
CPSC 340:
Machine Learning and Data Mining

Linear Classifiers

Fall 2017

Admin

• Assignment 0+1:
– Looked into remaining grade anomalies.

• Assignment 0+1:
– Grades posted.

• Assignment 3:
– Due Friday of next week (shorter, sorry about A2 length + midterm date).

• Midterm:
– Can view your exam during instructor office hours next week,

or after class this/next week.

Last Time: L1-Regularization

• We discussed L1-regularization:

– Also known as “LASSO” and “basis pursuit denoising”.

– Regularizes ‘w’ so we decrease our test error (like L2-regularization).

– Yields sparse ‘w’ so it selects features (like L0-regularization).

• Properties:

– It’s convex and fast to minimize (with “proximal-gradient” methods).

– Solution is not unique (sometimes people do L2- and L1-regularization).

– Usually includes “correct” variables but tends to yield false positives.

Ensemble Feature Selection

• In this case of L1-regularization, we want to reduce false positives.

– Unlike L0-regularization, the non-zero wj are still “shrunk”.

• “Irrelevant” variables are included, before “relevant” wj reach best value.

• We can also use ensemble methods for feature selection.

– Usually designed to reduce false positives or reduce false negatives.

• A bootstrap approach to reducing false positives:

– Apply the method to bootstrap samples of the training data.

– Only take the features selected in all bootstrap samples.

Ensemble Feature Selection

• Example: boostrapping plus L1-regularization (“BoLASSO”).

– Reduces false positives.

– It’s possible to show it recovers “correct” variables with weaker conditions.

Part 3 Key Ideas: Linear Models, Least Squares

• Focus of Part 3 is linear models:

– Supervised learning where prediction is linear combination of features:

• Regression:

– Target yi is numerical, testing (𝑦i == yi) doesn’t make sense.

• Squared error:

– Can find optimal ‘w’ by solving “normal equations”.

Part 3 Key Ideas: Gradient Descent, Error Functions

• For large ‘d’ we often use gradient descent:

– Iterations only cost O(nd).

– Converges to a critical point of a smooth function.

– For convex functions, it finds a global optimum.

• L1-norm and L∞-norm errors:

– More/less robust to outliers.

– Can apply gradient descent after smoothing with Huber or log-sum-exp.

Part 3 Key Ideas: Change of basis, Complexity Scores

• Change of basis: replaces features xi with non-linear transforms zi:

– Add a bias variable (feature that is always one).

– Polynomial basis.

– Radial basis functions (non-parametric basis).

• We discussed scores for choosing “true” model complexity.

– Validation score vs. AIC/BIC.

• Search and score for feature selection:

– Define a “score” like BIC, and do a “search” like forward selection.

Part 3 Key Ideas: Regularization

• L0-regularization (AIC, BIC):

– Adds penalty on the number of non-zeros to select features.

• L2-regularization (ridge regression):

– Adding penalty on the L2-norm of ‘w’ to decrease overfitting:

• L1-regularization (LASSO):

– Adding penalty on the L1-norm decreases overfitting and selects features:

Key Idea in Rest of Part 3

• The next few lectures will focus on:

– Using linear models for classification and with discrete features.

– Using linear models with really big datasets.

– Connections between regression and probabilities.

• It may seem like we’re spending a lot of time on linear models.

– Linear models are used a lot and are understandable.

• ICBC only uses linear models for insurance estimates.

– Linear models are also the building blocks for more-advanced methods.

• “Latent-factor” models in Part 4 and “deep learning” in Part 5.

(pause)

Motivation: Identifying Important E-mails

• How can we automatically identify ‘important’ e-mails?

• A binary classification problem (“important” vs. “not important”).

– Labels are approximated by whether you took an “action” based on mail.

– High-dimensional feature set (that we’ll discuss later).

• Gmail uses regression for this binary classification problem.

Binary Classification Using Regression?

• Can we apply linear models for binary classification?

– Set yi = +1 for one class (“important”).

