CPSC 340: Machine Learning and Data Mining

More Regularization Fall 2017

Admin

- Assignment 3:
 - Out soon, due Friday of next week.
- Midterm:
 - You can view your exam during instructor office hours or after class Friday.
 - But no instructor office hours this week (Mark is away).

Last Time: L2-Regularization

- We discussed regularization:
 - Adding a continuous penalty on the model complexity:

$$f(w) = \frac{1}{2} ||X_w - y||^2 + \frac{1}{2} ||w||^2$$

- Best parameter λ almost always leads to improved test error.
 - L2-regularized least squares is also known as "ridge regression".
 - Can be solved as a linear system like least squares.
- Numerous other benefits:
 - Solution is unique, less sensitive to data, gradient descent converges faster.

Features with Different Scales

• Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for decision trees or naïve Bayes.
 - They only look at one feature at a time.
 - It doesn't matter for least squares:
 - $w_i^*(100 \text{ mL})$ gives the same model as $w_i^*(0.1 \text{ L})$ with a different w_i .

Features with Different Scales

• Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It matters for k-nearest neighbours:
 - "Distance" will be affected more by large features than small features.
 - It matters for regularized least squares:
 - Penalizing $(w_i)^2$ means different things if features 'j' are on different scales.

Standardizing Features

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation: $M_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij} \quad \mathcal{O}_{j} = \left[\frac{1}{n} \sum_{i=1}^{n} (x_{ij} M_{j})^{2}\right]$

2. Subtract mean and divide by standard deviation ("z-score")

X=

- Now changes in ' w_i ' have similar effect for any feature 'j'.
- How should we standardize test data?
 - Wrong approach: use mean and standard deviation of test data.
 - Training and test mean and standard deviation might be very different.
 - Right approach: use mean and standard deviation of training data.

Standardizing Features

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation: $\mathcal{M}_{j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij} \qquad \mathcal{O}_{j} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} y_{j})^{2}}$
 - 2. Subtract mean and divide by standard deviation ("z-score")

X=

- Now changes in ' w_i ' have similar effect for any feature 'j'.
- If we're doing 10-fold cross-validation:
 - Compute the μ_i and σ_i based on the 9 training folds.
 - Standardize the remaining ("validation") fold with this "training" μ_i and σ_i .
 - Re-standardize for different folds.

Standardizing Target

- In regression, we sometimes standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

Replace
$$y_i$$
 with $\frac{y_i - \mu_y}{\sigma_y}$

- With standardized target, setting w = 0 predicts average y_i:
 High regularization makes us predict closer to the average value.
- Again, make sure you standardize test data with the training stats.
- Other common transformations of y_i are logarithm/exponent:

Use
$$log(y_i)$$
 or $exp(\Upsilon y_i)$

Makes sense for geometric/exponential processes.

Regularizing the Y-Intercept?

- Should we regularize the y-intercept?
- No! Why encourage it to be closer to zero (it could be anywhere)?
 You should be allowed to shift function up/down globally.
- Yes! It makes the solution unique and it easier to compute 'w'.
- Compromise: regularize by a smaller amount than other variables.

$$f(w) = \frac{1}{2} ||X_w - y||^2 + \frac{1}{2} \stackrel{e}{\underset{j=1}{\overset{j}{\overset{j=1}{\overset{j}1{\overset{j}1}{\overset{j=1}{\overset{j=1}{\overset{j}1}{\overset{j}}{\overset{$$

(pause)

Parametric vs. Non-Parametric Transforms

• We've been using linear models with polynomial bases:

$$y_i = w_0 \left[-\frac{1}{2} + w_1 \left[-\frac{1}{2} + w_2 \left[-\frac{1}{2} + w_3 \left[-\frac{1}{2} + w_4 \left[-\frac{1}{2} + w_4$$

- But polynomials are not the only possible bases:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.
 - If we use the wrong basis, our accuracy is limited even with lots of data.
 - But the right basis may not be obvious.

