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Admin

• Assignment 3:

– Check “update” thread on Piazza for correct definition of trainNdx.

• This could make your cross-validation code behave weird.

– Due Friday, 1 late day to hand in Monday, 2 late days for Wednesday.

• Midterm:

– Can view your exam after class this week.

• Assignment 4 posted.



Linear Models with Binary Features

• What is the effect of a binary feature on linear regression?

• Adding a bias β, our linear model is:

• The ‘gender’ variable causes a change in y-intercept:

Year Gender

1975 1

1975 0

1980 1

1980 0

Height

1.85

2.25

1.95

2.30

http://www.medalinframe.com/athletes/sara-simeoni/
http://www.at-a-lanta.nl/weia/Progressie.html



Linear Models with Binary Features

• What if different genders have different slopes?

– You can use gender-specific features.

http://www.at-a-lanta.nl/weia/Progressie.html
http://www.wikiwand.com/it/Udo_Beyer
http://women-s-rights.blogspot.ca/

Bias
(gender = 1)

Year 
(gender = 1)

Bias 
(gender = 0)

Year
(gender = 0)

1 1975 0 0

0 0 1 1975

1 1980 0 0

0 0 1 1980

Year Gender

1975 1

1975 0

1980 1

1980 0



Linear Models with Binary Features

• To share information across genders, include a “global” version.

• “Global” year feature: influence of time on both genders.
– E.g., improvements in technique.

• “Local” year feature: gender-specific deviation from global trend.
– E.g., different effects of performance-enhancing drugs.

Year (any gender) Year (if gender = 1) Year (if gender = 0)

1975 1975 0

1975 0 1975

1980 1980 0

1980 0 1980

Year Gender

1975 1

1975 0

1980 1

1980 0



Motivation: “Personalized” Important E-mails

• Recall that we discussed identifying ‘important’ e-mails?

• There might be some “globally” important messages:

– “This is your mother, something terrible happened, give me a call ASAP.”

• But your “important” message may be unimportant to others.

– Similar for spam: “spam” for one user could be “not spam” for another.



The Big Global/Local Feature Table for E-mails

• Each row is one e-mail (there are lots of rows):



Predicting Importance of E-mail For New User

• Consider a new user:
– We start out with no information about them.

– So we use global features to predict what is important to a generic user.

• With more data, update global features and user’s local features:
– Local features make prediction personalized.

– What is important to this user?

• G-mail system: classification with logistic regression.
– Trained with a variant of stochastic gradient.



Motivation: Big-N Problems

• Consider fitting a least squares model:

• Gradient methods are effective when ‘d’ is very large.

– O(nd) per iteration instead of O(nd2 + d3) to solve as linear system.

• But what if number of training examples ‘n’ is very large?

– All Gmails, all products on Amazon, all homepages, all images, etc.



Gradient Descent vs. Stochastic Gradient

• Recall the gradient descent algorithm:

• For least squares, our gradient has the form:

• Notice that it’s cheaper than O(nd) if the xi are very sparse:
– Each e-mail has a limited number of non-zero features,
– Each e-mail only has “global” features and “local” features for one user.

• But the cost of computing the gradient is linear in ‘n’.
– As ‘n’ gets large, gradient descent iterations become expensive.



Gradient Descent vs. Stochastic Gradient

• Common solution to this problem is stochastic gradient algorithm:

• Uses the gradient of a randomly-chosen training example:

• Cost of computing this one gradient is independent of ‘n’.

– Iterations are ‘n’ times faster than gradient descent iterations.

– With 1 billion training examples, this iteration is 1 billion times faster.



Stochastic Gradient (SG)

• Stochastic gradient is an iterative optimization algorithm:

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

• For a random training example ‘i’.

– Repeat to successively refine the guess:

• For a random training example ‘i’.



Stochastic Gradient (SG)

• Stochastic gradient applies when minimizing averages:

• Basically, all our regression losses except “brittle” regression.

– Multiplying be positive constant doesn’t change location of optimal ‘w’.



Why Does Stochastic Gradient Work / Not Work?

• Main problem with stochastic gradient:

– Gradient of random example might point in the wrong direction.

• Does this have any hope of working?

– The average of the random gradients is the full gradient.

– The algorithm is going in the right direction on average.



Gradient Descent vs. Stochastic Gradient (SG)
• Gradient descent:

• Stochastic gradient:



Gradient Descent in Action



Stochastic Gradient in Action
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Stochastic Gradient in Action



Effect of ‘w’ Location on Progress

• We’ll still make good progress if most gradients points in right direction.



