CPSC 340: Machine Learning and Data Mining

MLE and MAP

Fall 2017
Admin

• Assignment 3:
 - 1 late day to hand in tonight, 2 late days for Wednesday.

• Assignment 4:
 - Due Friday of next week.
We discussed multi-class linear classification: \(y_i \) in \{1,2,...,k\}.

One vs. all with +1/-1 binary classifier:
- Train weights \(w_c \) to predict +1 for class ‘c’, -1 otherwise.
 - Predict by taking ‘c’ maximizing \(w_c^T x_i \).

Multi-class SVMs and **multi-class logistic regression**:
- Train the \(w_c \) jointly to encourage maximum \(w_c^T x_i \) to be \(w_{y_i}^T x_i \).

\[
\mathcal{W} = \left[\begin{array}{ccc}
 w_1 & w_2 & \cdots & w_K \\
 \end{array} \right]_d \\
\]

\[
f(W) = \sum_{i=1}^{N} \left[-w_{y_i}^T x_i + \log \left(\sum_{c=1}^{K} \exp(w_c^T x_i) \right) \right] + \frac{\lambda}{2} \| W \|_F^2
\]
Shape of Decision Boundaries

• Recall that a binary linear classifier splits space using a hyper-plane:

 - Classify data points as '1' because \(w^T x_i > 0 \)
 - Classify data points as '0' because \(w^T x_i < 0 \)

• Divides \(x_i \) space into 2 “half-spaces”.

\[w^T x_i = 0 \]
Shape of Decision Boundaries

- **Multi-class linear classifier** is intersection of these “half-spaces”:
 - This divides the space into **convex regions** (like k-means):
 - Could be non-convex with kernels or change of basis.
(pause)
Previously: Identifying Important E-mails

• Recall problem of identifying ‘important’ e-mails:

 • Global/local features in linear models give personalized prediction.
 • We can do binary classification by taking sign of linear model:
 \[y_i = \text{sign}(w^T x_i) \]
 – Convex loss functions (hinge loss, logistic loss) let us find an appropriate ‘w’.
 • We can train on huge datasets like Gmail with stochastic gradient.
 • But what if we want a probabilistic classifier?
 – Want a model of \(p(y_i = \text{“important”} \mid x_i) \).
Generative vs. Discriminative Models

• Previously we saw naïve Bayes:
 – Uses Bayes rule and model \(p(x_i | y_i) \) to predict \(p(y_i | x_i) \).
 \[
p(y_i | x_i) \propto p(x_i | y_i) p(y_i)
 \]
 – This strategy is called a generative model.
 • It “models how the features are generated”.
 • Often works well with lots of features but small ‘n’.

• Alternative is discriminative models:
 – Directly model \(p(y_i | x_i) \) to predict \(p(y_i | x_i) \).
 • No need to model \(x_i \), so we can use complicated features.
 • Tends to work better with large ‘n’ or when naïve assumptions aren’t satisfied.
 – Classic example is logistic regression.
“Parsimonious” Parameterization and Linear Models

- Challenge: $p(y_i \mid x_i)$ might still be really complicated:
 - If x_i has ‘d’ binary features, need to estimate $p(y_i \mid x_i)$ for 2^d input values.

- Practical solution: assume $p(y_i \mid x_i)$ has “parsimonious” form.
 - For example, we convert output of linear model to be a probability.
 - Only need to estimate the parameters of a linear model.

- In binary logistic regression, we’ll do the following:
 1. The linear prediction $w^T x_i$ gives us a number in $(-\infty, \infty)$.
 2. We’ll map $w^T x_i$ to a number in $(0,1)$, with a map acting like a probability.
Let \(z_i = w^T x_i \) in a binary logistic regression model:

- If \(\text{sign}(z_i) = +1 \), we should have \(p(y_i = +1 \mid z_i) > \frac{1}{2} \).
 - The linear model thinks \(y_i = +1 \) is more likely.
- If \(\text{sign}(z_i) = -1 \), we should have \(p(y_i = +1 \mid z_i) < \frac{1}{2} \).
 - The linear model thinks \(y_i = -1 \) is more likely, and \(p(y_i = -1 \mid z_i) = 1 - p(y_i = +1 \mid z_i) \).
- If \(z_i = 0 \), we should have \(p(y_i = +1 \mid z_i) = \frac{1}{2} \).
 - Both classes are equally likely.