Parametric vs. Non-Parametric Transforms

• We've been using linear models with polynomial bases:

$$y_i = w_0 \left[-\frac{1}{2} + w_1 \left[-\frac{1}{2} + w_2 \left[-\frac{1}{2} + w_3 \left[-\frac{1}{2} + w_4 \left[-\frac{1}{2} + w_4$$

- Alternative is non-parametric bases:
 - Size of basis (number of features) grows with 'n'.
 - Model gets more complicated as you get more data.
 - Can model complicated functions where you don't know the right basis.
 - With enough data.
 - Classic example is "Gaussian RBFs".

- Gaussian RBFs are universal approximators (compact subets of \mathbb{R}^d)
 - Enough bumps can approximate any continuous function to arbitrary precision.
 - Achieve optimal test error as 'n' goes to infinity.

• Bonus slides: challenges of "far from data" (and future) predictions.

Gaussian RBF Parameters

- Some obvious questions:
 - 1. How many bumps should we use?
 - 2. Where should the bumps be centered?
 - 3. How high should the bumps go?
 - 4. How wide should the bumps be?
- The usual answers:
 - 1. We use 'n' bumps (non-parametric basis).
 - 2. Each bump is centered on one training example x_i.
 - 3. Fitting regression weights 'w' gives us the heights (and signs).
 - 4. The width is a hyper-parameter (narrow bumps == complicated model).

Gaussian RBFs: Formal Details

- What is a radial basis functions (RBFs)?
 - A set of non-parametric bases that depend on distances to training points.

Gaussian RBFs: Formal Details

- What is a radial basis functions (RBFs)?
 - A set of non-parametric bases that depend on distances to training points.

Gaussian RBFs: Pseudo-Code
Input: data
$$\{X_{n}y\}$$
 and hyper-parameters $\{A_{n}a^{2}\}$
Z = zcros (n, n)
for il in 1:n
for i2 in 1:n
 $Z[il, i2] = exp(-norm(X[il]; - X[i2]; -)^{2}/2a^{2})$
 $v = (2^{T}Z + \lambda I)^{-1}Z^{T}y$
With test data \hat{X} : form \hat{Z} based on distances to training examples
predict $\hat{y} = \hat{Z}v$

Non-Parametric Basis: RBFs

• Least squares with Gaussian RBFs for different σ values:

(pause)

RBFs and Regularization

- Radial basis functions (RBFs):
 - Basis functions that depend on distances to training points:

$$\hat{\gamma}_{i} = w_{i} \exp\left(-\frac{\|x_{i} - x_{i}\|^{2}}{2\sigma^{2}}\right) + w_{2} \exp\left(-\frac{\|x_{i} - x_{2}\|^{2}}{2\sigma^{2}}\right) + \dots + w_{h} \exp\left(-\frac{\|x_{i} - x_{n}\|^{2}}{2\sigma^{2}}\right)$$
$$= \sum_{i=1}^{n} w_{i} \exp\left(-\frac{\|x_{i} - x_{i}\|^{2}}{2\sigma^{2}}\right)$$

- Flexible bases that can model any continuous function.
- But with 'n' data points RBFs have 'n' basis functions.
- How do we avoid overfitting with this huge number of features?
 We regularize 'w' and use validation error to choose σ and λ.

RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!

for each value of
$$\lambda$$
 and Q :
- Compute Z on training data (and ω)
- Compute best V: $V = (Z^7 Z + \lambda I)^{-1} Z^7 y$
- Compute \hat{Z} on validation data (using train
- Make predictions $\hat{Y} = \hat{Z} V$
- Compute validation ervor $||\hat{Y} - \hat{Y}||^2$

RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!

- Can add bias or linear/poly basis to do better away from data.
- Expensive at test time: needs distance to all training examples.

