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Admin

• Assignment 2

– 2 late days to hand in tonight, answers posted tomorrow morning.

• Extra office hours

– Thursday at 4pm (ICICS 246).

• Midterm details: 

– Friday in class, details on Piazza.



Last Time: Feature Selection

• Last time we discussed feature selection:
– Choosing set of “relevant” features.

• Most common approach is search and score: 
– Define “score” and “search” for features with best score.

• But it’s hard to define the “score” and it’s hard to “search”.
– So we often use greedy methods like forward selection.

• Methods work ok on “toy” data, but are frustrating on real data…



Is “Relevance” Clearly Defined?

• Consider a supervised classification task:

• Predict whether someone has particular genetic variation (SNP).

– Location of mutation is in “mitochondrial” DNA.

• “You almost always have the same value as your mom”.

gender mom dad

F 1 0

M 0 1

F 0 0

F 1 1

SNP

1

0

0

1



Is “Relevance” Clearly Defined?

• Consider a supervised classification task:

• True model:

– (SNP = mom) with very high probability.

– (SNP != mom) with some very low probability.

• What are the “relevant” features for this problem?

– Mom is relevant and {gender, dad} are not relevant.

gender mom dad

F 1 0

M 0 1

F 0 0

F 1 1

SNP

1

0

0

1

https://en.wikipedia.org/wiki/Human_mitochondrial_genetics



Is “Relevance” Clearly Defined?

• What if “mom” feature is repeated?

• Are “mom” and “mom2” relevant?

– Should we pick them both?

– Should we pick one because it predicts the other?

• General problem (“dependence”, “collinearity” for linear models):

– If features can be predicted from features, don’t know one(s) to pick.

gender mom dad mom2

F 1 0 1

M 0 1 0

F 0 0 0

F 1 1 1

SNP

1

0

0

1



Is “Relevance” Clearly Defined?

• What if we add (maternal) “grandma”?

• Is “grandma” relevant?

– You can predict SNP very accurately from “grandma” alone.

– But “grandma” is irrelevant if I know “mom”.

• General problem (conditional independence):

– “Relevant” features may be irrelevant given other features.

gender mom dad grandma

F 1 0 1

M 0 1 0

F 0 0 0

F 1 1 1

SNP

1

0

0

1



Is “Relevance” Clearly Defined?

• What if we don’t know “mom”?

• Now is “grandma” is relevant?

– Without “mom” variable, using “grandma” is the best you can do.

• General problem (“taco Tuesday”):

– Features can be relevant due to missing information.

SNP

1

0

0

1

gender grandma dad

F 1 0

M 0 1

F 0 0

F 1 1



Is “Relevance” Clearly Defined?

• What if we don’t know “mom” or “grandma”?

• Now there are no relevant variables, right?

– But “dad” and “mom” must have some common maternal ancestor.

– “Mitochondrial Eve” estimated to be ~200,000 years ago.

• General problem (effect size):

– “Relevant” features may have small effects.

SNP

1

0

0

1

gender dad

F 0

M 1

F 0

F 1



Is “Relevance” Clearly Defined?

• What if we don’t know “mom” or “grandma”?

• Now there are no relevant variables, right?

– What if “mom” likes “dad” because he has the same SNP as her?

• General problem (confounding):

– Hidden effects can make “irrelevant” variables “relevant”.

SNP

1

0

0

1

gender dad

F 0

M 1

F 0

F 1



Is “Relevance” Clearly Defined?

• What if we add “sibling”?

• Sibling is “relevant” for predicting SNP, but it’s not the cause.

• General problem (non-causality or reverse causality):

– A “relevant” feature may not be causal, or may be an effect of label.

SNP

1

0

0

1

gender dad sibling

F 0 1

M 1 0

F 0 0

F 1 1



Is “Relevance” Clearly Defined?

• What if don’t have “mom” but we have “baby”?

• “Baby” is relevant when (gender == F).
– “Baby” is relevant (though causality is reversed).
– Is “gender” relevant?