And we might want size of \(w^T x_i \) to affect probabilities:

- As \(z_i \) becomes really positive, we should have \(p(y_i = +1 \mid z_i) \) converge to 1.
- As \(z_i \) becomes really negative, we should have \(p(y_i = -1 \mid z_i) \) converge to 0.
So we want a transformation of $z_i = w^T x_i$ that looks like this:

The most common choice is the sigmoid function:

$$h(z_i) = \frac{1}{1 + \exp(-z_i)}$$

Values of $h(z_i)$ match what we want:

$$h(-\infty) = 0 \quad h(-1) \approx 0.27 \quad h(0) = 0.5 \quad h(0.5) \approx 0.62 \quad h(+1) \approx 0.73 \quad h(+\infty) = 1$$
Sigmoid: Transforming $w^T x_i$ to a Probability

• We’ll define $p(y_i = +1 \mid z_i) = h(z_i)$, where ‘$h$’ is the **sigmoid function**.

 $$
 p(y_i = -1 \mid z_i) = 1 - p(y_i = +1 \mid z_i) = 1 - h(z_i) = h(-z_i)
 $$

 • We can write both cases as $p(y_i \mid z_i) = h(y_i z_i)$, so we convert $z = w^T x_i$ into “probability of y_i” using:

 $$
 p(y_i \mid w, x_i) = h(y_i w^T x_i) = \frac{1}{1 + e^{y_i w^T x_i}}
 $$

• Given this probabilistic perspective, how should we find best ‘w’?
Maximum Likelihood Estimation (MLE)

• **Maximum likelihood estimation** (MLE) for fitting probabilistic models.
 – We have a dataset D.
 – We want to pick parameters ‘w’.
 – We define the **likelihood** as a probability mass/density function $p(D \mid w)$.
 – We choose the model w^* that maximizes the likelihood:

\[
 w^* \in \arg\max_w \{ p(D \mid w) \}
\]

• Appealing “consistency” properties as n goes to infinity (take STAT 4XX).
Minimizing the Negative Log-Likelihood (NLL)

• To maximize likelihood, usually we minimize the negative “log-likelihood” (NLL):
 • “Log-likelihood” is short for “logarithm of the likelihood”.

\[w^* \in \text{argmax}_w \{ p(D|w) \} \equiv \text{argmin}_w \{ -\log p(D|w) \} \]

• Why are these equivalent?
 – Logarithm is monotonic: if \(\alpha > \beta \), then \(\log(\alpha) > \log(\beta) \).
 – Changing sign flips max to min.

• See “Max and Argmax” notes on webpage if this seems strange.
Minimizing the Negative Log-Likelihood (NLL)

• We use logarithm because it turns multiplication into addition:
 \[\log(x \cdot y) = \log(x) + \log(y) \]

• More generally:
 \[\log\left(\prod_{i=1}^{n} a_i \right) = \sum_{i=1}^{n} \log(a_i) \]

• If data is \(n \) IID samples then \(p(D|\theta) = \prod_{i=1}^{n} p(D_i|\theta) \)
 \[\text{likelihood of example } i \]

and our MLE is \(\theta^* = \arg \max_{\theta} \left\{ \sum_{i=1}^{n} p(D_i|\theta) \right\} \equiv \arg \min_{\theta} \left\{ -\sum_{i=1}^{n} \log p(D_i|\theta) \right\} \)
MLE for Naïve Bayes

- A long time ago, I mentioned that we used MLE in naïve Bayes.

- We estimated that \(p(y_i = \text{"spam"}) \) as \(\text{count(spam)}/\text{count(e-mails)} \).
 - You derive this by minimizing the NLL under a “Bernoulli” likelihood.
 - Set derivative of NLL to 0, and solve for Bernoulli parameter.