– Set yi = -1 for the other class (“not important”).

• At training time, fit a linear regression model:

• The model will try to make wTxi = +1 for “important” e-mails,
and wTxi = -1 for “not important” e-mails.

Binary Classification Using Regression?

• Can we apply linear models for binary classification?

– Set yi = +1 for one class (“important”).

– Set yi = -1 for the other class (“not important”).

• Linear model gives real numbers like 0.9, -1.1, and so on.

• So to predict, we look at the sign of wTxi.

– If wTxi = 0.9, predict 𝑦i = +1.

– If wTxi = -1.1, predict 𝑦i = -1.

– If wTxi = 0.1, predict 𝑦i = +1.

– If wTxi = -100, predict 𝑦i = -1.

Decision Boundary in 1D

• We can interpret ‘w’ as hyperplane separating x into 2 half-spaces:
– Half-space where wTxi > 0 and half-space where wTxi < 0.

Decision Boundary in 1D

Decision Boundary in 2D

decision tree KNN linear classifier

17

• A linear classifier would be linear function 𝑦i= β + w1xi1+w2xi2
coming out of the page (the boundary is at 𝑦i=0).

• Or recall from multivariable calculus that a plane in d-dimensions is
defined by its normal vector in d-dimensions, plus an intercept/offset.

Perceptron Algorithm

• One of the first “learning” algorithms was the “perceptron” (1957).
– Searches for a ‘w’ such that sign(wTxi) = yi for all i.

• Perceptron algorithm:
– Start with w0 = 0.

– Go through examples in any order until you make a mistake predicting yi.
• Set wt+1 = wt + yixi.

– Keep going through examples until you make no errors on training data.

• Intuition for step: if yi = +1, “add more of xi to w” so that wTxi is larger.

• If a perfect classifier exists, this algorithm finds one in finite number of steps.
– In this case we say the training data is “linearly separable”

18

https://en.wikipedia.org/wiki/Perceptron

Can we just use least squares??

• Consider training by minimizing squared error with these yi:

• If we predict wTxi = +0.9 and yi = +1, error is small: (0.9 – 1)2 = 0.01.

• If we predict wTxi = -0.8 and yi = +1, error is big: (-0.8 – 1)2 = 3.24.

• If we predict wTxi = +100 and yi = +1, error is huge: (100 – 1)2 = 9801.

• Least squares penalized for being “too right”.

– +100 has the right sign, so the error should be zero.

Can we just use least squares??

• Least squares behaves weirdly when applied to classification:

• Make sure you understand why the green line achieves 0 training error.

Can we just use least squares??

• What went wrong?

– “Good” errors vs. “bad” errors.

Can we just use least squares??

• What went wrong?

– “Good” errors vs. “bad” errors.

Comparing Loss Functions

24

Thoughts on the previous (and next) slide

• We are now plotting the loss vs. the predicted w⊤xi.

– This is totally different from plotting in the data space (yi vs. xi).

• The loss is a sum over training examples.

– We're plotting the individual loss for a particular training example.

– In the figure, this example has label yi = −1 so the loss is centered at -1.
(The plot would be mirrored in the case of yi = +1.)

• We only need to show one case or the other to get our point across.

– Note that with regular linear regression the output yi could be any number
and thus the parabola could be centred anywhere. But here we've
restricted ourselves to yi={-1,+1}.

• (The next slide is the same as the previous one)
25

Comparing Loss Functions

26

Comparing Loss Functions

27

Comparing Loss Functions

28

0-1 Loss Function

• The 0-1 loss function is the number of classification errors:
– We can write using the L0-norm as ||sign(Xw) – y||0.
– Unlike regression, in classification it’s reasonable that sign(wTxi) = yi.

• Unfortunately the 0-1 loss is non-convex in ‘w’.
– It’s easy to minimize if a perfect classifier exists (perceptron).
– Otherwise, finding the ‘w’ minimizing 0-1 loss is a hard problem.

