CPSC 340: Machine Learning and Data Mining

Kernel Trick

Fall 2017
Admin

• **Assignment 3:**
 – Due Friday.

• **Midterm:**
 – Can view your exam during instructor office hours or after class this week.
Digression: the “other” Normal Equations

• Recall the **L2-regularized least squares** objective:
 \[f(w) = \frac{1}{2} \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2 \]

• We showed that the minimum is given by
 \[w = (X^TX + \lambda I)^{-1} X^Ty \]
 (in practice you still solve the linear system, since inverse can be numerically unstable – see CPSC 302)

• With some work (bonus), this can equivalently be written as:
 \[w = X^T (XX^T + \lambda I)^{-1} y \]

• This is faster if \(n << d \):
 – Cost is \(O(n^2d + n^3) \) instead of \(O(nd^2 + d^3) \).
Gram Matrix

- The matrix XX^T is called the **Gram matrix** K.

$$
K = XX^T = \begin{pmatrix}
 x_1^T \\
 x_2^T \\
 \vdots \\
 x_n^T
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
$$

- K contains the **inner products** between all training examples.
 - Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.
Support Vector Machines for Non-Separable

• What about data that is not even close to separable?
Support Vector Machines for Non-Separable

- What about data that is not even close to separable?
 - It may be separable under change of basis (or closer to separable).

\[Z_i = w_1 x_{i1}^2 + w_2 \sqrt{2} x_{i2} + w_3 x_{i3}^2 \]

Support Vector Machines for Non-Separable

• What about data that is not even close to separable?
 – It may be separable under change of basis (or closer to separable).

Multi-Dimensional Polynomial Basis

• Recall fitting polynomials when we only have 1 feature:
 \[y_i = w_0 + w_1 x_i + w_2 x_i^2 \]

• We can fit these models using a change of basis:

 \[x = \begin{bmatrix} 0.2 \\ -0.5 \\ 1 \\ 4 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (-0.5)^2 \\ 1 & 1 & (1)^2 \\ 1 & 4 & (4)^2 \end{bmatrix} \]

• How can we do this when we have a lot of features?
Multi-Dimensional Polynomial Basis

- Polynomial basis for $d=2$ and $p=2$:

$$X = \begin{bmatrix} 0.2 & 0.3 \\ 1 & 0.5 \\ -0.5 & -0.1 \end{bmatrix}$$

- With $d=4$ and $p=3$, the polynomial basis would include:
 - Bias variable and the x_{ij}: 1, x_{i1}, x_{i2}, x_{i3}, x_{i4}.
 - The x_{ij} squared and cubed: $(x_{i1})^2$, $(x_{i2})^2$, $(x_{i3})^2$, $(x_{i4})^2$, $(x_{i1})^3$, $(x_{i2})^3$, $(x_{i3})^3$, $(x_{i4})^3$.
 - Two-term interactions: $x_{i1}x_{i2}$, $x_{i1}x_{i3}$, $x_{i1}x_{i4}$, $x_{i2}x_{i3}$, $x_{i2}x_{i4}$, $x_{i3}x_{i4}$.
 - Cubic interactions: $x_{i1}x_{i2}x_{i3}$, $x_{i1}x_{i3}x_{i4}$, $x_{i1}x_{i4}$, $x_{i2}x_{i3}x_{i4}$.

$$Z = \begin{bmatrix} 1 & 0.2 & 0.3 & (0.2)^2 & (0.3)^2 & (0.1)(0.3) \\ 1 & 1 & 0.5 & (1)^2 & (0.5)^2 & (1)(0.5) \\ 1 & 0.5 & -0.1 & (0.5)^2 & (-0.1)^2 & (-0.5)(-0.1) \end{bmatrix}$$
Kernel Trick

• If we go to degree \(p=5 \), we’ll have \(O(d^5) \) quintic terms:

\[
\begin{align*}
X_{i1}^5 x_{i1}^4 & \quad x_{i2}^4 \quad \ldots \quad x_{id}^4 \\
x_{i1}^3 x_{i1}^2 & \quad \ldots \quad x_{i1}^2 x_{id}^2 \\
x_{i1} x_{i1} & \quad \ldots \quad x_{i1} x_{id} \\
\ldots & \quad \ldots \quad \ldots \\
x_{id} & \quad \ldots \quad X_{id}
\end{align*}
\]

– For large ‘\(d \) and ‘\(p \)’, we can’t even store ‘\(Z \)’ or ‘\(w \)’.