- MLE of \(p(x_{ij} \mid y_i = \text{"spam"}) \) gives \(\text{count(spam},x_{ij})/\text{count(spam)} \).
 - Also derived under a conditional “Bernoulli” likelihood.

- The derivation is tedious, but if you’re interested I put it [here](#).
MLE for Supervised Learning

• The MLE in
 \textbf{generative} models (like naïve Bayes) maximizes:
 \[
p(y, X | w)
 \]

• But
 \textbf{discriminative} models \textbf{directly model} \(p(y | X, w) \).
 – We treat features \(X \) as fixed don’t care about their distribution.
 – So the MLE maximizes the \textbf{conditional likelihood}:
 \[
p(y | X, w)
 \]
 of the targets ‘\(y \)’ given the features ‘\(X \)’ and parameters ‘\(w \)’.
MLE Interpretation of Logistic Regression

• For IID regression problems the conditional NLL can be written:
 \[- \ln \left(p(y_i \mid x_i, w) \right) = - \ln \left(\prod_{i=1}^{n} p(y_i \mid x_i, w) \right) = - \sum_{i=1}^{n} \ln \left(p(y_i \mid x_i, w) \right)\]

 NLL \quad \text{IID assumption} \quad \text{product into sum} \quad \log \text{ turns}

• Logistic regression assumes \(\text{sigmoid}(w^T x_i) \) conditional likelihood:

 \[p(y_i \mid x_i, w) = h(y_i w^T x_i) \quad \text{where} \quad h(z_i) = \frac{1}{1 + \exp(-z_i)} \]

• Plugging in the sigmoid likelihood, the NLL is the logistic loss:

 \[NLL(w) = - \sum_{i=1}^{n} \ln \left(\frac{1}{1 + \exp(-y_i w^T x_i)} \right) = \sum_{i=1}^{n} \log \left(1 + \exp(-y_i w^T x_i) \right) \]

 (since \(\log(1) = 0 \))
MLE Interpretation of Logistic Regression

• We just derived the logistic loss from the perspective of MLE.
 – Instead of “smooth approximation of 0-1 loss”, we now have that logistic regression is doing MLE in a probabilistic model.

 – The training and prediction would be the same as before.
 • We still minimize the logistic loss in terms of ‘w’.

 – But MLE viewpoint gives us “probability that e-mail is important”:

\[p(y_i \mid x_i, w) = \frac{1}{1 + e^{\exp(-y_i w^\top x_i)}} \]
Least Squares is Gaussian MLE

- It turns out that **most objectives have an MLE interpretation:**
 - For example, consider minimizing the squared error:
 \[f(w) = \frac{1}{2} \| Xw - y \|^2 \]
 - This is MLE of a linear model under the assumption of IID Gaussian noise:
 \[y_i = w^T x_i + \epsilon_i \]
 where each \(\epsilon_i \) is sampled independently from standard normal
 - “Gaussian” is another name for the “normal” distribution.
 - Remember that least squares solution is called the “normal equations”.

• “Gaussian” is another name for the “normal” distribution.
Let’s assume that \(y_i = w^T x_i + \epsilon_i \), with \(\epsilon_i \) following standard normal:

\[
\rho(\epsilon_i) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\epsilon_i^2}{2}\right)
\]

This leads to a Gaussian likelihood for example ‘i’ of the form:

\[
\rho(y_i | x_i, w) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(w^T x_i - y_i)^2}{2}\right)
\]

Finding MLE is equivalent to minimizing NLL:

\[
f(w) = -\sum_{i=1}^{n} \log(\rho(y_i | w, x_i)) = -\sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(w^T x_i - y_i)^2}{2}\right)\right)
\]

\[
= -\sum_{i=1}^{n} \left[\log\left(\frac{1}{\sqrt{2\pi}}\right) + \log\left(\exp\left(-\frac{(w^T x_i - y_i)^2}{2}\right)\right) \right]
\]

\[
= -\sum_{i=1}^{n} \left[\log\left(\frac{1}{\sqrt{2\pi}}\right) + \frac{1}{2} (w^T x_i - y_i)^2 \right]
\]

\[
= \text{(constant)} + \frac{1}{2} \|Xw - y\|^2
\]

