CPSC 340: Machine Learning and Data Mining

Linear Classifiers Fall 2017

Admin

- Assignment 0+1:
 - Looked into remaining grade anomalies.
- Assignment 0+1:
 - Grades posted.
- Assignment 3:
 - Due Friday of next week (shorter, sorry about A2 length + midterm date).
- Midterm:
 - Can view your exam during instructor office hours next week, or after class this/next week.

Last Time: L1-Regularization

• We discussed L1-regularization:

$$f(w) = \frac{1}{2} || \chi_w - \gamma ||^2 + \lambda ||w||_1$$

- Also known as "LASSO" and "basis pursuit denoising".
- Regularizes 'w' so we decrease our test error (like L2-regularization).
- Yields sparse 'w' so it selects features (like LO-regularization).
- Properties:
 - It's convex and fast to minimize (with "proximal-gradient" methods).
 - Solution is not unique (sometimes people do L2- and L1-regularization).
 - Usually includes "correct" variables but tends to yield false positives.

Ensemble Feature Selection

- In this case of L1-regularization, we want to reduce false positives.
 - Unlike LO-regularization, the non-zero w_i are still "shrunk".
 - "Irrelevant" variables are included, before "relevant" w_i reach best value.
- We can also use ensemble methods for feature selection.
 Usually designed to reduce false positives or reduce false negatives.
- A **bootstrap** approach to reducing false positives:
 - Apply the method to bootstrap samples of the training data.
 - Only take the features selected in all bootstrap samples.

- Example: boostrapping plus L1-regularization ("BoLASSO").
 - Reduces false positives.
 - It's possible to show it recovers "correct" variables with weaker conditions.

Part 3 Key Ideas: Linear Models, Least Squares

- Focus of Part 3 is linear models:
- Regression:
 - Target y_i is numerical, testing ($\hat{y}_i == y_i$) doesn't make sense.

• Squared error: $\frac{1}{2}\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$ or $\frac{1}{2} ||X_{w} - y||^{2}$ $e_{xactly} pass through any point.$

Can find optimal 'w' by solving "normal equations".

 $= w^{T} x_{:}$

Part 3 Key Ideas: Gradient Descent, Error Functions

- For large 'd' we often use gradient descent:
 - Iterations only cost O(nd).
 - Converges to a critical point of a smooth function.
 - For convex functions, it finds a global optimum.

• L_1 -norm and L_{∞} -norm errors:

$$||Xw-y||_{1}$$
 $||Xw-y||_{\infty}$

- More/less robust to outliers.
- Can apply gradient descent after smoothing with Huber or log-sum-exp.

Part 3 Key Ideas: Change of basis, Complexity Scores

- Change of basis: replaces features x_i with non-linear transforms z_i:
 - Add a bias variable (feature that is always one).
 - Polynomial basis.
 - Radial basis functions (non-parametric basis).
- We discussed scores for choosing "true" model complexity.
 Validation score vs. AIC/BIC.
- Search and score for feature selection:
 - Define a "score" like BIC, and do a "search" like forward selection.

Part 3 Key Ideas: Regularization

- LO-regularization (AIC, BIC):
 - Adds penalty on the number of non-zeros to select features.

$$f(w) = ||X_w - y||^2 + \lambda ||w||_0$$

- L2-regularization (ridge regression):
 - Adding penalty on the L2-norm of 'w' to decrease overfitting:

$$f(w) = ||Xw - y||^2 + \frac{3}{2}||w||^2$$

- L1-regularization (LASSO):
 - Adding penalty on the L1-norm decreases overfitting and selects features:

$$f(w) = ||Xw - y||^2 + \frac{1}{w}||_{y}$$

Key Idea in Rest of Part 3

- The next few lectures will focus on:
 - Using linear models for classification and with discrete features.
 - Using linear models with really big datasets.
 - Connections between regression and probabilities.
- It may seem like we're spending a lot of time on linear models.
 - Linear models are used a lot and are understandable.
 - ICBC only uses linear models for insurance estimates.
 - Linear models are also the building blocks for more-advanced methods.
 - "Latent-factor" models in Part 4 and "deep learning" in Part 5.

(pause)

Motivation: Identifying Important E-mails

• How can we automatically identify 'important' e-mails?

COMPOSE Inbox (3) Starred Important	다 ☆	>	Mark Issam, Ricky (10)	Inbox A2, tutorials, marking	C	10:41 am
			Holger, Jim (2)	lists Intro to Computer Science		10:20 am
		*	Issam Laradji	Inbox Convergence rates for cu	C	9:49 am
		*	sameh, Mark, sameh (3)	Inbox Graduation Project Dema	C	8:01 am
Sent Mail		*	Mark sara, Sara (11)	Label propagation	o	7:57 am

- A binary classification problem ("important" vs. "not important").
 - Labels are approximated by whether you took an "action" based on mail.
 - High-dimensional feature set (that we'll discuss later).
- Gmail uses regression for this binary classification problem.