• If we want to find relevant causal factors, “gender” is not relevant.
• If we want to predict SNP, “gender” is relevant.

• General problem (context-specific relevance):
– Adding a feature can make an “irrelevant” feature “relevant”.

SNP

1

0

0

1

gender dad baby

F 0 1

M 1 1

F 0 0

F 1 1



Is “Relevance” Clearly Defined?

• Warnings about feature selection:
– A feature is only “relevant” in the context of available features.

• Adding/removing features can make features relevant/irrelevant.

– Confounding factors can make “irrelevant” variables the most “relevant”.

– If features can be predicted from features, you can’t know which to pick.
• Collinearity is a special case of “dependence” (which may be non-linear).

– A “relevant” feature may have a tiny effect.

– “Relevance” for prediction does not imply a causal relationship.



Is this hopeless?

• We often want to do feature selection we so have to try!

• Different methods are affected by problems in different ways.
– We’ll ignore causality and confounding issues (bonus slides).

• These “problems” don’t have right answers but have wrong answers:
– Variable dependence (“mom” and “mom2” have same information).

– Conditional independence (“grandma” is irrelevant given “mom”).

• These “problems” have application-specific answers:
– Tiny effects.

– Context-specific relevance (is “gender” relevant if given “baby”?).



Rough Guide to Feature Selection
Method\Issue Dependence Conditional 

Independence
Tiny effects Context-Specific 

Relevance

Association
(e.g., measure
correlation between
features ‘j’ and ‘y’)

Ok 
(takes “mom” 
and “mom2”)

Bad
(takes “grandma”, 

“great-grandma”, etc.)

Ignores Bad
(misses features that 

must interact,
“gender” irrelevant 

given “baby”)
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Rough Guide to Feature Selection
Method\Issue Dependence Conditional 

Independence
Tiny effects Context-Specific 

Relevance

Association
(e.g., measure
correlation between
features ‘j’ and ‘y’)

Ok 
(takes “mom” 
and “mom2”)

Bad
(takes “grandma”, 

“great-grandma”, etc.)

Ignores Bad
(misses features that 

must interact,
“gender” irrelevant 

given “baby”)

Regression Weight
(fit least squares,
take biggest |wj|)

Bad
(can take irrelevant but 

collinear, can take 
none of “mom1-3”)

Ok
(takes “mom” not 

“grandma”, if linear 
and ‘n’ large.

Ignores
(unless collinear)

Ok
(if linear, “gender” 

relevant give “baby”)

Search and Score
w/ Validation Error

Ok
(takes at least one of 
“mom” and “mom2”)

Bad
(takes “grandma”, 

“great-grandma”, etc.)

Allows Ok
(“gender” relevant

given “baby”)



Rough Guide to Feature Selection

• gvhc

Method\Issue Dependence Conditional 
Independence

Tiny effects Context-Specific 
Relevance

Association
(e.g., measure
correlation between
features ‘j’ and ‘y’)

Ok 
(takes “mom” 
and “mom2”)

Bad
(takes “grandma”, 

“great-grandma”, etc.)

Ignores Bad
(misses features that 

must interact,
“gender” irrelevant 

given “baby”)

Regression Weight
(fit least squares,
take biggest |wj|)

Bad
(can take irrelevant but 

collinear, can take 
none of “mom1-3”)

Ok
(takes “mom” not 

“grandma”, if linear 
and ‘n’ large.

Ignores
(unless collinear)

Ok
(if linear, “gender” 

relevant give “baby”)

Search and Score
w/ Validation Error

Ok
(takes at least one of 
“mom” and “mom2”)

Bad
(takes “grandma”, 

“great-grandma”, etc.)

Allows
(many false positives)

Ok
(“gender” relevant

given “baby”)

Search and Score
w/ L0-norm

Ok
(takes exactly one of 
“mom” and “mom2”)

Ok
(takes “mom” not 

grandma if linear-ish).

Ignores
(even if collinear)

Ok
(“gender” relevant

given “baby”)



My advice if you want the “relevant” variables.

