CPSC 340: Machine Learning and Data Mining

Regularization
Fall 2017
Admin

• **Assignment 2**
 – 2 late days to hand in tonight, answers posted tomorrow morning.

• **Extra office hours**
 – Thursday at 4pm (ICICS 246).

• **Midterm details:**
 – Friday in class, details on Piazza.
Last Time: Feature Selection

• Last time we discussed **feature selection**:
 – Choosing set of “relevant” features.

\[
X = \left[\left. \begin{array}{c} \cdots \end{array} \right| \begin{array}{c} \cdots \end{array} \right] \quad y = \left[\begin{array}{c} \cdots \end{array} \right]
\]

• Most common approach is **search and score**:
 – Define “score” and “search” for features with best score.

• But it’s **hard to define the “score” and it’s hard to “search”**.
 – So we often use greedy methods like **forward selection**.

• Methods work ok on “toy” data, but are **frustrating on real data**...
Is “Relevance” Clearly Defined?

• Consider a supervised classification task:

<table>
<thead>
<tr>
<th>gender</th>
<th>mom</th>
<th>dad</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Predict whether someone has particular genetic variation (SNP).
 – Location of mutation is in “mitochondrial” DNA.
 • “You almost always have the same value as your mom”.

- Location of mutation is in “mitochondrial” DNA.
Is “Relevance” Clearly Defined?

• Consider a supervised classification task:

<table>
<thead>
<tr>
<th>gender</th>
<th>mom</th>
<th>dad</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• True model:
 – (SNP = mom) with very high probability.
 – (SNP != mom) with some very low probability.

• What are the “relevant” features for this problem?
 – Mom is relevant and {gender, dad} are not relevant.
Is “Relevance” Clearly Defined?

• What if “mom” feature is repeated?
 – If features can be predicted from features, don’t know one(s) to pick.
 – Should we pick both?
 – Should we pick one because it predicts the other?

• Are “mom” and “mom2” relevant?
 – Should we pick both?
 – Should we pick one because it predicts the other?

• General problem (“dependence”, “collinearity” for linear models):
 – If features can be predicted from features, don’t know one(s) to pick.

<table>
<thead>
<tr>
<th>gender</th>
<th>mom</th>
<th>dad</th>
<th>mom2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Is “Relevance” Clearly Defined?

• What if we add “grandma”?
 – You can predict SNP very accurately from “grandma” alone.
 – But “grandma” is irrelevant if I know “mom”.

• General problem (conditional independence):
 – “Relevant” features may be irrelevant given other features.

<table>
<thead>
<tr>
<th>gender</th>
<th>mom</th>
<th>dad</th>
<th>grandma</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Is “Relevance” Clearly Defined?

• What if we don’t know “mom”?

 – Without “mom” variable, using “grandma” is the best you can do.

• Now is “grandma” is relevant?

 – Without “mom” variable, using “grandma” is the best you can do.

• General problem (“taco Tuesday”):

 – Features can be relevant due to missing information.
Is “Relevance” Clearly Defined?

- What if we don’t know “mom” or “grandma”?
 - Now there are no relevant variables, right?
 - But “dad” and “mom” must have some common maternal ancestor.
 - “Mitochondrial Eve” estimated to be ~200,000 years ago.

- General problem (effect size):
 - “Relevant” features may have small effects.

<table>
<thead>
<tr>
<th>gender</th>
<th>dad</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Is “Relevance” Clearly Defined?

• What if we don’t know “mom” or “grandma”?
 – What if “mom” likes “dad” because he has the same SNP as her?

• Now there are no relevant variables, right?
 – What if “mom” likes “dad” because he has the same SNP as her?

• General problem (confounding):
 – Hidden effects can make “irrelevant” variables “relevant”.

<table>
<thead>
<tr>
<th>gender</th>
<th>dad</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Is “Relevance” Clearly Defined?

• What if we add “sibling”?

<table>
<thead>
<tr>
<th>gender</th>
<th>dad</th>
<th>sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Sibling is “relevant” for predicting SNP, but it’s not the cause.

• General problem (non-causality or reverse causality):
 – A “relevant” feature may not be causal, or may be an effect of label.
Is “Relevance” Clearly Defined?

• What if don’t have “mom” but we have “baby”?
 – “Baby” is relevant when (gender == F).
 – “Baby” is relevant (though causality is reversed).
 – Is “gender” relevant?
 • If we want to find relevant causal factors, “gender” is not relevant.
 • If we want to predict SNP, “gender” is relevant.

• General problem (context-specific relevance):
 – Adding a feature can make an “irrelevant” feature “relevant”.