Also known as "Gaussian" distribution.
Loss Functions and Maximum Likelihood Estimation

• So least squares is MLE under Gaussian likelihood.

\[
\text{If } p(y_i | x_i, w) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{(w^T x_i - y_i)^2}{2} \right)
\]

\[
\text{then MLE of } w \text{ is minimum of } f(w) = \frac{1}{2} \| Xw - y \|^2
\]

• With a Laplace likelihood you would get absolute error.

\[
\text{If } p(y_i | x_i, w) = \frac{1}{2} \exp \left(-|w^T x_i - y_i| \right)
\]

\[
\text{then MLE is minimum of } f(w) = \| Xw - y \|_1
\]

• With sigmoid likelihood we got the binary logistic loss.

• You can derive softmax loss from the softmax likelihood (bonus).
(pause)
Maximum Likelihood Estimation and Overfitting

• In our abstract setting with data D the MLE is:

\[w^* \in \arg \max_w \{ p(D|w) \} \]

• But conceptually MLE is a bit weird:
 – “Find the ‘w’ that makes ‘D’ have the highest probability given ‘w’.”

• And MLE often leads to overfitting:
 – Data could be very likely for some very unlikely ‘w’.
 – For example, a complex model that overfits by memorizing the data.

• What we really want:
 – “Find the ‘w’ that has the highest probability given the data D.”
Maximum a Posteriori (MAP) Estimation

• Maximum a posteriori (MAP) estimate maximizes the reverse probability:

\[w^* \in \arg\max_w \{ p(w \mid D) \} \]

– This is what we want: the probability of ‘w’ given our data.

• MLE and MAP are connected by Bayes rule:

\[p(w \mid D) = \frac{p(D \mid w)p(w)}{p(D)} \propto p(D \mid w)p(w) \]

• So MAP maximizes the likelihood \(p(D \mid w) \) times the prior \(p(w) \):

 – Prior is our “belief” that ‘w’ is correct before seeing data.
 – Prior can reflect that complex models are likely to overfit.
MAP Estimation and Regularization

• From Bayes rule, the MAP estimate with IID examples D_i is:

$$W^* \in \arg\max_W \left\{ p(w \mid D) \right\} \equiv \arg\max_W \left\{ \frac{1}{n} \prod_{i=1}^{n} p(D_i \mid w) p(w) \right\}$$

• By again taking the negative of the logarithm we get:

$$W^* \in \arg\min_W \left\{ -\frac{1}{n} \sum_{i=1}^{n} \left[\log p(D_i \mid w) \right] - \log p(w) \right\}$$

- loss
- regularizer

• So we can view the negative log-prior as a regularizer:
 – Many regularizers are equivalent to negative log-priors.
L2-Regularization and MAP Estimation

- We obtain L2-regularization under an independent Gaussian assumption:

\[p(w) = \prod_{j=1}^{d} p(w_j) \propto \prod_{j=1}^{d} \exp\left(-\frac{\lambda}{2} w_j^2\right) = \exp\left(-\frac{\lambda}{2} \sum_{j=1}^{d} w_j^2\right) \]

- This implies that:

\[-\log(p(w)) = -\log(\exp\left(-\frac{\lambda}{2} \|w\|^2\right)) + \text{(constant)} = \frac{\lambda}{2} \|w\|^2 + \text{(constant)} \]

- With this prior, the MAP estimate with IID training examples would be

\[w^* \in \arg\min_w \left\{ -\sum_{i=1}^{N} \log(p(y_i | x_i, w)) - \log(p(w)) \right\} \equiv \arg\min_w \left\{ -\sum_{i=1}^{N} \log(p(y_i | x_i, w)) + \frac{\lambda}{2} \|w\|^2 \right\} \]
MAP Estimation and Regularization

