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Admin

* Assignment 3:
— Out soon, due Friday of next week.

e Midterm:

— You can view your exam during instructor office hours or after class Friday.

e But no instructor office hours this week (Mark is away).



Last Time: L2-Regularization

* We discussed regularization:

— Adding a continuous penalty on the model complexity:
— _
f(w)’—;//)(w yl/z 7"_2//\/\///2

— Best parameter A almost always leads to improved test error.
* L2-regularized least squares is also known as “ridge regression”.
e Can be solved as a linear system like least squares.

— Numerous other benefits:

* Solution is unique, less sensitive to data, gradient descent converges faster.



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

* Should we convert to some standard ‘unit’?
— |t doesn’t matter for decision trees or naive Bayes.
* They only look at one feature at a time.

— |t doesn’t matter for least squares:
* w;*(100 mL) gives the same model as w;*(0.1 L) with a different w;.



Features with Different Scales

e Consider continuous features with different scales:

Egg (#) Milk (mL) Pasta
(cups)
250 0 1

0

1 250 200 1
0 0 0 0.5
2 250 150 0

* Should we convert to some standard ‘unit’?
— |t matters for k-nearest neighbours:
* “Distance” will be affected more by large features than small features.

— |t matters for regularized least squares:
* Penalizing (wj)2 means different things if features ‘j’ are on different scales.



Standardizing Features .-
e |tis common to standardize continuous features: - v
— For each feature: T CO/M,ZM Z\

1. Compute mean and standard deviation:
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— Now changes in ‘w;" have similar effect for any feature ‘j'.

* How should we standardize test data?
— Wrong approach: use mean and standard deviation of test data.
— Training and test mean and standard deviation might be very different.
— Right approach: use mean and standard deviation of training data.



Standardizing Features .-
* |tis common to standardize continuous features: - Vo
— For each feature: T CO,WZ,,\ Z.\

1. Compute mean and standard deviation:
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— Now changes in ‘w;" have similar effect for any feature ‘j'.

* If we're doing 10-fold cross-validation:
— Compute the ; and o; based on the 9 training folds.
— Standardize the remaining (“validation”) fold with this “training” p; and o,.
— Re-standardize for different folds.



Standardizing Target

In regression, we sometimes standardize the targets y..
— Puts targets on the same standard scale as standardized features:

Rer,la(e Yi wiTh /_l_:__’___oty

%

With standardized target, setting w = 0 predicts average y;:
— High regularization makes us predict closer to the average value.

Again, make sure you standardize test data with the training stats.
Other common transformations of y, are logarithm/exponent:

Use logly) o exp(Ty)

— Makes sense for geometric/exponential processes.



Regularizing the Y-Intercept?

Should we regularize the y-intercept?

No! Why encourage it to be closer to zero (it could be anywhere)?
— You should be allowed to shift function up/down globally.

Yes! It makes the solution unique and it easier to compute ‘w’.

Compromise: regularize by a smaller amount than other variables.



(pause)



Parametric vs. Non-Parametric Transforms

 We’'ve been using linear models with polynomial bases:
yc':wo!v-l-w"/ *W}U' 4"’"3! i,+W%I§§’

* But polynomials are not the only possible bases:

— Exponentials, logarithms, trigonometric functions, etc.

— The right basis will vastly improve performance.

— If we use the wrong basis, our accuracy is limited even with lots of data.
— But the right basis may not be obvious.



Parametric vs. Non-Parametric Transforms

 We’'ve been using linear models with polynomial bases:
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* Alternative is non-parametric bases:
— Size of basis (number of features) grows with n’.
— Model gets more complicated as you get more data.

— Can model complicated functions where you don’t know the right basis.
* With enough data.

— Classic example is “Gaussian RBFs”.



Gaussian RBFs: A Sum of “bumps”
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e Gaussian RBFs are universal approximators (compact subets of RY)
— Enough bumps can approximate any continuous function to arbitrary precision.
— Achieve optimal test error as ‘n’ goes to infinity.