<table>
<thead>
<tr>
<th>gender</th>
<th>dad</th>
<th>baby</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Is “Relevance” Clearly Defined?

• Warnings about feature selection:
 – A feature is only “relevant” in the context of available features.
 • Adding/removing features can make features relevant/irrelevant.
 – Confounding factors can make “irrelevant” variables the most “relevant”.
 – If features can be predicted from features, you can’t know which to pick.
 • Collinearity is a special case of “dependence” (which may be non-linear).
 – A “relevant” feature may have a tiny effect.
 – “Relevance” for prediction does not imply a causal relationship.
Is this hopeless?

- We often want to do feature selection we so have to try!

- Different methods are affected by problems in different ways.
 - We’ll ignore causality and confounding issues (bonus slides).

- These “problems” don’t have right answers but have wrong answers:
 - Variable dependence (“mom” and “mom2” have same information).
 - Conditional independence (“grandma” is irrelevant given “mom”).

- These “problems” have application-specific answers:
 - Tiny effects.
 - Context-specific relevance (is “gender” relevant if given “baby”?).
Rough Guide to Feature Selection

<table>
<thead>
<tr>
<th>Method\Issue</th>
<th>Dependence</th>
<th>Conditional Independence</th>
<th>Tiny effects</th>
<th>Context-Specific Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association (e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>Ok (takes “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
</tbody>
</table>
Rough Guide to Feature Selection

<table>
<thead>
<tr>
<th>Method\Issue</th>
<th>Dependence</th>
<th>Conditional Independence</th>
<th>Tiny effects</th>
<th>Context-Specific Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association (e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>Ok (takes “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
<tr>
<td>Regression Weight (fit least squares, take biggest</td>
<td>Bad (can take irrelevant but collinear, can take none of “mom1-3”)</td>
<td>Ok (takes “mom” not “grandma”, if linear and ‘n’ large.</td>
<td>Ignores (unless collinear)</td>
<td>Ok (if linear, “gender” relevant give “baby”)</td>
</tr>
</tbody>
</table>
Rough Guide to Feature Selection

<table>
<thead>
<tr>
<th>Method\Issue</th>
<th>Dependence</th>
<th>Conditional Independence</th>
<th>Tiny effects</th>
<th>Context-Specific Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association (e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>Ok</td>
<td>Bad</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
<tr>
<td>(takes “mom” and “mom2”)</td>
<td></td>
<td>(takes “grandma”, “great-grandma”, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression Weight (fit least squares, take biggest</td>
<td>w_j</td>
<td>)</td>
<td>Bad</td>
<td>Ok</td>
</tr>
<tr>
<td>(can take irrelevant but collinear, can take none of “mom1-3”)</td>
<td></td>
<td>(takes “mom” not “grandma”, if linear and ‘n’ large.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search and Score w/ Validation Error</td>
<td>Ok</td>
<td>Bad</td>
<td>Allows</td>
<td>Ok (“gender” relevant given “baby”)</td>
</tr>
<tr>
<td>(takes at least one of “mom” and “mom2”)</td>
<td></td>
<td>(takes “grandma”, “great-grandma”, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method\Issue</td>
<td>Dependence</td>
<td>Conditional Independence</td>
<td>Tiny effects</td>
<td>Context-Specific Relevance</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Association (e.g., measure correlation between features ‘j’ and ‘y’)</td>
<td>Ok (takes “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Ignores</td>
<td>Bad (misses features that must interact, “gender” irrelevant given “baby”)</td>
</tr>
<tr>
<td>Regression Weight (fit least squares, take biggest</td>
<td>Bad (can take irrelevant but collinear, can take none of “mom1-3”)</td>
<td>Ok (takes “mom” not “grandma”, if linear and ‘n’ large.</td>
<td>Ignores (unless collinear)</td>
<td>Ok (if linear, “gender” relevant given “baby”)</td>
</tr>
<tr>
<td>Search and Score w/ Validation Error</td>
<td>Ok (takes at least one of “mom” and “mom2”)</td>
<td>Bad (takes “grandma”, “great-grandma”, etc.)</td>
<td>Allows (many false positives)</td>
<td>Ok (“gender” relevant given “baby”)</td>
</tr>
<tr>
<td>Search and Score w/ L0-norm</td>
<td>Ok (takes exactly one of “mom” and “mom2”)</td>
<td>Ok (takes “mom” not grand if linear-ish).</td>
<td>Ignores (even if collinear)</td>
<td>Ok (“gender” relevant given “baby”)</td>
</tr>
</tbody>
</table>
(pause)
Recall: Polynomial Degree and Training vs. Testing

• We’ve said that complicated models tend to overfit more.