- MAP estimation gives link between probabilities and loss functions.
 - Gaussian likelihood and Gaussian prior give L_2-regularized least squares.

$$p(y_i | x_i, w) \propto \exp\left(-\frac{(w^T x_i - y_i)^2}{2}\right) \quad p(w_j) \propto \exp\left(-\frac{1}{2}w_j^2\right)$$

then MAP estimation is equivalent to minimizing $f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$

- Sigmoid likelihood and Gaussian prior give L_2-regularized logistic regression:

$$p(y_i | x_i, w) = \frac{1}{1 + \exp(-y_i w^T x_i)} \quad \text{and} \quad p(w_j) \propto \exp\left(-\frac{1}{2}w_j^2\right)$$

then MAP estimate is minimum of $f(w) = \sum_{i=1}^{N} \log(1+\exp(-y_i w^T x_i)) + \frac{\lambda}{2} \|w\|^2$

As $n \to \infty$ effect of prior/regularizer goes to 0
Summarizing the past few slides

• Many of our **loss functions and regularizers have probabilistic interpretations**.
 – Laplace likelihood leads to absolute error.
 – Laplace prior leads to L1-regularization.

• The choice of **likelihood** corresponds to the choice of **loss**.
 – Our assumptions about how the y_i-values can come from the x_i and ‘w’.

• The choice of **prior** corresponds to the choice of **regularizer**.
 – Our assumptions about which ‘w’ values are plausible.
Regularizing Other Models

• We can view priors in other models as regularizers.

• Remember the problem with MLE for naïve Bayes:
 • The MLE of $p(\text{\lactase} = 1 \mid \text{spam})$ is: \(\frac{\text{count}(\text{spam}, \text{lactase})}{\text{count}(\text{spam})} \).
 • But this caused problems if \(\text{count}(\text{spam}, \text{lactase}) = 0 \).

• Our solution was Laplace smoothing:
 – Add “+1” to our estimates: \(\frac{\text{count}(\text{spam}, \text{lactase})+1}{\text{counts}(\text{spam})+2} \).
 – This corresponds to a “Beta” prior so Laplace smoothing is a regularizer.
Why do we care about MLE and MAP?

• Unified way of thinking about many of our tricks?
 – Laplace smoothing and L2-regularization are doing the same thing.

• Remember our two ways to reduce complexity of a model:
 – Model averaging (ensemble methods).
 – Regularization (linear models).
• “Fully”-Bayesian methods combine both of these (CPSC 540).
 – Average over all models, weighted by posterior (including regularizer).
 – Can use extremely-complicated models without overfitting.

• Sometimes it’s easier to define a likelihood than a loss function.
Losses for Other Discrete Labels

• MLE/MAP gives loss for classification with basic labels:
 – Least squares and absolute loss for regression.
 – Logistic regression for binary labels {“spam”, “not spam”}.
 – Softmax regression for multi-class {“spam”, “not spam”, “important”}.

• But MLE/MAP lead to losses with other discrete labels:
 – Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.
 – Counts: 602 ‘likes’.
 – Survival rate: 60% of patients were still alive after 3 years.

• Define likelihood of labels, and use NLL as the loss function.

• We can also use ratios of probabilities to define more losses (bonus):
 – Binary SVMs, multi-class SVMs, and “pairwise preferences” (ranking) models.
Summary

• **Discriminative probabilistic models** directly model $p(y_i \mid x_i)$.
 – Unlike naïve Bayes that models $p(x_i \mid y_i)$.
 – Usually, we use linear models and define “likelihood” of y_i given $w^T x_i$.

• **Maximum likelihood estimate** viewpoint of common models.
 – Objective functions are equivalent to maximizing $p(y \mid X, w)$.

• **MAP estimation** directly models $p(w \mid X, y)$.
 – Gives probabilistic interpretation to regularization.

• **Discrete losses for weird scenarios** are possible using MLE/MAP:
 – Ordinal logistic regression, Poisson regression.

