approximate \(x_i \) by one of the means
 - We approximate it as a linear combination of all means/factors.
 - This is like clustering with soft assignments to the cluster means.
PCA Objective Function

- K-means and PCA both use the same objective function:

\[f(W, z) = \sum_{i=1}^{n} \| W^T z_i - x_i \|^2 = \sum_{i=1}^{n} \sum_{j=1}^{d} (w^j)^T z_i - x_{ij})^2 \]

- We can also view this as solving ‘d’ regression problems:
 - Here the “outputs” are in the “inputs” – so they are d-dimensional not 1d.
 - Hence the extra sums as compared to regular least squares loss.
 - Each \(w^j \) is trying to predict column ‘j’ of ‘X’ from the basis \(z_i \).
 - But we’re also learning the features \(z_i \).
 - Each \(z_i \) say how to mix the mean/factor \(w_c \) to approximation example ‘i’.
Principal Component Analysis (PCA)

• Different ways to write the PCA objective function:

\[
f(W, Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} ((w_j)^T z_i - x_{ij})^2
= \sum_{i=1}^{n} \| W^T z_i - x_i \|^2
= \| Z W - X \|_F^2
\]

(approximating \(x_{ij} \) by \((w_j)^T z_i \))

(approximating \(x_i \) by \(W^T z_i \))

(approximating \(X \) by \(ZW \))

• We’re picking \(Z \) and \(W \) to approximate the original data \(X \).
 – It won’t be perfect since usually \(k \) is much smaller than \(d \).

• PCA is also called a “matrix factorization” model:

\[
X \sim ZW
\]
PCA Applications

• Applications of PCA:
 – **Dimensionality reduction**: replace ‘X’ with lower-dimensional ‘Z’.
 • If k << d, then compresses data.
 • Often better approximation than vector quantization.
PCA Applications

- Applications of PCA:
 - **Dimensionality reduction**: replace ‘X’ with lower-dimensional ‘Z’.
 - If $k \ll d$, then compresses data.
 - Often better approximation than vector quantization.
PCA Applications

• Applications of PCA:
 - **Dimensionality reduction**: replace ‘X’ with lower-dimensional ‘Z’.
 • If \(k << d \), then compresses data.
 • Often better approximation than vector quantization.
Applications of PCA:

- **Outlier detection**: if PCA gives poor approximation of x_i, could be ‘outlier’.

 - Though due to squared error **PCA is sensitive to outliers**.
Applications of PCA:

- Partial least squares: uses PCA features as basis for linear model.

\[
\text{Compute approximation } X \approx ZW
\]

Now use Z as features in a linear model:

\[
y_i = V^T z_i
\]

(linear regression weights 'V' trained under this change of basis, lower-dimensional than original features so less overfitting)
PCA Applications

- Applications of PCA:
 - Data visualization: plot z_i with $k = 2$ to visualize high-dimensional objects.
PCA Applications

• Applications of PCA:
 – **Data interpretation:** we can try to assign meaning to latent factors w_c.
 • Hidden “factors” that influence all the variables.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openness</td>
<td>Being curious, original, intellectual, creative, and open to new ideas.</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>Being organized, systematic, punctual, achievement-oriented, and dependable.</td>
</tr>
<tr>
<td>Extraversion</td>
<td>Being outgoing, talkative, sociable, and enjoying social situations.</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>Being affable, tolerant, sensitive, trusting, kind, and warm.</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>Being anxious, irritable, temperamental, and moody.</td>
</tr>
</tbody>
</table>

https://new.edu/resources/big-5-personality-traits
What is PCA actually doing?

When should PCA work well?

Today I just want to show geometry, we’ll talk about implementation next time.
Doom Overhead Map and Latent-Factor Models

• Original “Doom” video game included an “overhead map” feature:

 ![Doom Overhead Map](https://en.wikipedia.org/wiki/Doom_(1993_video_game))

 ![Latent-Factor Model](https://forum.minetest.net/viewtopic.php?f=5&t=9666)

• This map can be viewed as latent-factor model of player location.

 https://forum.minetest.net/viewtopic.php?f=5&t=9666
Overhead Map and Latent-Factor Models

• Actual player location at time ‘i’ can be described by 3 coordinates:
 \[
 X_i = \begin{bmatrix}
 x_{i1} \\
 x_{i2} \\
 x_{i3}
 \end{bmatrix}
 \quad \text{coordinates}
 \]

• The overhead map approximates these 3 coordinates with only 2:
 \[
 Z_i = \begin{bmatrix}
 z_{i1} \\
 z_{i2}
 \end{bmatrix}
 \quad \text{coordinates}
 \]

• Our k=2 latent factors are the following:
 \[
 W = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0
 \end{bmatrix}
 \]

• So our approximation of \(X_i \) is:
 \[
 \hat{X}_i = Z_{i1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + Z_{i2} \begin{bmatrix} 0 \\ 0 \end{bmatrix}
 \]
The “overhead map” approximation just ignores the “height”. This is a good approximation if the world is flat. Even if the character jumps, the first two features will approximate location. But it’s a poor approximation if heights are different.
Overhead Map and Latent-Factor Models

- Consider these crazy goats trying to get some salt:
 - Ignoring height gives poor approximation of goat location.

- But the “goat space” is basically a two-dimensional plane.
 - Better k=2 approximation: define ‘W’ so that combinations give the plane.
PCA with $d=2$ and $k=1$

Least squares

Principal component analysis

minimize vertical squared distance

We only care about predicting y_i

PCA finds line W minimizing squared distance in both dimensions.

We assume mean is 0.
PCA with $d=2$ and $k=1$

Principal component analysis

You can think of \(W \) as rotating data.

PCA finds line \(W \) minimizing squared distance in both dimensions.
PCA with $d=2$ and $k=1$

Principal component analysis

You can think of 'W' as rotating data.

Z_i can be interpreted as position along the line.

(Z_i is projected onto line X_{i1})

PCA finds line 'W' minimizing squared distance in both dimensions.

(Turned a 2d dataset into a 1d dataset)
PCA with $d=2$ and $k=1$

Example: height/weight of children:

Latent factor could be viewed as measure of size.
PCA with d=3 and k=2.

- With d=3, PCA (k=2) finds plane minimizing squared distance to x_i.

- With d=3, PCA (k=1) finds line minimizing squared distance to x_i.

http://www.nlpca.org/fig_pca_principal_component_analysis.png
Summary

• **Latent-factor models:**
 – Try to learn basis Z from training examples X.
 – Usually, the z_i are “part weights” for “parts” w_c.
 – Useful for dimensionality reduction, visualization, factor discovery, etc.

• **Principal component analysis:**
 – Most common latent-factor model based on squared reconstruction error.
 – We can view ‘W’ as best lower-dimensional hyper-plane.
 – We can view ‘Z’ as the coordinates in the lower-dimensional hyper-plane.

• Next time: basis for faces (and annoying Facebook chat effects).