• But, we can use this basis efficiently with the kernel trick (medium ‘\(n \)’).

• Basic idea:
 – We can sometimes efficiently compute dot product \(z_i^T z_j \) directly from \(x_i \) and \(x_j \).
 – Use this to make the Gram matrix \(ZZ^T \) and make predictions.
Kernel Trick

• Given test data \hat{X}, predict \hat{y} by forming and \hat{Z} using:

$$\hat{y} = \hat{Z}w = \hat{Z}^T(\hat{Z}^T + \lambda \mathbf{I})^{-1}y$$

$$\hat{K} \quad \hat{K}$$

$$t \times 1 \quad \hat{K} \quad n \times n \quad n \times 1$$

• Key observation behind kernel trick:
 - Predictions \hat{y} only depend on features through K and \hat{K}.
 - If we have a function that computes K and \hat{K}, we don’t need the features.
Kernel Trick

• ‘K’ contains the inner products between all training examples.
 – Intuition: inner product can be viewed as a measure of similarity, so this matrix gives a similarity between each pair of examples.

• ‘ Kı ’ contains the inner products between training and test examples.

• Kernel trick:
 – I want to use a basis \(z_i \) that is too huge to store (very large ‘d’).
 – But I only need \(z_i \) to compute \(K = ZZ^T \) and \(\hat{K} = \hat{Z}Z^T \).
 • The sizes of these matrices are independent of \(d \).
 • Everything we need to know about \(z_i \) is summarized by the \(z_i^Tz_j \).
 – I can use this basis if I have a kernel function that computes \(k(x_i, x_j) = z_i^Tz_j \).
 • I don’t need to compute the basis \(z_i \) explicitly.
Example: Degree-2 Kernel

• Consider two examples x_i and x_j for a 2-dimensional dataset:
 \[x_i = (x_{i1}, x_{i2}) \quad x_j = (x_{j1}, x_{j2}) \]

• And consider a particular degree-2 basis:
 \[z_i = (x_{i1}^2, \sqrt{2} x_{i1} x_{i2}, x_{i2}^2) \quad z_j = (x_{j1}^2, \sqrt{2} x_{j1} x_{j2}, x_{j2}^2) \]

• We can compute inner product $z_i^T z_j$ without forming z_i and z_j:
 \[
 z_i^T z_j = x_{i1}^2 x_{j1}^2 + (\sqrt{2} x_{i1} x_{i2})(\sqrt{2} x_{j1} x_{j2}) + x_{i2}^2 x_{j2}^2 \\
 = x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{i2} x_{j1} x_{j2} + x_{i2}^2 x_{j2}^2 \\
 = (x_{i1} x_{j1} + x_{i2} x_{j2})^2 \\
 = (x_i^T x_j)^2 \quad \text{"completing the square"} \\
 = (x_i^T x_j)^2 \quad \text{No need for } z_i \text{ to compute } z_i^T z_j
Polynomial Kernel with Higher Degrees

• Let’s add a bias and linear terms to our degree-2 basis:

\[
\mathbf{z}_i = \begin{bmatrix} 1 & \sqrt{2}x_{i1} & \sqrt{2}x_{i2} & x_{i1}^2 & \sqrt{2}x_{il}x_{i2} & x_{i2}^2 \end{bmatrix}^T
\]

• I can compute inner products using:

\[
(1 + x_i^T x_j)^2 = 1 + 2x_i^T x_j + (x_i^T x_j)^2
\]

\[
= 1 + 2x_{il}x_{jl} + 2x_{i2}x_{j2} + x_{i1}^2x_{j1}^2 + 2x_{il}x_{i2}x_{j1}x_{j2} + x_{i2}^2x_{j2}^2
\]

\[
= \begin{bmatrix} 1 & \sqrt{2}x_{il} & \sqrt{2}x_{i2} & x_{i1}^2 & \sqrt{2}x_{il}x_{i2} & x_{i2}^2 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2}x_{jl} \\ \sqrt{2}x_{j2} \\ x_{j1}^2 \\ x_{j2}^2 \\ \sqrt{2}x_{jl}x_{j2} \end{bmatrix}
\]

\[
= \mathbf{z}_i^T \mathbf{z}_j
\]
Polynomial Kernel with Higher Degrees

- To get all degree-4 “monomials” I can use:

\[z_i^T z_j = (x_i^T x_j)^4 \]