Binary Classification Using Regression?

- Can we apply linear models for binary classification?
 - Set $y_i = +1$ for one class ("important").
 - Set $y_i = -1$ for the other class ("not important").
- At training time, fit a linear regression model:

$$\hat{y}_{i} = w_{i} x_{i1} + w_{2} x_{i2} + \cdots + w_{d} x_{id}$$

= $w^{T} x_{i}$

 The model will try to make w^Tx_i = +1 for "important" e-mails, and w^Tx_i = -1 for "not important" e-mails.

Binary Classification Using Regression?

- Can we apply linear models for binary classification?
 - Set $y_i = +1$ for one class ("important").
 - Set y_i = -1 for the other class ("not important").
- Linear model gives real numbers like 0.9, -1.1, and so on.
- So to predict, we look at the sign of w^Tx_i.
 - If $w^T x_i = 0.9$, predict $\hat{y}_i = +1$.
 - If $w^T x_i = -1.1$, predict $\hat{y}_i = -1$.
 - If $w^T x_i = 0.1$, predict $\hat{y}_i = +1$.
 - If $w^T x_i = -100$, predict $\hat{y}_i = -1$.

Decision Boundary in 1D

Decision Boundary in 1D

Decision Boundary in 2D

decision tree

KNN

linear classifier

- A linear classifier would be linear function $\hat{y}_i = \beta + w_1 x_{i1} + w_2 x_{i2}$ coming out of the page (the boundary is at $\hat{y}_i = 0$).
- Or recall from multivariable calculus that a plane in d-dimensions is defined by its normal vector in d-dimensions, plus an intercept/offset.

Perceptron Algorithm

- One of the first "learning" algorithms was the "perceptron" (1957).
 - Searches for a 'w' such that $sign(w^Tx_i) = y_i$ for all i.
- Perceptron algorithm:
 - Start with $w^0 = 0$.
 - Go through examples in any order until you make a mistake predicting y_i .
 - Set $w^{t+1} = w^t + y_i x_i$.
 - Keep going through examples until you make no errors on training data.
- Intuition for step: if $y_i = +1$, "add more of x_i to w" so that $w^T x_i$ is larger. $(w^{t+1})^T x_i = (w^t + x_i)^T x_i = (w^t)^T x_i + x_i^T x_i = (old prediction) + ||x_i||^2$
- If a perfect classifier exists, this algorithm finds one in finite number of steps.
 In this case we say the training data is "linearly separable"

History [edit]

X;

 $=7Z_i = (x_i^2 x_i x_2 x_3)$

• Consider training by minimizing squared error with these y_i:

$$f(w) = \frac{1}{2} ||Xw - y||^{2} \qquad y = \begin{bmatrix} 1 \\ 1 \\ -1 \\ +1 \\ -1 \end{bmatrix}$$

- If we predict $w^T x_i = +0.9$ and $y_i = +1$, error is small: $(0.9 1)^2 = 0.01$.
- If we predict $w^T x_i = -0.8$ and $y_i = +1$, error is big: $(-0.8 1)^2 = 3.24$.
- If we predict $w^T x_i = +100$ and $y_i = +1$, error is huge: $(100 1)^2 = 9801$.
- Least squares penalized for being "too right".

- +100 has the right sign, so the error should be zero.

Least squares behaves weirdly when applied to classification: •

Make sure you understand why the green line achieves 0 training error. •

• What went wrong?

Thoughts on the previous (and next) slide

- We are now plotting the loss vs. the predicted $w^T x_i$.
 - This is totally different from plotting in the data space (y_i vs. x_i).
- The loss is a sum over training examples.
 - We're plotting the individual loss for a particular training example.
 - In the figure, this example has label $y_i = -1$ so the loss is centered at -1. (The plot would be mirrored in the case of $y_i = +1$.)
 - We only need to show one case or the other to get our point across.
 - Note that with regular linear regression the output y_i could be any number and thus the parabola could be centred anywhere. But here we've restricted ourselves to y_i ={-1,+1}.
- (The next slide is the same as the previous one)

0-1 Loss Function

- The 0-1 loss function is the number of classification errors:
 - We can write using the LO-norm as $||sign(Xw) y||_0$.
 - Unlike regression, in classification it's reasonable that sign(w^Tx_i) = y_i .
- Unfortunately the 0-1 loss is non-convex in 'w'.
 - It's easy to minimize if a perfect classifier exists (perceptron).
 - Otherwise, finding the 'w' minimizing 0-1 loss is a hard problem.
 - Gradient is zero everywhere so you don't know "which way to go" in w-space.
 - Note this is NOT the same type of problem we had with using the squared loss.
 - We can minimize the squared error, but it might giver a bad model for classification.
- Next lecture we'll introduce convex approximations to the 0-1 loss.

