CPSC 340: Machine Learning and Data Mining

Multi-Class Classification Fall 2017

Admin

Assignment 3:

- Check "update" thread on Piazza for correct definition of trainNdx.
 - This could make your cross-validation code behave weird.
- Due tonight, 1 late day to hand in Monday, 2 late days for Wednesday.

Midterm:

Can view your exam after class today.

Assignment 4:

Due in 2 weeks.

Last Time: Stochastic Gradient

Stochastic gradient minimizes average of smooth functions:

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

- Function $f_i(w)$ is error for example 'i'.
- Iterations perform gradient descent on one random example 'i':

$$w^{t+1} = w^t - \alpha^t \nabla f(w^t)$$

- Cheap iterations even when 'n' is large, but doesn't always decrease 'f'.
- But solves problem if α^t goes to 0 at an appropriate rate.
 - Theory says use $\alpha^t = O(1/t)$, in practice you need to experiment.

Last Time: Stochastic Gradient

- Stochastic gradient converges very slowly:
 - But if your dataset is too big, there may not be much you can do.

- Practical tricks to improve performance:
 - Constant or slowly-decreasing step-sizes and/or average the w^t.
 - Binary search for step size, stop using validation error (bonus slides).

- You can also improve performance by reducing the variance:
 - Using "mini-batches" or random samples rather than 1 random sample.
 - New "variance-reduced" methods (SAG, SVRG) for finite training sets.

Stochastic Gradient with Infinite Data

- Amazing property of stochastic gradient:
 - The classic convergence analysis does not rely on 'n' being finite.
- Consider an infinite sequence of IID samples.
 - Or any dataset that is so large we cannot even go through it once.
- Approach 1 (gradient descent):
 - Stop collecting data once you have a very large 'n'.
 - Fit a regularized model on this fixed dataset.
- Approach 2 (stochastic gradient):
 - Perform a stochastic gradient iteration on each example as we see it.
 - Never re-visit any example, always take a new one.

Stochastic Gradient with Infinite Data

- Approach 2 only looks at a data point once:
 - Each example is an unbiased approximation of test data.
- So Approach 2 is doing stochastic gradient on test error:
 - It cannot overfit.
- Up to a constant, Approach 2 achieves test error of Approach 1.
 - This is sometimes used to justify SG as the "ultimate" learning algorithm.
 - "Optimal test error by computing gradient of each example once!"
 - In practice, Approach 1 usually gives lower test error.
 - The constant factor matters!

(pause)

Motivation: Part of Speech (POS) Tagging

- Consider problem of finding the verb in a sentence:
 - "The 340 students jumped at the chance to hear about POS features."

- Part of speech (POS) tagging is the problem of labeling all words.
 - 45 common syntactic POS tags.
 - Current systems have ~97% accuracy.
 - You can achieve this by applying "word-level" classifier to each word.

What features of a word should we use for POS tagging?

But first...

- Last time we discussed the effect of binary features in regression.
- Recall we can convert categorical feature to set of binary features:

Age	City	Income		Age	Van	Bur	Sur	Income
23	Van	22,000.00		23	1	0	0	22,000.00
23	Bur	21,000.00		23	0	1	0	21,000.00
22	Van	0.00	\longrightarrow	22	1	0	0	0.00
25	Sur	57,000.00		25	0	0	1	57,000.00
19	Bur	13,500.00		19	0	1	0	13,500.00
22	Van	20,000.00		22	1	0	0	20,000.00

This how we use a categorical feature ("city") in regression models.

POS Features

- Regularized multi-class logistic regression with 19 features gives ~97% accuracy:
 - Categorical features whose domain is all words ("lexical" features):
 - The word (e.g., "jumped" is usually a verb).
 - The previous word (e.g., "he" hit vs. "a" hit).
 - The previous previous word.
 - The next word.
 - The next next word.
 - Categorical features whose domain is combinations of letters ("stem" features):
 - Prefix of length 1 ("what letter does the word start with?")
 - Prefix of length 2.
 - Prefix of length 3.
 - Prefix of length 4 ("does it start with JUMP?")
 - Suffix of length 1.
 - Suffix of length 2.
 - Suffix of length 3 ("does it end in ING?")
 - Suffix of length 4.
 - Binary features ("shape" features):
 - Does word contain a number?
 - Does word contain a capital?
 - Does word contain a hyphen?