Equivalent to using a \(z_i \) with weighted versions of \(x_i^4, x_i^3 x_i^2 x_i^2, x_i^2 x_i^2 x_i^2, x_i^2 x_i^2 x_i^2, \ldots \)

- To also get lower-order terms use \(z_i^T z_j = (1 + x_i^T x_j)^4 \)

- The general degree-\(p \) polynomial kernel function:

\[k(x_i, x_j) = (1 + x_i^T x_j)^p \]

- Works for any number of features ‘\(d \)’.
- But cost of computing one \(z_i^T z_j \) is \(O(d) \) instead of \(O(d^p) \).
- Take-home message: I can compute dot-products without the features.
Kernel Trick with Polynomials

• Using polynomial basis of degree ‘p’ with the kernel trick:
 – Compute K and \hat{K} using:
 $$K_{ij} = (1 + x_i^T x_j)^p$$
 $$\hat{K}_{ij} = (1 + \hat{x}_i^T \hat{x}_j)^p$$
 – Make predictions using:
 $$\hat{y} = \hat{K} \left(\hat{K} + \lambda I \right)^{-1} y$$

• Training cost is only $O(n^2d + n^3)$, despite using $O(d^p)$ features.
 – We can form ‘K’ in $O(n^2d)$, and we need to “invert” an ‘$n \times n$’ matrix.
 – Testing cost is only $O(ndt)$, cost to formd \hat{K}.
Linear Regression vs. Kernel Regression

Linear Regression

Training
1. Form basis Z from X.
2. Compute $w = (Z^T Z + \lambda I)^{-1} Z^T y$

Testing
1. Form basis \hat{Z} from \hat{X}
2. Compute $\hat{y} = \hat{Z}w$

Kernel Regression

Training
1. Form inner products K from X.
2. Compute $v = (K + \lambda I)^{-1} y$

Testing
1. Form inner products \hat{K} from X and \hat{X}
2. Compute $\hat{y} = \hat{K}v$

Non-parametric
Motivation: Finding Gold

• Kernel methods first came from mining engineering (“Kriging”):
 – Mining company wants to find gold.
 – Drill holes, measure gold content.
 – Build a kernel regression model (typically use RBF kernels).

Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

\[k(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right) \]

• Same formula and behaviour as RBF basis, but not equivalent:
 – Before we used RBFs as a basis, now we’re using them as inner-product.

• Basis \(z_i \) giving Gaussian RBF kernel is infinite-dimensional:
 – If \(d=1 \) and \(\sigma=1 \), it corresponds to using this basis (bonus slide):

\[z_j = \exp(-x_i^2) \left[1 \quad \sqrt{\frac{2}{1!}} x_i \quad \sqrt{\frac{2^2}{2!}} x_i^2 \quad \sqrt{\frac{2^3}{3!}} x_i^3 \quad \sqrt{\frac{2^4}{4!}} x_i^4 \quad \cdots \right] \]
Kernel Trick for Non-Vector Data

• Consider data that doesn’t look like this:

\[
X = \begin{bmatrix}
 0.5377 & 0.3188 & 3.5784 \\
 1.8339 & -1.3077 & 2.7694 \\
 -2.2588 & -0.4336 & -1.3499 \\
 0.8622 & 0.3426 & 3.0349 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
 +1 \\
 -1 \\
 -1 \\
 +1 \\
\end{bmatrix},
\]

• But instead looks like this:

\[
X = \begin{bmatrix}
 \text{Do you want to go for a drink sometime?} \\
 \text{J'achète du pain tous les jours.} \\
 \text{Fais ce que tu veux.} \\
 \text{There are inner products between sentences?} \\
\end{bmatrix}, \quad y = \begin{bmatrix}
 +1 \\
 -1 \\
 -1 \\
 +1 \\
\end{bmatrix}.
\]

• Kernel trick lets us fit regression models without explicit features:
 – We can interpret \(k(x_i, x_j) \) as a “similarity” between objects \(x_i \) and \(x_j \).
 – We don’t need features if we can compute ‘similarity’ between objects.
 – There are “string kernels”, “image kernels”, “graph kernels”, and so on.
Valid Kernels

• What kernel functions \(k(x_i, x_j) \) can we use?