Hyper-Parameter Optimization

- In this setting we have 2 hyper-parameters (σ and λ).
- More complicated models have even more hyper-parameters.
 - This makes searching all values expensive (increases over-fitting risk).
- Leads to the problem of hyper-parameter optimization.
 - Try to efficiently find "best" hyper-parameters.
- Simplest approaches:
 - Exhaustive search: try all combinations among a fixed set of σ and λ values.
 - Random search: try random values.

Hyper-Parameter Optimization

- Other common hyper-parameter optimization methods:
 - Exhaustive search with pruning:
 - If it "looks" like test error is getting worse as you decrease λ , stop decreasing it.
 - Coordinate search:
 - Optimize one hyper-parameter at a time, keeping the others fixed.
 - Repeatedly go through the hyper-parameters
 - Stochastic local search:
 - Generic global optimization methods (simulated annealing, genetic algorithms, etc.).
 - Bayesian optimization (Mike's PhD research topic):
 - Use regression to build model of how hyper-parameters affect validation error.
 - Try the best guess based on the model.

(pause)

Previously: Search and Score

- We talked about search and score for feature selection:
 Define a "score" and "search" for features with the best score.
- Usual scores count the number of non-zeroes ("LO-norm"): $f'(w) = \frac{1}{2} ||\chi_w - \gamma||^2 + \frac{1}{2} ||w|_0$ Number of
 non-zeroes
 in iw
- But it's hard to find the 'w' minimizing this objective.
- We discussed forward selection, but requires fitting O(d²) models.
 - For robust regression, need to run gradient descent O(d²) times.
 - With regularization, need to search for lambda $O(d^2)$ times.

L1-Regularization

• Consider regularizing by the L1-norm:

$$f(w) = \frac{1}{2} || \chi_w - y ||^2 + \lambda ||w||_1$$

- Like L2-norm, it's convex and improves our test error.
- Like LO-norm, it encourages elements of 'w' to be exactly zero.

- L1-regularization simultaneously regularizes and selects features.
 - Very fast alternative to search and score.
 - Sometimes called "LASSO" regularization.

Regularizers and Sparsity

- L1-regularization give sparsity but L2-regularization doesn't.
 - But don't they both shrink variables to zero?
- Consider problem where 3 vectors can get minimum training error:

$$W' = \begin{bmatrix} 100\\ 0.02 \end{bmatrix} \qquad W^2 = \begin{bmatrix} 100\\ 0 \end{bmatrix} \qquad W^3 = \begin{bmatrix} 99.99\\ 0.62 \end{bmatrix}$$

- Without regularization, we could choose any of these 3. — They all have same error, so regularization will "break tie".
- With LO-regularization, we would choose w²:

$$||w'||_{o} = 2$$
 $||w^{2}||_{o} = 1$ $||w^{3}||_{o} = 2$

Regularizers and Sparsity

- L1-regularization give sparsity but L2-regularization doesn't.
 But don't they both shrink variables to zero?
- Consider problem where 3 vectors can get minimum training error:

$$w' = \begin{bmatrix} 100 \\ 0.02 \end{bmatrix} \qquad w^2 = \begin{bmatrix} 100 \\ 0 \end{bmatrix} \qquad w^3 = \begin{bmatrix} 99.99 \\ 0.62 \end{bmatrix}$$

- With L2-regularization, we would choose w³: $\begin{aligned} \|w'\|^{2} = 100^{2} + 0.02^{2} \qquad \|w'\|^{2} = |00^{2} + 0^{2} \qquad \|w'\|^{2} = 99.99^{2} + 0.02^{2} \\ = |0000.0004 \qquad = |0000 \qquad = 9998.0005 \end{aligned}$
- L2-regularization focuses on decreasing largest (makes w_j similar).