Multi-Class Linear Classification

We've been considering linear models for binary classification:

$$\chi = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

• E.g., is there a cat in this image or not?

Multi-Class Linear Classification

Today we'll discuss linear models for multi-class classification:

$$\chi = \begin{bmatrix} 27 \\ 16 \\ 8 \\ 7 \\ 21 \\ 5 \end{bmatrix}$$

- In POS classification we have 43 possible labels instead of 2.
 - This was natural for methods of Part 1 (decision trees, naïve Bayes, KNN).
 - For linear models, we need some new notation.

"One vs All" Classification

One vs all method for turns binary classifier into multi-class.

Training phase:

- For each class 'c', train binary classifier to predict whether example is a 'c'.
- So if we have 'k' classes, this gives 'k' classifiers.

Prediction phase:

- Apply the 'k' binary classifiers to get a "score" for each class 'c'.
- Return the 'c' with the highest score.

"One vs All" Classification

- "One vs all" logistic regression for classifying as cat/dog/person.
 - Train a separate classifier for each class.
 - Classifier 1 tries to predict +1 for "cat" images and -1 for "dog" and "person" images.
 - Classifier 2 tries to predict +1 for "dog" images and -1 for "cat" and "person" images.
 - Classifier 3 tries to predict +1 for "person" images and -1 for "cat" and "dog" images.
 - This gives us a weight vector w_c for each class 'c':
 - Weights w_c try to predict +1 for class 'c' and -1 for all others.
 - We'll use 'W' as a matrix with the w_c as rows:

"One vs All" Classification

- "One vs all" logistic regression for classifying as cat/dog/person.
 - Prediction on example x_i given parameters 'W':

$$W = \begin{bmatrix} w_1^T \\ w_2^T \end{bmatrix}$$

- For each class 'c', compute $\mathbf{w}_{c}^{\mathsf{T}}\mathbf{x}_{i}$.
 - Ideally, we'll get sign($w_c^T x_i$) = +1 for one class and sign($w_c^T x_i$) = -1 for all others.
 - In practice, it might be +1 for multiple classes or no class.
- To predict class, we take maximum value of $w_c^Tx_i$ ("most positive").

Digression: Multi-Label Classification

A related problem is multi-label classification:

 $W = \begin{bmatrix} w_1^T \\ w_2^T \end{bmatrix} k$

- Which of the 'k' objects are in this image?
 - There may be more than one "correct" class label.
 - Here we can also fit 'k' binary classifiers.
 - But we would take all sign($w_c^T x_i$)=+1 as the labels.

"One vs All" Multi-Class Classification

• Back to multi-class classification where we have 1 "correct" label:

$$\chi = \begin{bmatrix} 27 \\ 16 \\ 8 \\ 7 \\ 21 \\ 5 \end{bmatrix}$$

$$V = \begin{bmatrix} 27 \\ w_1 \\ w_2 \\ c \\ l_{nssifies} \end{bmatrix}$$

$$V = \begin{bmatrix} w_1 \\ w_2 \\ c \\ l_{nssifies} \end{bmatrix}$$

$$V = \begin{bmatrix} w_1 \\ w_2 \\ c \\ l_{nssifies} \end{bmatrix}$$

$$V = \begin{bmatrix} w_1 \\ w_2 \\ c \\ l_{nssifies} \end{bmatrix}$$

- We'll use w_{y_i} as classifier $c=y_i$ (row w_c of correct class label).
- Problem: We didn't train the w_c so that the largest $w_c^T x_i$ would be $w_{y_i}^T x_i$.
 - Each classifier is just trying to get the sign right.

Multi-Class SVMs

• Can we define a loss that encourages largest $w_c^T x_i$ to be $w_{y_i}^T x_i$?

