CPSC 340:
Machine Learning and Data Mining

Admin

* Assignment 3:
— Due Friday.

e Midterm:

— Can view your exam during instructor office hours or after class this week.

Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or closer to separable).

2 2 p
"2 lxn Z2=w Xt AR
. H
» bt % X
»
X X x W
% x *
. ¥
b4 e 5 -t X § X
i y » -_Xl, - S x b
i 4 =
% y 3 O X)(.|2
¥ o X | -
bt
:-r.
%
2 Xit Xiy
X X % X)

Support Vector Machines for Non-Separable

 What about data that is not even close to separable?

— It may be separable under change of basis (or closer to separable).

Xiz2
« A
* X "
b
X
;o
b W . - M
-
A A 4 -Xl
)
b B J
bt - X
b
X
b
il X W X

4
lxi)
W =

X
X X
A %
R Y .
‘}H».,l X
¥

Box

.J__:"‘

% =

R __|""-.

2 P
Z=wx t WXk ki

‘Fi XHX, 2

Multi-Dimensional Polynomial Basis

e Recall fitting polynomials when we only have 1 feature:

N

* We can fit these models using a change of basis:

X

-

(0.2)
—0.5
|

_Ll.J

'Z:

~102 (03
I -05 (-05)?
| (%

|y (4)*

e How can we do this when we have a lot of features?

Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:

02 0% 102 gz (02° (0H: ©@NW3)
X=1 05 | - y 2= | vg (R (0.5)2 (1) (05)
05 O 05 o (0 (- COCON
- v b W v
l-.iﬁ,S Xil Xiz (X;l)l ()('.1)2 (Xn)()’.’))

* With d=4 and p=3, the polynomial basis would include:
— Bias variable and the x;;: 1, x;3, X;, X;3, X;4-
— The x; squared and cubed: (x;1)?, (x;5)% (X3)% (%i4)% (%1)3, (%2)%, (Xi3)3, (Xi)°.
— Two-term interactions: X;;X.,, Xi;Xiz, Xi1Xia, XisXi3, XioXiz, XizXig.
— Cubic interactions: X;;XiyX:3, Xi;Xi3Xig, Xi1Xi3,Xig,
Xi1°Xi2r Xi1°Xizr X1 Xiar Xi1Xi2%) Xia™Xizs Xin™Xiar XigXiz%s XipXi3® Xiz Xigs XigXia®s XipXig) Xi3Xis”

Kernel Trick

* |f we go to degree p=5, we'’ll have O(d>) quintic terms:

& 1 Yy 3 21 1 3 2 g 4 §
X‘l7)('I X527 Xil Y37.,-7)l;,)(;47 X! X-.17Xz| ’();7---7)';: Xig 7...7Xa.z7)(i,2 Xig). I

* For large ‘d’ and ‘p’, storing a polynomial basis is intractable!

— 7" has O(dP) columns, so it does not fit in memory.

* Today: efficient polynomial basis for L2-regularized least squares.

— Main tools: the “other” normal equations and the “kernel trick”.

The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis Z’:

)= “Zw \/”Z"' ﬂ"v”2

We showed that the mmlmum IS glven by
= (277+21)"'
. k x K ’

(in practice you still solve the linear system, since inverse can be numerically unstable — see CPSC 302)

With some work (bonus), this can equivalently be written as:
T -
v=2"(22"+21) y
R

This is faster if n << k: nxn
— Cost is O(n?k + n3) instead of O(nk? + k3).
— But for the polynomial basis, this is still too slow since k = O(dP).

The “Other” Normal Equations

With the “other” normal equations we have = Z (ZZ + ’/\I) y
Given test data X, predict 9 y by forming Z and then using:

y’zv
-2 (zz +7|I)

K
RKU&M

txr\ nxn nx|
Notice that if you have K and K then you do not need Z and Z.