Summary

- Ensemble feature selection reduces false positives or negatives.
- Binary classification using regression:
 - Encode using y_i in {-1,1}.
 - Use $sign(w^Tx_i)$ as prediction.
 - "Linear classifier" (a hyperplane splitting the space in half).
- Perceptron algorithm: finds a perfect classifier (if one exists).
- Least squares is a weird error for classification.
- 0-1 loss is the ideal loss, but is non-smooth and non-convex.

• Next time: one of the best "out of the box" classifiers.

L1-Regularization as a Feature Selection Method

- Advantages:
 - Deals with conditional independence (if linear).
 - Sort of deals with collinearity:
 - Picks at least one of "mom" and "mom2".
 - Very fast with specialized algorithms.
- Disadvantages:
 - Tends to give false positives (selects too many variables).
- Neither good nor bad:
 - Does not take small effects.
 - Says "gender" is relevant if we know "baby".
 - Good for prediction if we want fast training and don't care about having some irrelevant variables included.

"Elastic Net": L2- and L1-Regularization

• To address non-uniqueness, some authors use L2- and L1-:

$$f(w) = \frac{1}{2} ||X_w - \gamma||^2 + \frac{\lambda_2}{2} ||w||^2 + \lambda_1 ||w||_1$$

- Called "elastic net" regularization.
 - Solution is sparse and unique.
 - Slightly better with feature dependence:
 - Selects both "mom" and "mom2".
- Optimization is easier though still non-differentiable.

L1-Regularization Debiasing and Filtering

- To remove false positives, some authors add a debiasing step:
 - Fit 'w' using L1-regularization.
 - Grab the non-zero values of 'w' as the "relevant" variables.
 - Re-fit relevant 'w' using least squares or L2-regularized least squares.
- A related use of L1-regularization is as a filtering method:
 - Fit 'w' using L1-regularization.
 - Grab the non-zero values of 'w' as the "relevant" variables.
 - Run standard (slow) variable selection restricted to relevant variables.
 - Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers

- Regularizing $|w_i|^2$ selects all features.
- Regularizing |w_i| selects fewer, but still has many false positives.
- What if we regularize $|w_i|^{1/2}$ instead?

Minimizing this objective would lead to fewer false positives.
 – Less need for debiasing, but it's not convex and hard to minimize.

W

• There are many non-convex regularizers with similar properties. — L1-regularization is (basically) the "most sparse" convex regularizer.

Online Classification with Perceptron

- Perceptron for online linear binary classification [Rosenblatt, 1957]
 - Start with $w_0 = 0$.
 - At time 't' we receive features x_t .
 - We predict $\hat{y}_t = \text{sign}(w_t^T x_t)$.
 - If $\hat{y}_t \neq y_t$, then set $w_{t+1} = w_t + y_t x_t$.
 - Otherwise, set w_{t+1} = w_t.

(Slides are old so above I'm using subscripts of 't' instead of superscripts.)

- Perceptron mistake bound [Novikoff, 1962]:
 - Assume data is linearly-separable with a "margin":
 - There exists w* with $||w^*||=1$ such that sign $(x_t^T w^*) = sign(y_t)$ for all 't' and $|x^T w^*| \ge \gamma$.
 - Then the number of total mistakes is bounded.
 - No requirement that data is IID.

Perceptron Mistake Bound

- Let's normalize each x_t so that $||x_t|| = 1$.
 - Length doesn't change label.
- Whenever we make a mistake, we have sign(y_t) \neq sign($w_t^T x_t$) and

$$||w_{t+1}||^{2} = ||w_{t} + yx_{t}||^{2}$$

= $||w_{t}||^{2} + 2 \underbrace{y_{t}w_{t}^{T}x_{t}}_{<0} + 1$
 $\leq ||w_{t}||^{2} + 1$
 $\leq ||w_{t-1}||^{2} + 2$
 $\leq ||w_{t-2}||^{2} + 3.$

• So after 'k' errors we have $||w_t||^2 \le k$.

Perceptron Mistake Bound

- Let's consider a solution w^* , so sign $(y_t) = sign(x_t^T w^*)$.
- Whenever we make a mistake, we have:

$$||w_{t+1}|| = ||w_{t+1}|| ||w_*||$$

$$\geq w_{t+1}^T w_*$$

$$= (w_t + y_t x_t)^T w_*$$

$$= w_t^T w_* + y_t x_t^T w_*$$

$$= w_t^T w_* + |x_t^T w_*|$$

$$\geq w_t^T w_* + \gamma.$$

• So after 'k' mistakes we have $||w_t|| \ge \gamma k$.

Perceptron Mistake Bound

- So our two bounds are $||w_t|| \leq sqrt(k)$ and $||w_t|| \geq \gamma k$.
- This gives $\gamma k \leq sqrt(k)$, or a maximum of $1/\gamma^2$ mistakes.
 - Note that $\gamma > 0$ by assumption and is upper-bounded by one by $||x|| \le 1$.
 - After this 'k', under our assumptions we're guaranteed to have a perfect classifier.