Gaussian RBFs: A Sum of “Bumps”
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e Constructing a function from bumps: Trom data
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* Bonus slides: challenges of “far from data” (and future) predlctlons



Gaussian RBF Parameters

 Some obvious questions:

1. How many bumps should we use?

2. Where should the bumps be centered?

3. How high should the bumps go? \MM
4. How wide should the bumps be?

* The usual answers:

We use ‘n” bumps (non-parametric basis).

Each bump is centered on one training example x..

Fitting regression weights ‘w’ gives us the heights (and signs).

= w N

The width is a hyper-parameter (narrow bumps == complicated model).



Gaussian RBFs: Formal Details

 What is a radial basis functions (RBFs)?
— A set of non-parametric bases that depend on distances to training points.

r

chlﬂ(e X’:

— Most common ‘g

| -

\

n

-~
d

()

by 2=

is Gaussian RBF:

Y U5 1)
9(6): C)(r(‘—:l—i;) )

a—

Co(lsnll) glerl) - - - (j(/br, -l
9(“)([)(//7 Q(NXJ'X&/D”” 3(”,{2")(,\”)

f T /
L 9(I'xn'y.l/) (j(’,)(,,‘yq/)) 9(")(,\")(.,,//)

X2 1 |}

!

—

. . . “,. . ” = }
 Variance o? is a hyper-parameter controlling “width”. AT X
— This affects fundamental trade-off (set it using a validation set).



Gaussian RBFs: Formal Details

 What is a radial basis functions (RBFs)?

— A set of non-parametric bases that depend on distances to training points.
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Gaussian RBFs: Pseudo-Code
Im uf} Jcﬂtd\ i)( 7/? om 1’17 e Paloapng Trs {j
VZ* ZCros (n)n) f /p { ﬂf

{)f llm ln
]ror 2 n /"n
AR SR €x/)( norm(XLib 1= XC2:0)2 ) 7,57)
v=(2"2+11)" 2y

W)H\ fe;?‘ Jn )( Form Z l?ﬂSfll on Jﬂl‘“"’@ 7L0 7Lf“V’VK/ 510M/)pf
(e dic ?’ Z\/



Non-Parametric Basis: RBFs

Least squares with Gaussian RBFs for different o values:
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(pause)



RBFs and Regularization

* Radial basis functions (RBFs):

— Basis functions that depend on distances to training points:
N
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— Flexible bases that can model any continuous function.

— But with ‘n” data points RBFs have ‘n’ basis functions.

* How do we avoid overfitting with this huge number of features?

— We regularize ‘w’ and use validation error to choose o and A.



RBFs, Regularization, and Validation

e A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error!
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RBFs, Regularization, and Validation

e A model that is hard to beat:

— RBF basis with L2-regularization and cross-validation to choose o and A.
— Flexible non-parametric basis, magic of regularization, and tuning for test error!

RBF Basis (sigma = 0.500000)

RBF Basis (sigma = 2.000000)

— Can add bias or linear/poly basis to do better away from data.
— Expensive at test time: needs distance to all training examples.
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Hyper-Parameter Optimization

In this setting we have 2 hyper-parameters (o and A).
More complicated models have even more hyper-parameters.

— This makes searching all values expensive (increases over-fitting risk).

Leads to the problem of hyper-parameter optimization.
— Try to efficiently find “best” hyper-parameters.

Simplest approaches:
— Exhaustive search: try all combinations among a fixed set of o and A values.
— Random search: try random values.



Hyper-Parameter Optimization

 Other common hyper-parameter optimization methods:

— Exhaustive search with pruning:
* Ifit “looks” like test error is getting worse as you decrease A, stop decreasing it.

— Coordinate search:
* Optimize one hyper-parameter at a time, keeping the others fixed.
* Repeatedly go through the hyper-parameters

— Stochastic local search:
* Generic global optimization methods (simulated annealing, genetic algorithms, etc.).

— Bayesian optimization (Mike’s PhD research topic):
* Use regression to build model of how hyper-parameters affect validation error.
* Try the best guess based on the model.



(pause)



Previously: Search and Score

We talked about search and score for feature selection:
— Define a “score” and “search” for features with the best score.