- Recall our derivation of the hinge loss (SVMs):
 - We wanted $y_i w^T x_i > 0$ for all 'i'.
 - We avoided non-degeneracy by aiming for $y_i w^T x_i \ge 1$.
 - We used the constraint violation as our loss: $\max\{0,1-y_iw^Tx_i\}$.

We can derive multi-class SVMs using the same steps...

Multi-Class SVMs

• Can we define a loss that encourages largest $w_c^T x_i$ to be $w_{y_i}^T x_i$?

We want
$$w_{y_i}^T x_i > w_c^T x_i$$
 for all 'c' that are not correct label y_i $= 7$ If we penalize violation of this constraint it's degenerate. We use $w_{y_i}^T x_i > w_c^T x_i + 1$ for all $c \neq y_i$ to avoid strict inequality $= E_{y_i}^T v_i + 1 = 1 = 1 = 1$ Equivalently: $0 > 1 - w_{y_i}^T x_i + w_c^T x_i$

For here, there are two ways to measure constraint violation:

Multi-Class SVMs

• Can we define a loss that encourages largest $w_c^T x_i$ to be $w_{y_i}^T x_i$?

$$m_{ax}$$
 \(\{ \text{max} \ \{ \text{max} \} \} \) \(\text{max} \) \(\{ \text{max} \} \)

- For each training example 'i':
 - "Sum" rule penalizes for each 'c' that violates the constraint.
 - "Max" rule penalizes for one 'c' that violates the constraint the most.
 - "Sum" gives a penalty of 'k' for W=0, "max" gives a penalty of '1'.
- If we add L2-regularization, both are called multi-class SVMs:
 - "Max" rule is more popular, "sum" rule usually works better.
 - Both are convex upper bounds on the 0-1 loss.

Multi-Class Logistic Regression

- We derived binary logistic loss by smoothing a degenerate 'max'.
 - The degenerate constraint in the multi-class case can be written as:

$$W_{y_i}^{T}x_i \geqslant \max_{c} w_{c}^{T}x_i$$

or $0 \geqslant -W_{y_i}^{T}x_i + \max_{c} \{w_{c}^{T}x_i\}$

- We want the right side to be as small as possible.
- Let's smooth the max with the log-sum-exp:

$$-W_{y_i}^{7}x_i + \log(\xi_{\varepsilon_i}^k \exp(w_c^7x_i))$$

- With W=0 this gives a loss of log(k).
- This is the softmax loss, used in multi-class logistic regression.

Multi-Class Logistic Regression

We sum the loss over examples and add regularization:

$$f(W) = \underbrace{\sum_{i=1}^{L} - w_{y_i} x_i}_{i=1} + log(\underbrace{\sum_{i=1}^{L} exp(w_{c} x_i)}_{i=1}) + \underbrace{\frac{1}{2} \underbrace{\sum_{j=1}^{L} e_{j}}_{v_{j}} w_{jc}}_{v_{j}}$$
Tries to

Approximates $m_{ax} \underbrace{\{w_{c} x_i\}}_{v_{c} x_i}$

What $w_{c} x_i$ being for so tries to make $w_{c} x_i$ small on elements of w_{c} the correct label for all labels.

- This objective is convex (should be clear for 1st and 3rd terms).
 - It's differentiable so you can use gradient descent.
- When k=2, equivalent to binary logistic.
 - Not obvious at the moment.

Digression: Frobenius Norm

The Frobenius norm of a matrix 'W' is defined by:

We can write regularizer in matrix notation using:

$$\frac{3}{2} \sum_{j=1}^{d} \sum_{c=1}^{k} w_{jc}^{2} = \frac{3}{2} \|W\|_{F}^{2}$$

(pause)

Motivation: Dog Image Classification

Suppose we're classifying images of dogs into breeds:

- What if we have images where class label isn't obvious?
 - Syberian husky vs. Inuit dog?

Learning with Preferences

- Do we need to throw out images where label is ambiguous?
 - We don't have the y_i.

- We want classifier to prefer Syberian husky over bulldog, Chihuahua, etc.
 - Even though we don't know if these are Syberian huskies or Inuit dogs.
- Can we design a loss that enforces preferences rather than "true" labels?