Variance of the Random Gradients

• The “confusion” is captured by a kind of variance of the gradients:

• If the variance is 0, every step goes in the right direction.

– We’re outside of region of confusion.

• If the variance is small, most steps point in the direction.

– We’re just inside region of confusion.

• If the variance is large, many steps will point in the wrong direction.

– Middle of region of confusion, where w* lives.



Effect of the Step-Size

• We can reduce the effect of the variance with the step size.

– Variance slows progress by amount proportional to square of step-size.

– So as the step size gets smaller, the variance has less of an effect.

• For a fixed step-size, SG makes progress until variance is too big.

• This leads to two “phases” when we use a constant step-size:

1. Rapid progress when we are far  from the solution.

2. Erratic behaviour confined to a “ball” around solution.
(Radius of ball is proportional to the step-size.)



Stochastic Gradient with Constant Step Size



Stochastic Gradient with Constant Step Size



Stochastic Gradient with Decreasing Step Sizes

• To get convergence, we need a decreasing step size.

– Shrinks size of ball to zero so we converge to w*.

• But it can’t shrink too quickly:

– Otherwise, we don’t move fast enough to reach the ball.

• Classic solution to this problem is step-sizes αt satisfying:

• We can achieve this by using a step-size sequence like  αt = O(1/t).

– E.g., αt = .001/t.



Stochastic Gradient Methods in Practice

• Unfortunately, setting αt = O(1/t) works badly in practice:

– Initial steps can be very large.

– Later steps get very tiny.

• Practical tricks:

– Some authors add extra parameters like αt = γ/(t + Δ).

– Theory and practice support using steps that go to zero more slowly:

• But return a weighted average of the iterations:



Stochastic Gradient with Averaging



Gradient Descent vs. Stochastic Gradient

• 2012: methods with cost of stochastic gradient, progress of full gradient.
– Key idea: if ‘n’ is finite, you can use a memory instead of having αt go to zero.

– First was stochastic average gradient (SAG), “low-memory” version is SVRG.
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https://www.ubyssey.ca/science/schmidt-sloan-fellowship/



Summary

• Global vs. local features allow “personalized” predictions.

• Stochastic gradient methods let us use huge datasets.

• Step-size in stochastic gradient is a huge pain:

– Needs to go to zero to get convergence, but this works badly.

– Constant step-size works well, but only up to a certain point.

• SAG and other newer methods fix convergence for finite datasets.

• Next time: multi-class models and “finding the verb” in sentences.



A Practical Strategy For Choosing the Step-Size

• All these step-sizes have a constant factor in the “O” notation.

– E.g.,

• We don’t know how to set step size as we go in the stochastic case.

– And choosing wrong γ can destroy performance.

• Common practical trick:

– Take a small amount of data (maybe 5% of the original data).

– Do a binary search for γ that most improves objective on this subset.



A Practical Strategy for Deciding When to Stop

• In gradient descent, we can stop when gradient is close to zero.

• In stochastic gradient:

– Individual gradients don’t necessarily go to zero.

– We can’t see full gradient, so we don’t know when to stop.

• Practical trick:

– Every ‘k’ iterations (for some large ‘k’), measure validation set error.

– Stop if the validation set error isn’t improving.



More Practical Issues

• Does it make sense to use more than 1 random example?

– Yes, you can use a “mini-batch” of examples.

– The variance is inversely proportional to the mini-batch size.

• You can use bigger step size as the batch size increases.

• Big gains for going from 1 to 2, less big gains from going from 100 to 101.

– Useful for vectorizing/parallelizing code.

• Evaluate one gradient on each core.



Linear Models with Binary Features
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Ordinal Features

• Categorical features with an ordering are called ordinal features.

• If using decision trees, makes sense to replace with numbers.
– Captures ordering between the ratings.

– A rule like (rating ≥ 3) means (rating ≥ Good), which make sense.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

Rating

2

5

4

4

1

4

3



Ordinal Features

• If using linear models, this would assumes ratings are equally spaced.
– The difference between “Bad” and “Medium” is similar to the distance between “Good” 

and “Very Good”.

• An alternative that preserves ordering with binary features:

• Regression weight wmedium represents: 
– “How much medium changes prediction over bad”.

Rating

Bad

Very Good

Good

Good

Very Bad

Good

Medium

≥ Bad ≥ Medium ≥ Good Very Good

1 0 0 0

1 1 1 1

1 1 1 0

1 1 1 0

0 0 0 0

1 1 1 0

1 1 0 0