• Try the association approach.

• Try forward selection with different values of λ.

• Try out a few other feature selection methods too.

• Discuss the results with the domain expert.
– They probably have an idea of why some variables might be relevant.

• Don’t be overconfident:
– These methods are probably not discovering how the world truly works.

– “The model has found that these variables are helpful in predicting yi.”
• Then a warning that these models are not perfect at finding relevant variables.



(pause)



Recall: Polynomial Degree and Training vs. Testing

• We’ve said that complicated models tend to overfit more.

• But what if we need a complicated model?
http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Controlling Complexity

• Usually “true” mapping from xi to yi is complex.

– Might need high-degree polynomial.

– Might need to combine many features, and don’t know “relevant” ones.

• But complex models can overfit.

• So what do we do???

• Our main tools:

– Model averaging: average over multiple models to decrease variance.

– Regularization: add a penalty on the complexity of the model.



Would you rather?

• Consider the following dataset and 3 linear regression models:

• Which line should we choose?



Would you rather?

• Consider the following dataset and 3 linear regression models:

• What if you are forced to choose between red and green?

– For example, if you used blue with other features it gets a higher error.

• Key idea of regularization:

– Red line is much more sensitive to this feature, we should pick green.

– If we don’t get the slope right, red line causes more harm than green.



Size of Regression Weights are Overfitting

• The regression weights wj with degree-7 are huge in this example.

• The degree-7 polynomial would be less sensitive to the data,
if we “regularized” the wj so that they are small:



L2-Regularization

• Standard regularization strategy is L2-regularization:

• Intuition: large slopes wj tend to lead to overfitting.

• So we minimize squared error plus penalty on L2-norm of ‘w’.

– This objective balances getting low error vs. having small slopes ‘wj’.

• “You can increase the training error if it makes ‘w’ much smaller.”

• Nearly-always reduces overfitting.

– Regularization parameter λ > 0 controls “strength” of regularization.

• Large λ puts large penalty on slopes.



L2-Regularization

• Standard regularization strategy is L2-regularization:

• In terms of fundamental trade-off:
– Regularization increases training error.

– Regularization decreases approximation error.

• How should you choose λ?
– Theory: as ‘n’ grows λ should be in the range O(1) to (n1/2).

– Practice: optimize validation set or cross-validation error.
• This almost always decreases the test error.



Regularization Path

• Regularization path is a plot of the optimal weights ‘wj’ as ‘λ’ varies:

• Starts with least squares with λ= 0, and wj converge to 0 as λ grows.



L2-regularization and the normal equations

• When using L2-regularization we can still set ∇ f(w) to 0 and solve.

• Loss before: 

• Loss after:

• Gradient before: 

• Gradient after:

• Linear system before: 

• Linear system after: 

• But unlike XTX, the matrix (XTX + λI) is always invertible:
– Multiply by its inverse for unique solution:

29



Why use L2-Regularization?

• It’s a weird thing to do, but Mark says “always use regularization”.

– “Almost always decreases test error” should already convince you.

• But here are 6 more reasons:

1. Solution ‘w’ is unique. 

2. XTX does not need to be invertible (no collinearity issues).

3. Less sensitive to changes in X or y.

4. Gradient descent converge faster (bigger λ means fewer iterations).

5. Stein’s paradox: if d ≥ 3, ‘shrinking’ moves us closer to ‘true’ w.

6. Worst case: just set λ small and get the same performance.



Summary

• “Relevance” is really hard to define.

– Different methods have different effects on what you find.

• Regularization:

– Adding a penalty on model complexity.

• L2-regularization: penalty on L2-norm of regression weights ‘w’.

– Almost always improves test error.

– Simple closed-form unique solution (post-lecture slides).

• Next time: midterm.



Alternative to Search and Score: good old p-values

• Hypothesis testing (“constraint-based”) approach:

– Generalization of the “association” approach to feature selection.

– Performs a sequence of conditional independence tests.