Usual scores count the number of non-zeroes (“LO-norm”):
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But it’s hard to find the ‘W’ minimizing this objective.

We discussed forward selection, but requires fitting O(d?) models.
— For robust regression, need to run gradient descent O(d?) times.
— With regularization, need to search for lambda O(d?) times.



L1-Regularization

Consider regularizing by the L1-norm:
F)= L= 112+ Al

Like L2-norm, it’s convex and improves our test error.
Like LO-norm, it encourages elements of ‘w’ to be exactly zero.

L1-regularization simultaneously regularizes and selects features.
— Very fast alternative to search and score.
— Sometimes called “LASSO” regularization.



Regularizers and Sparsity

L1-regularization give sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

Consider problem where 3 vectors can get minimum training error:

(00 r
1— (100 3_ (9999
00.2] w . D w 0.62

Without regularization, we could choose any of these 3.
— They all have same error, so regularization will “break tie”.

With LO-regularization, we would choose w?:

(W1l = 2 [ ], = | I’ [l =2



Regularizers and Sparsity

L1-regularization give sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

Consider problem where 3 vectors can get minimum training error:

AR R
With L2-regularization, we would choose w?:
W=t s00r AP =por+0r W= 99997 +0.02%
= |0000- 0poH = |0000 = 9115.006T

L2-regularization focuses on decreasing largest (makes w; similar).



Regularizers and Sparsity

L1-regularization give sparsity but L2-regularization doesn’t.
— But don’t they both shrink variables to zero?

Consider problem where 3 vectors can get minimum training error:

(00
2= (100 3- 9999
002] W [ 0 ] w 0.62
With L1-regularization, we would choose w?:

W ih=100+002 Wil =1w+p  IGlh= 9999 +0.0;
~100.02 = IOO = 100. 0|

L1-regularization focuses on decreasing all w; until they are 0.



Sparsity and Least Squares

* Consider 1D least squares objective:
N
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* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):
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* This variable does not look relevant (minimum is close to 0). (bonug)

— But for finite ‘n” the minimum is unlikely to be exactly zero.




Sparsity and LO-Regularization

* Consider 1D LO-regularized least squares objective:
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* This is a convex 1D quadratic function but with a discontinuity at O: )
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e LO-regularized minimum is often exactly at the ‘discontinuity’ at O:
— Sets the feature to exactly O (does feature selection), but is non-convex.



Sparsity and L2-Regularization

* Consider 1D L2-regularized least squares objective:

<"\(w>3 ’|j gn'(w X = ‘/'.)Z + %WQ

* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola): £(.)
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* L2-regularization moves it closer to zero, but not all the way to zero.
— It doesn’t do feature selection (“penalty goes to O as slope goes to 0”).=" F(07=0
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Sparsity and L1-Regularization

* Consider 1D L1-regularized least squares objective:
=15 )%
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* This is a convex piecwise-quadratic function of ‘w’ with ‘kink” at O: F()
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* L1-regularization tends to set variables to exactly 0 (feature selectlon)
— Penalty on slope is A even if you are close to zero.
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L2-Regularization vs. L1-Regularization

 Regularization path of w; values as ‘A’ varies:

Regularization Path Regularization Path
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* Bonus slides: details on why only L1-regularization gives sparsity.



L2-Regularization vs. L1-Regularization

* L2-Regularization: * L1-Regularization:
— Insensitive to changes in data. — Insensitive to changes in data.
— Decreased variance: — Decreased variance:
* Lower test error. * Lower test error.
— Closed-form solution. — Requires iterative solver.
— Solution is unique. — Solution is not unique.
— All ‘w’ tend to be non-zero. — Many ‘w’ tend to be zero.
— Can learn with linear number of — Can learn with exponential number
irrelevant features. of irrelevant features.
e E.g., only O(d) relevant features. * E.g., only O(log(d)) relevant features.

Paper on this result by Andrew Ng



http://www.andrewng.org/portfolio/feature-selection-l1-vs-l2-regularization-and-rotational-invariance/

L1-loss vs. L1-regularization

 Don’t confuse the L1 loss with L1-regularization!
— L1-loss is robust to outlier data points.
e You can use instead of removing outliers.