Regularizers and Sparsity

- L1-regularization give sparsity but L2-regularization doesn't.
 But don't they both shrink variables to zero?
- Consider problem where 3 vectors can get minimum training error:

$$w' = \begin{bmatrix} 100\\ 0.02 \end{bmatrix} \qquad w^2 = \begin{bmatrix} 100\\ 0 \end{bmatrix} \qquad w^3 = \begin{bmatrix} 99.99\\ 0.62 \end{bmatrix}$$

• With L1-regularization, we would choose w²:

$$\frac{||w'||_{1} = |00 + 0.02}{= 100.02} \qquad \frac{||w^{2}||_{1} = |00 + 0.02}{= |00} \qquad \frac{||w^{3}||_{1} = 99.99 + 0.02}{= 100.01}$$

• L1-regularization focuses on decreasing all w_j until they are 0.

Sparsity and Least Squares

• Consider 1D least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola):

f'(0) = 0 f'(0) = 0 f'(0) = 0 f'(0) = 0 f'(0) = 0f'(0) = 0

(bonus)

- This variable does not look relevant (minimum is close to 0).
 - But for finite 'n' the minimum is unlikely to be exactly zero.

Sparsity and LO-Regularization

• Consider 1D LO-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{2} (w x_i - y_i)^2 + \lambda ||w||_0 \qquad \forall i \neq w \neq 0$$

ィン

• This is a convex 1D quadratic function but with a discontinuity at 0:

L0-regularized minimum is often exactly at the 'discontinuity' at 0:
 – Sets the feature to exactly 0 (does feature selection), but is non-convex.

Sparsity and L2-Regularization

• Consider 1D L2-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 + \frac{1}{2} w^2$$

• This is a convex 1D quadratic function of 'w' (i.e., a parabola): f(v)

L2-regularization moves it closer to zero, but not all the way to zero.
 It doesn't do feature selection ("penalty goes to 0 as slope goes to 0"). f'(0)=0

Sparsity and L1-Regularization

• Consider 1D L1-regularized least squares objective:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 + \lambda |w|$$

• This is a convex piecwise-quadratic function of 'w' with 'kink' at 0: $\frac{1}{4}$

L2-Regularization vs. L1-Regularization

• Regularization path of w_i values as ' λ ' varies:

• Bonus slides: details on why only L1-regularization gives sparsity.
L2-Regularization vs. L1-Regularization

- L2-Regularization:
 - Insensitive to changes in data.
 - Decreased variance:
 - Lower test error.
 - Closed-form solution.
 - Solution is unique.
 - All 'w' tend to be non-zero.
 - Can learn with *linear* number of irrelevant features.
 - E.g., only O(d) relevant features.

- L1-Regularization:
 - Insensitive to changes in data.
 - Decreased variance:
 - Lower test error.
 - Requires iterative solver.
 - Solution is not unique.
 - Many 'w' tend to be zero.
 - Can learn with **exponential** number of irrelevant features.
 - E.g., only O(log(d)) relevant features. Paper on this result by Andrew Ng

L1-loss vs. L1-regularization

- Don't confuse the L1 loss with L1-regularization!
 - L1-loss is robust to outlier data points.
 - You can use instead of removing outliers.
 - L1-regularization is robust to irrelevant features.
 - You can use instead of removing features.
- And note that you can be robust to outliers and select features:

$$f(w) = || \chi_w - \gamma ||_1 + \lambda ||_w ||_1$$

- Why aren't we smoothing and using "Huber regularization"?
 - Huber regularizer is still robust to irrelevant features.
 - But it's the non-smoothness that sets weights to exactly 0.
 - And gradient descent doesn't work well for solving L1-regularization problems.

Summary

- Standardizing features:
 - For some models it makes sense to have features on the same scale.
- Radial basis functions:
 - Non-parametric bases that can model any function.
- L1-regularization:
 - Simultaneous regularization and feature selection.
 - Robust to having lots of irrelevant features.
- Next time: are we really going to use regression for classification?