• But what if we need a complicated model?
Controlling Complexity

• Usually “true” mapping from x_i to y_i is complex.
 – Might need high-degree polynomial.
 – Might need to combine many features, and don’t know “relevant” ones.

• But complex models can overfit.

• So what do we do???

• Our main tools:
 – Model averaging: average over multiple models to decrease variance.
 – Regularization: add a penalty on the complexity of the model.
Would you rather?

• Consider the following dataset and 3 linear regression models:

• Which line should we choose?
Would you rather?

• Consider the following dataset and 3 linear regression models:

• What if you are forced to choose between red and green?
 – For example, if you used blue with other features it gets a higher error.

• Key idea of regularization:
 – Red line is much more sensitive to this feature, we should pick green.
 – If we don’t get the slope right, red line causes more harm than green.
The regression weights w_j with degree-7 are huge in this example.

The degree-7 polynomial would be less sensitive to the data, if we “regularized” the w_j so that they are small:

$$\hat{y}_i = 0.0001(x_i)^7 + 0.03(x_i)^3 + 3 \quad \text{vs.} \quad \hat{y}_i = 1000(x_i)^7 - 500(x_i)^6 + 890x_i$$
L2-Regularization

• Standard regularization strategy is L2-regularization:

\[f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} w_j^2 \quad \text{or} \quad f(w) = \frac{1}{2} \| Xw - y \|^2 + \frac{\lambda}{2} \| w \|^2 \]

• Intuition: large slopes \(w_j \) tend to lead to overfitting.

• So we minimize squared error plus penalty on L2-norm of ‘\(w \)’.

 – This objective balances getting low error vs. having small slopes ‘\(w_j \)’.

 • “You can increase the training error if it makes ‘\(w \)’ much smaller.”
 • Nearly-always reduces overfitting.

 – Regularization parameter \(\lambda > 0 \) controls “strength” of regularization.

 • Large \(\lambda \) puts large penalty on slopes.
L2-Regularization

• Standard **regularization** strategy is **L2-regularization**:

\[
f (w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} w_j^2 \text{ or } f (w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2
\]

• In terms of fundamental trade-off:
 – Regularization **increases training error**.
 – Regularization **decreases approximation error**.

• How should you choose \(\lambda \)?
 – Theory: as ‘n’ grows \(\lambda \) should be in the range \(O(1) \) to \((n^{1/2}) \).
 – Practice: optimize **validation set** or **cross-validation** error.
 • This **almost always decreases** the test error.
Regularization Path

• **Regularization path** is a plot of the optimal weights \(w_j \) as \(\lambda \) varies:

 - Starts with least squares with \(\lambda = 0 \), and \(w_j \) converge to 0 as \(\lambda \) grows.
L2-regularization and the normal equations

• When using L2-regularization we can still set $\nabla f(w)$ to 0 and solve.
• Loss before: $f(w) = \|Xw - y\|^2_2$
• Loss after: $f(w) = \|Xw - y\|^2_2 + \lambda \|w\|^2_2$

• Gradient before: $\nabla f(w) = X^T X w - X^T y$
• Gradient after: $\nabla f(w) = X^T X w - X^T y + \lambda w$

• Linear system before: $X^T X w = X^T y$
• Linear system after: $(X^T X + \lambda I)w = X^T y$
• But unlike $X^T X$, the matrix $(X^T X + \lambda I)$ is always invertible:
 – Multiply by its inverse for unique solution: $w = (X^T X + \lambda I)^{-1}(X^T y)$
Why use L2-Regularization?

• It’s a weird thing to do, but Mark says “always use regularization”.
 – “Almost always decreases test error” should already convince you.

• But here are 6 more reasons:
 1. Solution ‘w’ is unique.
 2. X^TX does not need to be invertible (no collinearity issues).
 3. Less sensitive to changes in X or y.
 4. Gradient descent converge faster (bigger λ means fewer iterations).
 5. Stein’s paradox: if $d \geq 3$, ‘shrinking’ moves us closer to ‘true’ w.
 6. Worst case: just set λ small and get the same performance.
Summary

• “Relevance” is really hard to define.
 – Different methods have different effects on what you find.

• Regularization:
 – Adding a penalty on model complexity.

• L2-regularization: penalty on L2-norm of regression weights ‘w’.
 – Almost always improves test error.
 – Simple closed-form unique solution (post-lecture slides).