— L1-regularization is robust to irrelevant features.
* You can use instead of removing features.

* And note that you can be robust to outliers and select features:

‘F(W?z (’Yw—\/“, -+ N/w//,

* Why aren’t we smoothing and using “Huber regularization”?
— Huber regularizer is still robust to irrelevant features.
— But it’s the non-smoothness that sets weights to exactly 0.

* And gradient descent doesn’t work well for solving L1-regularization problems.

38



Summary

Standardizing features:

— For some models it makes sense to have features on the same scale.
Radial basis functions:

— Non-parametric bases that can model any function.

L1-regularization:

— Simultaneous regularization and feature selection.
— Robust to having lots of irrelevant features.

Next time: are we really going to use regression for classification?



Why doesn’t L2-Regularization set variables to 0?

* Consider an L2-regularized Igeast squares problem with 1 feature:
f ) =52 Cwim )™ + 200

* Let’s solve for the optimal ‘w’:
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* So as A gets bigger, ‘w’ converges to 0.
* However, for all finite A ‘w’ will be non-zero unless y'x = 0.

— But it’s very unlikely that y'x will be exactly zero.



Why doesn’t L2-Regularization set variables to 0?

. Small A Big A

e Solution further from zero Solution closer to zero
(but not exactly 0)



Why does L1-Regularization set things to 0?

* Consider an L1-regularized least squares problem with 1 feature:
’F(‘”): % é‘ (WX','y.')Z + 1 W’
e If (w=0), then “left” limit and “right” limit are given by:
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Why does L1-Regularization set things to 0?

Small A Big A
‘ \
\
/ \ /
\
\ \
\ \ e
o L
\
Solution nonzero Solution exactly zero

(minimum of left parabola is past origin, but right parabola is not) (minimum of both parabola are past the origin),




L2-regularization vs. L1-regularization

* So with 1 feature:
— L2-regularization only sets ‘w’ to 0 if y'x = 0.

* There is a only a single possible y'x value where the variable gets set to zero.
* And A has nothing to do with the sparsity.

— L1-regularization sets ‘w’ to 0 if |y'x| <A.
* There is a range of possible y'x values where the variable gets set to zero.
* And increasing A increases the sparsity since the range of y'™x grows.

* Not that it’s really important that the function is non-differentiable:

— |f we used “Huber regularization”, it would select all variables.



L1-Loss vs. Huber Loss

 The same reasoning tells us the difference between the L1 *loss*
and the Huber loss. They are very similar in that they both grow
linearly far away from 0. So both are both robust but...

— With the L1 loss the model often passes exactly through some points.
— With Huber the model doesn’t necessarily pass through any points.

* Why? With L1-regularization we were causing the elements of ‘'w’
to be exactly 0. Analogously, with the L1-loss we cause the
elements of ‘r’ (the residual) to be exactly zero. But zero residual
for an example means you pass through that example exactly.



Non-Uniqueness of L1-Regularized Solution

How can L1-regularized least squares solution not be unique?
— Isn’t it convex?

Convexity implies that minimum value of f(w) is unique (if exists),
but there may be multiple ‘w’ values that achieve the minimum.

Consider L1-regularized least squares with d=2, where feature 2 is a

copy of a feature 1. For a solution (w,,w,) we have:
N
Yi = WXy WXy = \‘V, X Wy Xy = (WI+W2 >Xi|

So we can get the same squared error with different w, and w, values
that have the same sum. Further, if neither w, or w, changes sign, then
lw,| + |w,| will be the same so the new w, and w, will be a solution.