Why doesn't L2-Regularization set variables to 0?

n

- Consider an L2-regularized least squares problem with 1 feature: $f(w) = \frac{1}{2} \sum_{j=1}^{2} (wx_i - y_j)^2 + \frac{1}{2} w^2$
- Let's solve for the optimal 'w':

$$f'(w) = \sum_{i=1}^{r} x_i (wx_i - y_i) + 1w$$

$$\int e^{-\alpha r (wrele}{y_i} - y_i) + 1w$$

$$\int e^{-\alpha r (wrele}{y_i} - y_i) + 1w = 0$$

$$\int w(\sum_{i=1}^{r} x_i^2 + 1) = \sum_{i=1}^{r} x_i y_i$$

$$\int ||x_i||^2 + 1$$

$$\int w = \frac{y^2 x_i}{||x_i||^2 + 1}$$

- So as λ gets bigger, 'w' converges to 0.
- However, for all finite λ 'w' will be non-zero unless $y^T x = 0$.
 - But it's very unlikely that y^Tx will be exactly zero.

Why doesn't L2-Regularization set variables to 0?

• Small λ

• Solution further from zero

Big λ

Solution closer to zero (but not exactly 0)

Why does L1-Regularization set things to 0?

- Consider an L1-regularized least squares problem with 1 feature: $f(w) = \frac{1}{2} \sum_{i=1}^{2} (wx_i - y_i)^2 + \lambda |w|$
- If (w = 0), then "left" limit and "right" limit are given by:

$$f^{-}(0) = \sum_{i=1}^{n} x_i (0x_i - y_i) - \lambda \qquad f^{+}(0) = \sum_{i=1}^{n} x_i (0x_i - y_i) + \lambda \\ = \sum_{i=1}^{n} x_i y_i - \lambda \qquad = \sum_{i=1}^{n} x_i y_i + \lambda$$

• So what should gradient descent do if (w=0)?

Why does L1-Regularization set things to 0?

• Small λ

Solution nonzero

(minimum of left parabola is past origin, but right parabola is not)

Big λ

Solution exactly zero

(minimum of both parabola are past the origin).

L2-regularization vs. L1-regularization

- So with 1 feature:
 - L2-regularization only sets 'w' to 0 if $y^T x = 0$.
 - There is a only a single possible y^Tx value where the variable gets set to zero.
 - And λ has nothing to do with the sparsity.
 - L1-regularization sets 'w' to 0 if $|y^Tx| \le \lambda$.
 - There is a range of possible y^Tx values where the variable gets set to zero.
 - And increasing λ increases the sparsity since the range of $y^T x$ grows.

L1-Loss vs. Huber Loss

- The same reasoning tells us the difference between the L1 *loss* and the Huber loss. They are very similar in that they both grow linearly far away from 0. So both are both robust but...
 - With the L1 loss the model often passes exactly through some points.
 - With Huber the model doesn't necessarily pass through any points.

Why? With L1-regularization we were causing the elements of 'w' to be exactly 0. Analogously, with the L1-loss we cause the elements of 'r' (the residual) to be exactly zero. But zero residual for an example means you pass through that example exactly.

Non-Uniqueness of L1-Regularized Solution

- How can L1-regularized least squares solution not be unique?
 Isn't it convex?
- Convexity implies that minimum value of f(w) is unique (if exists), but there may be multiple 'w' values that achieve the minimum.
- Consider L1-regularized least squares with d=2, where feature 2 is a copy of a feature 1. For a solution (w_1, w_2) we have: $\hat{y}_i = w_i x_{i_1} + w_2 x_{i_2} = w_i x_{i_1} + w_2 x_{i_1} = (w_1 + w_2) x_{i_1}$
- So we can get the same squared error with different w_1 and w_2 values that have the same sum. Further, if neither w_1 or w_2 changes sign, then $|w_1| + |w_2|$ will be the same so the new w_1 and w_2 will be a solution.