• Kernel ‘\(k \)’ must be an inner product in some space:
 – There must exist a mapping from \(x_i \) to some \(z_i \) such that \(k(x_i, x_j) = z_i^T z_j \).

• It can be hard to show that a function satisfies this.
 – Infinite-dimensional eigenvalue equation.

• But like convex functions, there are some simple rules for constructing “valid” kernels from other valid kernels (bonus slide).
Kernel Trick for Other Methods

• Besides **L2-regularized least squares**, when can we use kernels?
 – We can compute **Euclidean distance with kernels**:
 \[
 \|z_i - z_j\|^2 = z_i^Tz_i - 2z_i^Tz_j + z_j^Tz_j = k(x_i,x_i) - 2k(x_i,x_j) + k(x_j,x_j)
 \]
 – All of our **distance-based methods have kernel versions**:
 • Kernel k-nearest neighbours.
 • Kernel clustering k-means (allows non-convex clusters)
 • Kernel density-based clustering.
 • Kernel hierarchical clustering.
 • Kernel distance-based outlier detection.
 • Kernel “Amazon Product Recommendation”.
Kernel Trick for Other Methods

• Besides **L2-regularized least squares**, when can we use kernels?
 – “Representer theorems” (bonus slide) have shown that any **L2-regularized linear model** can be kernelized:
 • **L2-regularized robust regression**.
 • **L2-regularized brittle regression**.
 • **L2-regularized logistic regression**.
 • **L2-regularized hinge loss (SVMs)**.

\[\text{With a particular implementation,} \quad \text{can reduce prediction cost} \quad \text{from } O(ndt) \quad \text{to } O(mdt). \]

\[\text{Number of} \quad \text{support vectors}. \]
Logistic Regression with Kernels
Summary

• **High-dimensional bases** allows us to separate non-separable data.

• **Kernel trick** allows us to use high-dimensional bases efficiently.
 – Write model to only depend on inner products between features vectors.
 \[
 \hat{y} = \hat{k}(K + \lambda I)^{-1}y
 \]

 – **Kernels** let us use similarity between objects, rather than features.
 – Allows some exponential- or infinite-sized feature sets.
 – Applies to L2-regularized linear models and distance-based models.

• Next time: how do we train on all of Gmail?
Note that \hat{X} and Y are the same on the left and right side, so we only need to show that

$$ (X^T X + \lambda I)^{-1} X^T = X^T (XX^T + \lambda I)^{-1}. \quad (1) $$

A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is

$$ (E - FH^{-1}G)^{-1} FH^{-1} = E^{-1} F(H - GE^{-1}F)^{-1}. $$

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write the left side of (1) as

$$ (X^T X + \lambda I)^{-1} X^T = (\lambda I + X^T X)^{-1} X^T = (\lambda I + X^T I X)^{-1} X^T = (\lambda I - X^T (-I) X)^{-1} X^T = -(\lambda I - X^T (-I) X)^{-1} X^T (-I) $$

Now apply the matrix inversion with $E = \lambda I$ (so $E^{-1} = (\frac{1}{\lambda}) I$), $F = X^T$, $H = -I$ (so $H^{-1} = -I$ too), and $G = X$:

$$ -(\lambda I - X^T (-I) X)^{-1} X^T (-I) = -(\frac{1}{\lambda}) I X^T (-I - X \left(\frac{1}{\lambda} \right) X^T)^{-1}. $$