• **Next time:**
 – What ‘parts’ are your personality made of?
Discussion: Least Squares and Gaussian Assumption

• Classic justifications for the Gaussian assumption underlying least squares:
 – Your noise might really be Gaussian. (It probably isn't, but maybe it's a good enough approximation.)
 – The central limit theorem (CLT) from probability theory. (If you add up enough IID random variables, the estimate of their mean converges to a Gaussian distribution.)

• I think the CLT justification is wrong as we've never assumed that the x_{ij} are IID across ‘j’ values. We only assumed that the examples x_i are IID across ‘i’ values, so the CLT implies that our estimate of ‘w’ would be a Gaussian distribution under different samplings of the data, but this says nothing about the distribution of y_i given $w^T x_i$.

• On the other hand, there are reasons *not* to use a Gaussian assumption, like it's sensitivity to outliers. This was (apparently) what lead Laplace to propose the Laplace distribution as a more robust model of the noise.

• The "student t" distribution from (published anonymously by Gosset while working at Guiness) is even more robust, but doesn't lead to a convex objective.
Multi-Class Logistic Regression

• Last time we talked about multi-class classification:
 – We want $w_{y_i}^T x_i$ to be the most positive among ‘k’ real numbers $w_c^T x_i$.
• We have ‘k’ real numbers $z_c = w_c^T x_i$, want to map z_c to probabilities.
• Most common way to do this is with softmax function:

 \[
 \rho(y = c \mid z_1, z_2, \ldots, z_k) = \frac{\exp(z_y)}{\sum_{c'=1}^{k} \exp(z_{c'})}
 \]

 – Taking $\exp(z_c)$ makes it non-negative, denominator makes it sum to 1.
 – So this gives a probability for each of the ‘k’ possible values of ‘c’.
• The NLL under this likelihood is the softmax loss.
How does multi-class logistic generalize the binary logistic model?

We can re-parameterize softmax in terms of (k-1) values of \(z_c \):

\[
\rho(y = 1 | z) = \frac{\exp(z_1)}{1 + \sum_{c=1}^{k-1} \exp(z_c)} \quad \text{if } y \neq k \quad \text{and} \quad \rho(y = k | z) = \frac{1}{1 + \sum_{c=1}^{k-1} \exp(z_c)} \quad \text{if } y = k
\]

- This is due to the “sum to 1” property (one of the \(z_c \) values is redundant).
- So if \(k=2 \), we don’t need a \(z_2 \) and only need a single ‘z’.
- Further, when \(k=2 \) the probabilities can be written as:

\[
\rho(y = 1 | z) = \frac{\exp(z)}{1 + \exp(z)} \quad \rho(y = 2 | z) = \frac{1}{1 + \exp(z)}
\]

- Renaming ‘2’ as ‘-1’, we get the binary logistic regression probabilities.
Ordinal Labels

• **Ordinal data**: categorical data where the order matters:
 – Rating hotels as {‘1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.
 – Softmax would ignore order.

• Can use ‘ordinal logistic regression’.

Logistic regression

\[T \cdot X_i \]

Ordinal logistic regression

\[T \cdot X_i \]

Treat thresholds of sigmoid as parameters
Count Labels

- **Count data**: predict the number of times something happens.
 - For example, $y_i = "602"$ Facebook likes.
- **Softmax** requires finite number of possible labels.
- We probably don’t want separate parameter for ‘654’ and ‘655’.
- **Poisson regression**: use probability from Poisson count distribution.
 - Many variations exist.
“Heavy” Tails vs. “Light” Tails

• We know that L1-norm is more robust than L2-norm.
 – What does this mean in terms of probabilities?
 – Gaussian has “light tails”: assumes everything is close to mean.
 – Laplace has “heavy tails”: assumes some data is far from mean.
 – Student ‘t’ is even more heavy-tailed/robust, but NLL is non-convex.