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/

Predicting 100m times 400 years in the future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif

Predicting 100m times 400 years in the future?

http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/

Interpolation vs Extrapolation

- Interpolation is task of predicting "between the data points".
 - Regression models are good at this if you have enough data and function is smooth.
- Extrapolation is task of prediction outside the range of the data points.
 - Without assumptions, regression models can be embarrassingly-bad at this.
- If you run the 100m regression models backwards in time:
 - They predict that humans used to be really really slow!
- If you run the 100m regression models forwards in time:
 - They might eventually predict arbitrarily-small 100m times.
 - The linear model actually predicts negative times in the future.
 - These time traveling races in 2060 should be pretty exciting!
- Some discussion here:
 - <u>http://callingbullshit.org/case_studies/case_study_gender_gap_running.html</u>

Ockham's Razor vs. No Free Lunch

- Ockham's razor is a problem-solving principle:
 - "Among competing hypotheses, the one with the fewest assumptions should be selected."
 - Suggests we should select linear model.
- Fundamental trade-off:
 - If same training error, pick model less likely to overfit.
 - Formal version of Occam's problem-solving principle.
 - Also suggests we should select linear model.
- No free lunch theorem:
 - There *exists possible datasets* where you should select the green model.

Discussion: Climate Models

- Has Earth warmed up over last 100 years? (Consistency zone)
 - Data clearly says "yes".

Will Earth continue to warm over next 100 years? (generalization error)
 We should be more skeptical about models that predict future events.

Discussion: Climate Models

- So should we all become global warming skeptics?
- If we average over models that overfit in *independent* ways, we expect the test error to be lower, so this gives more confidence:

- We should be skeptical of individual models, but agreeing predictions made by models with different data/assumptions are more likely be true.
- All the near-future predictions agree, so they are likely to be accurate.
- Variance is higher further into future, so predictions are less reliable.

Discussion: Climate Models

- So should we all become global warming skeptics?
- If we average over models that overfit in *independent* ways, we expect the test error to be lower, so this gives more confidence:

- Process is probably continuous:
 - If so, near-future predictions would be "close enough" to consistency zone.
 - As we go further in the future, we enter "no free lunch" zone where we start to need to reliable more and more on our assumptions.

Splines in 1D

- For 1D interpolation, alternative to polynomials/RBFs are splines:
 - Use a polynomial in the region between each data point.
 - Constrain some derivatives of the polynomials to yield a unique solution.
- Most common example is cubic spline:
 - Use a degree-3 polynomial between each pair of points.
 - Enforce that f'(x) and f''(x) of polynomials agree at all point.
 - "Natural" spline also enforces f''(x) = 0 for smallest and largest x.
- Non-trivial fact: natural cubic splines are sum of:
 - Y-intercept.
 - Linear basis.
 - RBFs with $g(\varepsilon) = \varepsilon^3$.
 - Different than Gaussian RBF because it increases with distance.

Splines in Higher Dimensions

- Splines generalize to higher dimensions if data lies on a grid.
 For more general ("scattered") data, there isn't a natural generalization.
- Common 2D "scattered" data interpolation is thin-plate splines:
 - Based on curve made when bending sheets of metal.
 - Corresponds to RBFs with $g(\varepsilon) = \varepsilon^2 \log(\varepsilon)$.
- Natural splines and thin-plate splines: special cases of "polyharmonic" splines:
 - Less sensitive to parameters than Gaussian RBF.

L2-Regularization vs. L1-Regularization

• L2-regularization conceptually restricts 'w' to a ball.

Minimizing
$$\frac{1}{2} ||Xw - y||^2 + \frac{3}{2} ||w||^2$$

is equivalent to minimizing
 $\frac{1}{2} ||Xw - y||^2$ subject to
the constraint that $||w|| \leq \gamma$
for some value '7'

L2-Regularization vs. L1-Regularization

• L2-regularization conceptually restricts 'w' to a ball.

- L1-regularization restricts to the L1 "ball":
 - Solutions tend to be at corners where w_i are zero.