– Gradient is zero everywhere so you don’t know “which way to go” in w-space.
– Note this is NOT the same type of problem we had with using the squared loss.

• We can minimize the squared error, but it might giver a bad model for classification.

• Next lecture we’ll introduce convex approximations to the 0-1 loss.

29

Summary

• Ensemble feature selection reduces false positives or negatives.

• Binary classification using regression:

– Encode using yi in {-1,1}.

– Use sign(wTxi) as prediction.

– “Linear classifier” (a hyperplane splitting the space in half).

• Perceptron algorithm: finds a perfect classifier (if one exists).

• Least squares is a weird error for classification.

• 0-1 loss is the ideal loss, but is non-smooth and non-convex.

• Next time: one of the best “out of the box” classifiers.
30

L1-Regularization as a Feature Selection Method

• Advantages:
– Deals with conditional independence (if linear).

– Sort of deals with collinearity:
• Picks at least one of “mom” and “mom2”.

– Very fast with specialized algorithms.

• Disadvantages:
– Tends to give false positives (selects too many variables).

• Neither good nor bad:
– Does not take small effects.

– Says “gender” is relevant if we know “baby”.

– Good for prediction if we want fast training and don’t care about having
some irrelevant variables included.

“Elastic Net”: L2- and L1-Regularization

• To address non-uniqueness, some authors use L2- and L1-:

• Called “elastic net” regularization.

– Solution is sparse and unique.

– Slightly better with feature dependence:

• Selects both “mom” and “mom2”.

• Optimization is easier though still non-differentiable.

L1-Regularization Debiasing and Filtering

• To remove false positives, some authors add a debiasing step:

– Fit ‘w’ using L1-regularization.

– Grab the non-zero values of ‘w’ as the “relevant” variables.

– Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

• A related use of L1-regularization is as a filtering method:

– Fit ‘w’ using L1-regularization.

– Grab the non-zero values of ‘w’ as the “relevant” variables.

– Run standard (slow) variable selection restricted to relevant variables.

• Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers

• Regularizing |wj|
2 selects all features.

• Regularizing |wj| selects fewer, but still has many false positives.

• What if we regularize |wj|
1/2 instead?

• Minimizing this objective would lead to fewer false positives.
– Less need for debiasing, but it’s not convex and hard to minimize.

• There are many non-convex regularizers with similar properties.
– L1-regularization is (basically) the “most sparse” convex regularizer.

Online Classification with Perceptron

• Perceptron for online linear binary classification [Rosenblatt, 1957]
– Start with w0 = 0.
– At time ‘t’ we receive features xt.
– We predict 𝑦t = sign(wt

Txt).
– If 𝑦t ≠ yt, then set wt+1 = wt + ytxt.

• Otherwise, set wt+1 = wt.

(Slides are old so above I’m using subscripts of ‘t’ instead of superscripts.)

• Perceptron mistake bound [Novikoff, 1962]:
– Assume data is linearly-separable with a “margin”:

• There exists w* with ||w*||=1 such that sign(xt
Tw*) = sign(yt) for all ‘t’ and |xTw*| ≥ γ.

– Then the number of total mistakes is bounded.
• No requirement that data is IID.

Perceptron Mistake Bound

• Let’s normalize each xt so that ||xt|| = 1.
– Length doesn’t change label.

• Whenever we make a mistake, we have sign(yt) ≠ sign(wt
Txt) and

• So after ‘k’ errors we have ||wt||2 ≤ k.

Perceptron Mistake Bound

• Let’s consider a solution w*, so sign(yt) = sign(xt
Tw*).

• Whenever we make a mistake, we have:

• So after ‘k’ mistakes we have ||wt|| ≥ γk.

Perceptron Mistake Bound

• So our two bounds are ||wt|| ≤ sqrt(k) and ||wt|| ≥ γk.

• This gives γk ≤ sqrt(k), or a maximum of 1/γ2 mistakes.

– Note that γ > 0 by assumption and is upper-bounded by one by ||x|| ≤ 1.

– After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.