• Sigmoid isn’t the only parsimonious $p(y_i \mid x_i, w)$:
 – Probit (uses CDF of normal distribution, very similar to logistic).
 – Noisy-Or (simpler to specify probabilities by hand).
 – Extreme-value loss (good with class imbalance).
 – Cauchit, Gosset, and many others exist...
Unbalanced Training Sets

• Consider the case of binary classification where your training set has 99% class -1 and only 1% class +1.
 – This is called an “unbalanced” training set

• Question: is this a problem?

• Answer: it depends!
 – If these proportions are representative of the test set proportions, and you care about both types of errors equally, then “no” it’s not a problem.
 • You can get 99% accuracy by just always predicting -1, so ML can really help with the 1%.
 – But it’s a problem if the test set is not like the training set (e.g. your data collection process was biased because it was easier to get -1’s)
 – It’s also a problem if you care more about one type of error, e.g. if mislabeling a +1 as a -1 is much more of a problem than the opposite
 • For example if +1 represents “tumor” and -1 is “no tumor”
Unbalanced Training Sets

• This issue comes up a lot in practice!

• How to fix the problem of unbalanced training sets?
 – One way is to build a “weighted” model, like you did with weighted least squares in your assignment (put higher weight on the training examples with $y_i=+1$)
 • This is equivalent to replicating those examples in the training set.
 • You could also subsample the majority class to make things more balanced.
 – Another option is to change to an asymmetric loss function that penalizes one type of error more than the other.
Unbalanced Data and Extreme-Value Loss

• Consider binary case where:
 – One class overwhelms the other class (‘unbalanced’ data).
 – Really important to find the minority class (e.g., minority class is tumor).
Unbalanced Data and Extreme-Value Loss

- **Extreme-value distribution:**

\[p(y_i = +1 | \hat{y}_i) = 1 - \exp(-\exp(\hat{y}_i)) \quad \text{[} +1 \text{ is majority class]} \]

To make it a probability, \(p(y_i = -1 | \hat{y}_i) = \exp(-\exp(\hat{y}_i)) \)

- Loss Function for majority class (\(y = +1 \))
- Loss Function for minority class (\(y = +1 \))

Similar to logistic for majority class

Big penalty for getting minority class wrong.
Unbalanced Data and Extreme-Value Loss

• **Extreme-value** distribution:

\[
p(y_i = +1 | \hat{y}_i) = 1 - \exp(-\exp(\hat{y}_i)) \quad \left[+1 \text{ is majority class} \right]
\]

To make it a probability, \(p(y_i = -1 | \hat{y}_i) = \exp(-\exp(\hat{y}_i)) \)
• We’ve seen that loss functions can come from probabilities:
 – Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
• Most other loss functions can be derived from probability ratios.
 – Example: sigmoid => hinge.

\[
p(y_i | x_i, w) = \frac{1}{1 + \exp(-y_i w^T x_i)} = \frac{\exp(\frac{1}{2} y_i w^T x_i)}{\exp(\frac{1}{2} y_i w^T x_i) + \exp(-\frac{1}{2} y_i w^T x_i)} \alpha \exp(\frac{1}{2} y_i w^T x_i)
\]

Same normalizing constant for \(y_i = +1 \) and \(x_i = -1 \)
Loss Functions from Probability Ratios

• We’ve seen that loss functions can come from probabilities:
 – Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

• Most other loss functions can be derived from probability ratios.
 – Example: sigmoid => hinge.

\[p(y_i | x_i, w) \propto \exp\left(\frac{1}{2} y_i w^\top x_i\right) \]

To classify \(y_i \) correctly, it’s sufficient to have
\[\frac{p(y_i | x_i, w)}{p(-y_i | x_i, w)} \geq \beta \text{ for some } \beta > 1 \]

Notice that normalizing constant doesn’t matter:
\[\frac{\exp\left(\frac{1}{2} y_i w^\top x_i\right)}{\exp\left(-\frac{1}{2} y_i w^\top x_i\right)} \geq \beta \]
Loss Functions from Probability Ratios

• We’ve seen that loss functions can come from probabilities:
 – Gaussian \(\Rightarrow \) squared loss, Laplace \(\Rightarrow \) absolute loss, sigmoid \(\Rightarrow \) logistic.