Learning with Pairwise Preferences (Ranking)

Instead of y_i, we're given list of (c₁,c₂) preferences for each 'i':

Multi-class classification is special case of choosing (y_i,c) for all 'c'.

By following the earlier steps, we can get objectives for this setting:

$$\sum_{i=1}^{n} \sum_{(c_1,c_2)} \max_{z} \{0,1-w_{c_1}^T x_i + w_{c_2}^T x_i\} + \frac{1}{2} \|W\|_F^2$$

$$\sum_{i=1}^{n} \sum_{(c_1,c_2)} \max_{z} \{0,1-w_{c_1}^T x_i + w_{c_2}^T x_i\} + \frac{1}{2} \|W\|_F^2$$

Learning with Pairwise Preferences (Ranking)

- Pairwise preferences for computer graphics:
 - We have a smoke simulator, with several parameters:

- Don't know what the optimal parameters are, but we can ask the artist:
 - "Which one looks more like smoke"?

Learning with Pairwise Preferences (Ranking)

- Pairwise preferences for humour:
 - New Yorker caption contest:

– "Which one is funnier"?

Summary

- Infinite datasets can be used with SG and do not overfit.
- Word features: lexical, stem, shape.
- One vs all turns a binary classifier into a multi-class classifier.
- Multi-class SVMs measure violation of classification constraints.
- Softmax loss is a multi-class version of logistic loss.

- Next time:
 - What do regression and regularization have to do with probabilities?

Feature Engineering

- "...some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used."
 - Pedro Domingos

- "Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering."
 - Andrew Ng

Feature Engineering

Better features usually help more than a better model.

- Good features would ideally:
 - Capture most important aspects of problem.
 - Generalize to new scenarios.
 - Allow learning with few examples, be hard to overfit with many examples.

- There is a trade-off between simple and expressive features:
 - With simple features overfitting risk is low, but accuracy might be low.
 - With complicated features accuracy can be high, but so is overfitting risk.

Feature Engineering

The best features may be dependent on the model you use.

- For counting-based methods like naïve Bayes and decision trees:
 - Need to address coupon collecting, but separate relevant "groups".

- For distance-based methods like KNN:
 - Want different class labels to be "far".

- For regression-based methods like linear regression:
 - Want labels to have a linear dependency on features.

Discretization for Counting-Based Methods

- For counting-based methods:
 - Discretization: turn continuous into discrete.

Age		< 20	>= 20, < 25	>= 25
23		0	1	0
23	$\stackrel{\longrightarrow}{\longrightarrow}$	0	1	0
22		0	1	0
25		0	0	1
19		1	0	0
22		0	1	0

- Counting age "groups" could let us learn more quickly than exact ages.
 - But we wouldn't do this for a distance-based method.

Standardization for Distance-Based Methods

Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for counting-based methods.
- It matters for distance-based methods:
 - KNN will focus on large values more than small values.
 - Often we "standardize" scales of different variables (e.g., convert everything to grams).

Non-Linear Transformations for Regression-Based

- Non-linear feature/label transforms can make things more linear:
 - Polynomial, exponential/logarithm, sines/cosines, RBFs.

Discussion of Feature Engineering

- The best feature transformations are application-dependent.
 - It's hard to give general advice.

- My advice: ask the domain experts.
 - Often have idea of right discretization/standardization/transformation.
- If no domain expert, cross-validation will help.
 - Or if you have lots of data, use deep learning methods from Part 5.

"All-Pairs" and ECOC Classification

- Alternative to "one vs. all" to convert binary classifier to multi-class is "all pairs".
 - For each pair of labels 'c' and 'd', fit a classifier that predicts +1 for examples of class 'c' and -1 for examples of class 'd' (so each classifier only trains on examples from two classes).
 - To make prediction, take a vote of how many of the (k-1) classifiers for class 'c' predict +1.
 - Often works better than "one vs. all", but not so fun for large 'k'.
- A variation on this is using "error correcting output codes" from information theory (see Math 342).
 - Each classifier trains to predict +1 for some of the classes and -1 for others.
 - You setup the +1/-1 code so that it has an "error correcting" property.
 - It will make the right decision even if some of the classifiers are wrong.