Now use that $(1/\alpha)A^{-1} = (\alpha A)^{-1}$, to push the $(-1/\lambda)$ inside the sum as $-\lambda$,

$$ -(\frac{1}{\lambda}) I X^T (-I - X \left(\frac{1}{\lambda} \right) X^T)^{-1} = X^T (\lambda I + XX^T)^{-1} = X^T (XX^T + \lambda I)^{-1}. $$
Guasian-RBF Kernels

- The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

\[k(x_i, x_j) = \exp \left(-\frac{\|x_i - x_j\|^2}{\sigma^2} \right). \]

- What function \(\phi(x) \) would lead to this as the inner-product?
 - To simplify, assume \(d = 1 \) and \(\sigma = 1 \),

\[k(x_i, x_j) = \exp(-x_i^2 + 2x_ix_j - x_j^2) \]
\[= \exp(-x_i^2) \exp(2x_ix_j) \exp(-x_j^2), \]

so we need \(\phi(x_i) = \exp(-x_i^2)z_i \) where \(z_iz_j = \exp(2x_ix_j) \).

- For this to work for all \(x_i \) and \(x_j \), \(z_i \) must be infinite-dimensional.

- If we use that

\[\exp(2x_ix_j) = \sum_{k=0}^{\infty} \frac{2^k x_i^k x_j^k}{k!}, \]

then we obtain

\[\phi(x_i) = \exp(-x_i^2) \left[1 \quad \sqrt{\frac{2}{1!}} x_i \quad \sqrt{\frac{2^2}{2!}} x_i^2 \quad \sqrt{\frac{2^3}{3!}} x_i^3 \quad \cdots \right]. \]
Constructing Valid Kernels

- If \(k_1(x_i, x_j) \) and \(k_2(x_i, x_j) \) are valid kernels, then the following are valid kernels:
 - \(k_1(\phi(x_i), \phi(x_j)) \).
 - \(\alpha k_1(x_i, x_j) + \beta k_2(x_i, x_j) \) for \(\alpha \geq 0 \) and \(\beta \geq 0 \).
 - \(k_1(x_i, x_j)k_2(x_i, x_j) \).
 - \(\phi(x_i)k_1(x_i, x_j)\phi(x_j) \).
 - \(\exp(k_1(x_i, x_j)) \).

- Example: Gaussian-RBF kernel:

\[
k(x_i, x_j) = \exp \left(-\frac{\|x_i - x_j\|^2}{\sigma^2} \right)
\]

\[
= \exp \left(-\frac{\|x_i\|^2}{\sigma^2} \right) \exp \left(\frac{2}{\sigma^2} x_i^T x_j \right) \exp \left(-\frac{\|x_j\|^2}{\sigma^2} \right).
\]

\[\phi(x_i) \text{ valid} \]
\[\exp(\text{valid}) \]
Representer Theorem

Consider linear model differentiable with losses f_i and L2-regularization,

$$\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} f_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2.$$

Setting the gradient equal to zero we get

$$0 = \sum_{i=1}^{n} f_i'(w^T x_i) x_i + \lambda w.$$

So any solution w^* can written as a linear combination of features x_i,

$$w^* = -\frac{1}{\lambda} \sum_{i=1}^{n} f_i'((w^*)^T x_i) x_i = \sum_{i=1}^{n} z_i x_i$$

$$= X^T z.$$

This is called a representer theorem (true under much more general conditions).
Representer Theorem

- Using representer theorem we can use \(w = X^T z \) in original problem,

\[
\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} f_i(w^T x_i) + \frac{\lambda}{2} \|w\|_2^2
\]

\[
= \arg\min_{z \in \mathbb{R}^n} \sum_{i=1}^{n} f_i(z^T X x_i) + \frac{\lambda}{2} \|X^T z\|_2^2
\]

- Now defining \(f(z) = \sum_{i=1}^{n} f_i(z_i) \) for a vector \(z \) we have

\[
= \arg\min_{z \in \mathbb{R}^n} f(X X^T z) + \frac{\lambda}{2} z^T X X^T z
\]

\[
= \arg\min_{z \in \mathbb{R}^n} f(K z) + \frac{\lambda}{2} z^T K z.
\]

- Similarly, at test time we can use the \(n \) variables \(z \),

\[
\hat{X} w = \hat{X} X^T z = \hat{K} z.
\]