• Next time: midterm.
L2-Regularization

• Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} w_j^2 \quad \text{or} \quad f(w) = \frac{1}{2} \| Xw - y \|_2^2 + \frac{\lambda}{2} \| w \|_2^2$$

• Equivalent to minimizing squared error but keeping L2-norm small.
Alternative to Search and Score: good old p-values

- **Hypothesis testing** ("constraint-based") approach:
 - Generalization of the "association" approach to feature selection.
 - Performs a sequence of **conditional independence tests**.

 \[x_i \perp y_i \mid \{x_{i_j}, \text{other features } \} \]

 "If I know features in \(\{s\} \), does feature \(j \) tell me anything about label?"

 - If they are independent (like "\(p < .05 \)"), say that \(j \) is "irrelevant".

- **Common way to do the tests**:
 - "Partial" correlation (numerical data).
 - "Conditional" mutual information (discrete data).
Testing-Based Feature Selection

• **Hypothesis testing** ("constraint-based") approach:
• Two many possible tests, "greedy" method is for each ‘j’ do:

 First test if $x_{ij} \perp y_i$

 If still dependent test $x_{ij} \perp y_i \mid x_{is}$ where ‘s’ has one feature

 If still dependent test $x_{ij} \perp y_i \mid x_{is}$ where ‘s’ now has two features dependence.

 If still dependent when ‘s’ includes all other features, declare ‘j’ relevant.

• “Association approach” is the greedy method where you **only do the first test** (subsequent tests remove a lot of false positives).
Hypothesis-Based Feature Selection

• Advantages:
 – Deals with conditional independence.
 – Algorithm can explain why it thinks ‘j’ is irrelevant.
 – Doesn’t necessarily need linearity.

• Disadvantages:
 – Deals badly with exact dependence: doesn’t select “mom” or “mom2” if both present.
 – Usual warning about testing multiple hypotheses:
 • If you test $p < 0.05$ more than 20 times, you’re going to make errors.
 – Greedy approach may be sub-optimal.

• Neither good nor bad:
 – Allows tiny effects.
 – Says “gender” is irrelevant when you know “baby”.
 – This approach is sometimes better for finding relevant factors, not to select features for learning.
Causality

• None of these approaches address **causality or confounding**:
 – “Mom” is the **only relevant causal factor**.
 – “Dad” is really irrelevant.
 – “Grandma” is causal but is irrelevant if we know “mom”.

• Other factors can **help prediction but aren’t causal**:
 • “Sibling” is predictive due to **confounding** of effect of same “mom”.
 • “Baby” is predictive due to **reverse causality**.
 • “Gender” is predictive due to **common effect** on “baby”.

• We can sometimes address this using **interventional data**...
Interventional Data

• The difference between observational and interventional data:
 – If I see that my watch says 4:45, class is almost over (observational).
 – If I set my watch to say 4:45, it doesn’t help (interventional).

• The intervention can help discover causal effects:
 – “Watch” is only predictive of “time” in observational setting (so not causal).

• General idea for identifying causal effects:
 – “Force” the variable to take a certain value, then measure the effect.
 • If the dependency remains, there is a causal effect.
 • We “break” connections from reverse causality, common effects, or confounding.
Causality and Dataset Collection

• This has to do with the way you collect data:
 – You can’t “look” for variables taking the value “after the fact”.
 – You need to manipulate the value of the variable, then watch for changes.

• This is the basis for randomized control trial in medicine:
 – Randomly assigning pills “forces” value of “treatment” variable.
 – Include a “control” as a value to prevent placebo effect as confounding.

• See also Simpson’s Paradox:
 – https://www.youtube.com/watch?v=ebEkn-BiW5k
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.

• Shrinkage of the darts:
 1. Choose some arbitrary location ‘0’.
 2. Measure distances from darts to ‘0’.
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.

• Shrinkage of the darts:
 1. Choose some arbitrary location ‘0’.
 2. Measure distances from darts to ‘0’.
 3. Move misses towards ‘0’, by small amount proportional to distance from 0.

• If small enough, darts will be closer to center on average.
Regularization/Shrinking Paradox

• We throw darts at a target:
 – Assume we don’t always hit the exact center.
 – Assume the darts follow a symmetric pattern around center.

• Shrinkage of the darts:
 1. Choose some arbitrary location ‘0’.
 2. Measure distances from darts to ‘0’.
 3. Move misses towards ‘0’, by small amount proportional to distance from 0.

• If small enough, darts will be closer to center on average.

Visualization of the related higher-dimensional paradox that the mean of data coming from a Gaussian is not the best estimate of the mean of the Gaussian in 3-dimensions or higher: https://www.naftaliharris.com/blog/steinviz