• Most other loss functions can be derived from probability ratios.
 – Example: sigmoid \(\Rightarrow \) hinge.

\[
p(y_i | x_i, w) \propto \exp\left(\frac{1}{2} y_i w^T x_i\right)
\]

We need:
\[
\frac{\exp\left(\frac{1}{2} y_i w^T x_i\right)}{\exp\left(-\frac{1}{2} y_i w^T x_i\right)} \geq \beta
\]

Take log:
\[
\log\left(\frac{\exp\left(\frac{1}{2} y_i w^T x_i\right)}{\exp\left(-\frac{1}{2} y_i w^T x_i\right)}\right) \geq \log(\beta) \iff \frac{1}{2} y_i w^T x_i + \frac{1}{2} y_i w^T x_i \geq \log(\beta)
\]

\[
y_i w^T x_i \geq 1 \quad \text{(if we choose \(\log(\beta) = 1\))}
\]
Loss Functions from Probability Ratios

• We’ve seen that loss functions can come from probabilities:
 - Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.
• Most other loss functions can be derived from probability ratios.
 - Example: sigmoid => hinge.

\[p(y_i | x_i, w) \propto \exp\left(\frac{1}{2} y_i w^T x_i\right) \]

We need:
\[\frac{\exp\left(\frac{1}{2} y_i w^T x_i\right)}{\exp\left(-\frac{1}{2} y_i w^T x_i\right)} \geq \beta \]

Or equivalently:
\[y_i w^T x_i \geq 1 \quad \text{(for } \beta = \exp(1)) \]

Define a loss function by amount of constraint violation:
\[\max \{ 0, 1 - y_i w^T x_i \} \]

when \(1 - y_i w^T x_i \leq 0 \) \text{ when } \(1 - y_i w^T x_i > 0 \)

We get SUMs by looking at regularized average loss:
\[f(w) = \frac{1}{N} \sum_{i=1}^{N} \max\{0, 1 - y_i w^T x_i\}^2 + \frac{1}{2} \|w\|^2 \]
Loss Functions from Probability Ratios

• General approach for defining losses using probability ratios:
 1. Define constraint based on probability ratios.

• Example: softmax => multi-class SVMs.

Assume: \(p(y_i = c \mid x_i, w) \propto \exp(w_c^T x_i) \)

Want: \(\frac{p(y_i = c \mid x_i, w)}{p(y_i = c' \mid x_i, w)} \geq \beta \) for all \(c' \) and some \(\beta > 1 \)

For \(\beta = \exp(1) \) equivalent to

\[w_{y_i}^T x_i - w_{c}^T x_i \geq 1 \]

for all \(c' \neq y_i \)

Option 1: penalize all violations:

\[\sum_{c'=1}^{k} \max_{c} \{ O_{c} : 1 - w_{y_i}^T x_i + w_{c}^T x_i \} \leq \beta \]

Option 2: penalize only max violation:

\[\max_{c'} \{ \max_{c} \{ O_{c} : 1 - w_{y_i}^T x_i + w_{c}^T x_i \} \} \leq \beta \]
Supervised Ranking with Pairwise Preferences

• Ranking with pairwise preferences:
 – We aren’t given any explicit y_i values.
 – Instead we’re given list of objects (i,j) where $y_i > y_j$.

Assume $p(y_i \mid X, w) \propto \exp(w^\top x_i)$ is probability that object i has highest rank.

Want: $\frac{p(y_i \mid X, w)}{p(y_j \mid X, w)} \geq \beta$ for all preferences (i, j)

For $\beta = \exp(1)$ equivalent to

$w^\top x_i - w^\top x_j \geq 1$

for preferences (i, j)

We can use $f(w) = \sum_{(i,j) \in \mathcal{R}} \max \{0, 1-w^\top x_i + w^\top x_j\}$

This approach can also be used to define losses for total/partial orderings (but this information is hard to get).