– If they are independent (like “p < .05”), say that ‘j’ is “irrelevant”.

• Common way to do the tests:

– “Partial” correlation (numerical data).

– “Conditional” mutual information (discrete data).



Testing-Based Feature Selection

• Hypothesis testing (“constraint-based”) approach:

• Two many possible tests, “greedy” method is for each ‘j’ do:

• “Association approach” is the greedy method where you only do 
the first test (subsequent tests remove a lot of false positives).



Hypothesis-Based Feature Selection

• Advantages:
– Deals with conditional independence.

– Algorithm can explain why it thinks ‘j’ is irrelevant.

– Doesn’t necessarily need linearity.

• Disadvantages:
– Deals badly with exact dependence: doesn’t select “mom” or “mom2” if both present.

– Usual warning about testing multiple hypotheses:

• If you test p < 0.05 more than 20 times, you’re going to make errors.

– Greedy approach may be sub-optimal.

• Neither good nor bad:
– Allows tiny effects.

– Says “gender” is irrelevant when you know “baby”.

– This approach is sometimes better for finding relevant factors, not to select features for learning.



Causality

• None of these approaches address causality or confounding:
– “Mom” is the only relevant direct causal factor.
– “Dad” is really irrelevant.
– “Grandma” is causal but is irrelevant if we know “mom”.

• Other factors can help prediction but aren’t causal:
• “Sibling” is predictive due to confounding of effect of same “mom”.
• “Baby” is predictive due to reverse causality.
• “Gender” is predictive due to common effect on “baby”.

• We can sometimes address this using interventional data…



Interventional Data

• The difference between observational and interventional data:
– If I see that my watch says 10:45, class is almost over (observational).

– If I set my watch to say 10:45, it doesn’t help (interventional).

• The intervention can help discover causal effects:
– “Watch” is only predictive of “time” in observational setting (so not 

causal).

• General idea for identifying causal effects:
– “Force” the variable to take a certain value, then measure the effect.

• If the dependency remains, there is a causal effect.

• We “break” connections from reverse causality, common effects, or confounding.



Causality and Dataset Collection

• This has to do with the way you collect data:

– You can’t “look” for variables taking the value “after the fact”.

– You need to manipulate the value of the variable, then watch for changes.

• This is the basis for randomized control trial in medicine:

– Randomly assigning pills “forces” value of “treatment” variable.

– Include a “control” as a value to prevent placebo effect as confounding.

• See also Simpson’s Paradox:

– https://www.youtube.com/watch?v=ebEkn-BiW5k

https://www.youtube.com/watch?v=ebEkn-BiW5k


L2-Regularization

• Standard regularization strategy is L2-regularization:

• Equivalent to minimizing squared 
error but keeping L2-norm small.



Regularization/Shrinking Paradox

• We throw darts at a target:

– Assume we don’t always hit the exact center.

– Assume the darts follow a symmetric pattern 
around center. 
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2. Measure distances from darts to ‘0’.



Regularization/Shrinking Paradox

• We throw darts at a target:

– Assume we don’t always hit the exact center.

– Assume the darts follow a symmetric pattern 
around center. 

• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.

2. Measure distances from darts to ‘0’.

3. Move misses towards ‘0’, by small
amount proportional to distance from 0.

• If small enough, darts will be closer to center on average.



Regularization/Shrinking Paradox

• We throw darts at a target:

– Assume we don’t always hit the exact center.

– Assume the darts follow a symmetric pattern 
around center. 

• Shrinkage of the darts :

1. Choose some arbitrary location ‘0’.

2. Measure distances from darts to ‘0’.

3. Move misses towards ‘0’, by small
amount proportional to distance from 0.

• If small enough, darts will be closer to center on average.
Visualization of the related higher-dimensional paradox that the mean of data coming from a Gaussian 
is not the best estimate of the mean of the Gaussian in 3-dimensions or higher: https://www.naftaliharris.com/blog/steinviz

https://www.naftaliharris.com/blog/steinviz