Key idea behind “kernel trick” for certain bases (like polynomials):
— We can efficiently compute K and K even though forming Z and Z is intractable.

Gram Matrix

e The matrix K=27Z"is called the Gram matrix K.
T
- Z. —)

| s — 1 (11
K: 17" = 2:1 2, 2, - 2,

O h ° °
* K contains the dot products between all training examples.
— Similar to ‘2’ in RBFs, but using dot product as “similarity” instead of distance.

Gram Matrix

 The matrix K = ZZ" has dot products between train and test examples:

K: zz - Z) 'Z‘ Zl « eel zh
») 1
L — t -_ _ L ~
v \/\/T'\/
7 2
Z| /%/;TZ_‘(,{?3'\
’\2,2 Zl - '%IZ‘ZU\
= R 't
NN M
Za ZLTZJ T Z(Tz'\

* Kernel function: k(x, x)) = z,z;.

— Computes dot product between in basis (z,'z) using original features x; and x;.

——

Kernel Trick

lo afrl\/ Imear fEYNJélom) I Oily need to Know K od /?/

US& X; ‘}O Form Z; ‘\ <

USC X; J[b Farm ZJ _—

¢ =

V

Co“’l)o\de Z 2;

.

Foal resdlt is nxn (f‘o malfer how /"’?“’ 2; is)

Kernel Trick

——

lo Olfr»l\/ Imear feyf\’)’slom7 I Oll.‘/ need to Know K od /?/

Y (6m ‘4‘16
U {"bm Y. ahA)(J —

Foal resdlt is nxn (f‘o malfer how /"?f’ 2 iS)

Linear Regression vs. Kernel Regression

Linear RQ()NSSQOA ke”\e ' Re,(j ression
e 2 o e e K fim X

2 mlpu‘/e, w- (Z'IZ‘l‘/)_‘Z)’I (27\/) ? CDM wfc V= (K"’ //'1-7-—) \/

N on "~ Faramt Fric

ast Testing’ r
I F(m LaSts 2 FfOW\ | Form nner pvoJuds I< from)(aud X
R (om‘xﬂe y-— ZW 2 C""‘"f"‘n Yy~ = Kv

(EVPF\/THV\L} \/Ov‘ V\'?BJ 'fO Kinow a%fvfr L qwl f IS
Contamed within K and K)

Example: Degree-2 Kernel

* Consider two examples x; and x; for a 2-dimensional dataset:
Xi= (x-..) ng) ,;))‘,z)
* And consider a particular degree-z basis:
2= ba'y{2 ’“""’27"*227 Zj= (%5032 15 52,3)
* We can compute mner product z;'z; without formmg z and z;:
Z. g)- X0 X;, Y (2 fz>(\r X2) T X2 %7

22
= || 27(1! Xia X 51 Xi2 +XHXI?
2 »
— (XH XM Xi:lx52> C(er'efmj 7Lhe 51vmre
Xi X

= ()(,'7)6')2 é’ /VO f&_g// {\or 2,’ 710 C()Mrufe 2"72'

AN

Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
2= [/ \\?Zx” Hxiz xill \]_2-)(;/’4'4 y/zzj'
* | can compute inner products using:
Cltxx) =] + 267 ¥ (x5

2,2 - 2,2
= , + 2x”XM + 2Xi2 XJJ + X Xj/ +2Xl'/ xilx.jlx)'? +XI'Z X)Z

ol
ﬁ’%/j

:L' \r:-inl \rjxiz X'nl \HY,',XQ X,'Zl r:z)(.)‘2

Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:

!
2i'2,= (%)

E Le/\j |O n? 0} “\ L\f & ‘F X 2
(1w Va WS Z wi W/ﬂ'j t’A Ve 8107’\5 (o)(l’7X’/ IZ)XII 11 ‘/ ' X?