Predicting the Future

* |n principle, we can use any features x; that we think are relevant.
* This makes it tempting to use time as a feature, and predict future.
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Predicting the Future

* In principle, we can use any features x. that we think are relevant.
* This makes it tempting to use time as a feature, and predict future.
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https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg
https://overthehillsports.files.wordpress.com/2015/07/guerrouj1.jpg

Predicting 100m times 400 years in the future?
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Male 100 m Sprint Prediction

10.50

10.60

Pk
Exponential Fi
— | ogistic Fit

10.40

P e | e e T LT,
=
5
g
L . e et Limit iz 9.48
seconds, reached
in 500 years
B0 - mm e e - B
BB0 - - e e - @ T TTITTTTTm T e
9-4[' 1 1 1 1 1 1 1 1 1

0.00 28.00 B0.00 FhR.00 10000 125.00 150.00 175.00 200.00 22500 2R0.00
Yaar Since 1312



Interpolation vs Extrapolation

Interpolation is task of predicting “between the data points”.
— Regression models are good at this if you have enough data and function is smooth.

Extrapolation is task of prediction outside the range of the data points.
— Without assumptions, regression models can be embarrassingly-bad at this.

If you run the 100m regression models backwards in time:
— They predict that humans used to be really really slow!

If you run the 100m regression models forwards in time:
— They might eventually predict arbitrarily-small 100m times.

— The linear model actually predicts negative times in the future.
* These time traveling races in 2060 should be pretty exciting!

Some discussion here:
— http://callingbullshit.org/case studies/case study gender gap running.html



http://callingbullshit.org/case_studies/case_study_gender_gap_running.html

No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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Ockham’s Razor vs. No Free Lunch

 Ockham’s razor is a problem-solving principle:

— “Among competing hypotheses, the one with the
fewest assumptions should be selected.”

— Suggests we should select linear model.

 Fundamental trade-off:
— If same training error, pick model less likely to overfit.
— Formal version of Occam’s problem-solving principle.

— Also suggests we should select linear model.

e No free lunch theorem:

— There exists possible datasets where you should
select the green model.



No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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No Free Lunch, Consistency, and the Future
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Discussion: Climate Models

* Has Earth warmed up over last 100 years? (Consistency zone)
— Data clearly says “yes”.

Global Land—Ocean Temperature Index
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* Will Earth continue to warm over next 100 years? (generalization error)
— We should be more skeptical about models that predict future events.



Discussion: Climate Models

e So should we all become global warming skeptics?

* If we average over models that overfit in *independent* ways, we
expect the test error to be lower, so this gives more confidence:

Global Warming Projections
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— We should be skeptical of individual models, but agreeing predictions made by
models with different data/assumptions are more likely be true.

e All the near-future predictions agree, so they are likely to be accurate.
* Variance is higher further into future, so predictions are less reliable.
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* Process is probably continuous:
— If so, near-future predictions would be “close enough” to consistency zone.

— As we go further in the future, we enter “no free lunch” zone where
we start to need to reliable more and more on our assumptions.



Splines in 1D

* For 1D interpolation, alternative to polynomials/RBFs are splines:
— Use a polynomial in the region between each data point.
— Constrain some derivatives of the polynomials to yield a unique solution.

 Most common example is cubic spline:
— Use a degree-3 polynomial between each pair of points.
— Enforce that f’(x) and f”’(x) of polynomials agree at all point.
— “Natural” spline also enforces f”’(x) = 0 for smallest and largest x.

Approximating f{x) = x sin(2 1 x + 1) using Matural cubic splines

* Non-trivial fact: natural cubic splines are sum of:
— Y-intercept.
— Linear basis.
— RBFs with g(g) = €3.

e Different than Gaussian RBF because it increases with distance.

= Cubic spline Apprax.
= = Exact Function




Splines in Higher Dimensions

* Splines generalize to higher dimensions if data lies on a grid.
— For more general (“scattered”) data, there isn’t a natural generalization.

* Common 2D “scattered” data interpolation is thin-plate splines:
— Based on curve made when bending sheets of metal.
— Corresponds to RBFs with g(€) = €% log(g).

* Natural splines and thin-plate splines: special cases of
“polyharmonic” splines:
— Less sensitive to parameters than Gaussian RBF.




L2-Regularization vs. L1-Regularization
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L2-Regularization vs. L1-Regularization
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— Solutions tend to be at corners where W, are zero.

Related Infinite Series video



https://www.youtube.com/watch?v=ineO1tIyPfM&t=596s