* To also get lower-order terms use z;'z, = (1 + x;'x;)*
* The general degree-p polynomial kernel function:

k(xny)= (7 '>P

— Works for any number of features ‘d.
— But cost of computing one zisz is O(d) instead of O(dP).
— Take-home message: | can compute dot-products without the features.

Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

K'J (/ x,x) // (14 X"J

fed J Loan compe

€)<qw|r

7 b’,(J(}("’QI)\,Z)

\;\‘/ tm n x’\ nx|

— Make predictions using:

* Training cost is only O(n?d + n3), despite using k=0O(dP) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n” matrix.

— Testing cost is only O(ndt), cost to formd K.

Gaussian-RBF Kernel

e Most common kernel is the Gaussian RBF kernel:

k()(,7)" ex (\'ﬁ_—lln)

22

 Same formula and behaviour as RBF basis, but not equivalent:

— Before we used RBFs as a basis, now we’re using them as inner-product.

* Basis z; giving Gaussian RBF kernel is infinite-dimensional.
— If d=1 and o=1, it corresponds to using this basis (bonus slide):

Zi'"'exr(“xaz)lil PR @xf .f’:j O]

Motivation: Finding Gold

* Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.

— Build a kernel regression model (typically use RBF kernels).
Input Process Qutput

Kernel Trick for Non-Vector Data

[] ’ [}]
Consider data that doesn’t look like this:
[0.5377 0.3188 3.5784 | +1]
¥ 1.8339 1.3077 2.7694 / 1
— |—2.2588 —0.4336 —1.3499|° Y7 [-1]°
| 0.8622 0.3426 3.0349 | +1]
But instead looks like this:
[Do you want to go for a drink sometime? | 1]
J'achéte du pain tous les jours. —1
X = . Y = -
Fais ce que tu veux. —1
| There are inner products between sentences? | +1]

Kernel trick lets us fit regression models without explicit features:
— We can interpret k(x; x;) as a “similarity” between objects x; and x..

— We don’t need features if we can compute ‘similarity’ between objects.
— There are “string kernels”, “image kernels”, “graph kernels”, and so on.

Valid Kernels

What kernel functions k(x;x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from x; to some z; such that k(x,x;) = z;'z,

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenvalue equation.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).

Kernel Trick for Other Methods

Besides L2-regularized least squares, when can we use kernels?
— We can compute Euclidean distance with kernels:

”2;‘ 2)-’12 = 2,'2; =22’z + 2 k(x,)x) 2F(x,,y> k(x ,yj)

— All of our distance-based methods have kernel versions:
e Kernel k-nearest neighbours.
» Kernel clustering k-means (allows non-convex clusters)
* Kernel density-based clustering.
* Kernel hierarchical clustering.
e Kernel distance-based outlier detection.
* Kernel “Amazon Product Recommendation”.

Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
L2-regularized robust regression.

L2-regularized brittle regression.

L2-regularized logistic regression.

L2-regularized hinge loss (SVMs).

Wl'ﬂ\ a]Oa/'/'(“,af')M///Mén "/a‘//on)

can reduce /preJidio\n (os‘/
vV

{rom 0(nd1) To O(mdi)
L/VMML"(04‘

S vn/)/m‘ vectors,

Regression with Kernels

Linear Logistic Regression

Logistic

kernel-Linear Logistic Regression

kerel-REF Logistic Regression

k.ernel-Foly Logistic Regression

Summary

* High-dimensional bases allows us to separate non-separable data.

e Kernel trick allows us to use high-dimensional bases efficiently.

— Write model to only depend on inner products between features vectors.
A

y)A</(l<+ ’U?"y

€ *n Mateix %/27 Com‘ainim, infer @ﬂr’wbéj t—” n*n matrix ZZ] COV"’“M;"“) inner ﬁfvc‘v‘d) befween

be{wl(n +?§.f exaw)r,g aV‘J 'I’f‘o\l.m."l) .ex,,m,/{i 0\” .'-rﬂ}”i’t' C’Yanf/ef

* Kernels let us use similarity between objects, rather than features.
— Allows some exponential- or infinite-sized feature sets.
— Applies to L2-regularized linear models and distance-based models.

e Next time: how do we train on all of Gmail?

Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
* But consider this decomposition of squared Euclidean distance:

-
l

Ll x5 112 = £ el = x g Ly 12

* If all training examples have the same norm, then minimizing
Euclidean distance is equivalent to maximizing inner product.

— So “high similarity” according to inner product is like “small Euclidean
distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.

— Some people explicitly normalize the x; by setting x. = (1/| | x.| |)x,, so that
inner products act like the negation of Euclidean distances.

Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX 4+ AD7IXT = XT(XXT + 2D (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH'G)Y'FH'=E'F(H-GE'F)™'.

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXHAD)TXT = AT+ XTX) XY = A1+ X717 XY = (AT =-XT(-DX)'XT = —(A1-X"(-DX)"' X" (-1
Now apply the matrix inversion with £ = A (so E~' = (5)1), ¥ = X", H=—1I (so H~' = -1 too), and
G=X:

~(M = XT(=DX)'XT(-1) = =(5 -

Now use that (1/a)A~" = (aA)™!, to push the (—=1/X) inside the sum as — A,

NixT-r-x (l) XT)1.

-(%}IJ{"'(—I - X G) XUy = XTAL+ XXT) ' = XT(XXT 4+ A1),

Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

. e |12
k(zi,xj) = exp (— i = ;]) .

G_z

@ What function ¢(x) would lead to this as the inner-product?
» To simplify, assume d =1 and o = 1,

k(zi, i) = exp(—x; + 275 — ..r_f)
= exp(—x}) exp(2z;z;) exp(—z3),
so we need ¢(x;) = exp(—x7)z; where 2;2; = exp(2z;z;).
@ For this to work for all x; and z;, z; must be infinite-dimensional.

o If we use that o ok
20t

exp(2x;z;) = z ;;I L

k=0

-

then we obtain

O(x;) = (3}{[)(—3:3) [1 \ ;‘%mi \ ,f%_ﬂlmf \ f%—?;{‘:g .. } _

Constructing Valid Kernels

o If ki(zi,z;) and ka(x;, ;) are valid kernels, then the following are valid kernels:

o ki(d(xq), d(xj)).
L {}kl(T%qu) + ﬁk’z(TtT_}.) for a > () and 6 > 0.
o ki(wi, xj)ka(zs, x;5).
o O(x;)ky(xi,x;)0(xy).
@ D}{p(kl(iﬂi,:ﬁj)).
e Example: Gaussian-RBF kernel:

2
Ls — ;5
(i, 35) = exp (_M 3|)

O—Q
2 / \ 2
. 2 .
oo (LY e | 2 a7y | (1)
- o/ NGl 1N o7
~ \&20 ualld) ~
S A S B S

exp(valid)

Representer Theorem

Consider linear model differentiable with losses f; and L2-regularization,
- X
argmin » fi(w"x;) + §||’w||2-
Setting the gradient equal to zero we get
n
(i= Z fl(wlz))z; + M.
i=1

So any solution w* can written as a linear combination of features z;,

n n

w' = —§ fo((W*)TiEz')iEi = Z Zil;

=1 =1

This is called a representer theorem (true under much more general conditions).

Representer Theorem

o Using representer theorem we can use w = X'z in original problem,

A
argmin Y™ fi(uTzg) + 2

d “
welR i—1

T T 112
= argmin E 2w Xx +— X"z
z%l&” f@(z) ” ”

T:XTz

o Now defining f(z) = >, fi(z;) for a vector z we have

A
—argmin f(XXT2)+ 227X X712

EERH 2
. A T
=argmin f(Kz) + Kz.
zeR™ 2

e Similarly, at test time we can use the n variables z
Xw=XXT2z=Kz.

