CPSC 340:
Machine Learning and Data Mining

Feature Selection
Fall 2017



Admin

* Assignment 2:
— 1 late day to hand in tonight, 2 for Wednesday, answers posted Thursday.

 Extra office hours
— Thursday at 4pm (ICICS 246).

* Midterm details:
— Friday in class, details on Piazza.



Last Time: Finding the “True” Model

* Whatify, really is a polynomial function of x,?
— How can we find the “true” degree ‘p’ of the polynomial?

* Training error does not work: " S - \\,/ \/
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Change of Basis Notation

* Linear regression with original features:
— We use X’ as our data matrix, and ‘w’ as our parameters.
— We can find d-dimensional ‘w’ by minimizing the squared error:

{ ()= 21 -yl

* Linear regression with change of basis:
— We use 7’ as our data matrix, and ‘v’ as our parameters.
— We can find k-dimensional ‘v’ by minimizing the squared error:
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— Notice that in both cases the target is still ‘y’.



Last Time: Complexity Penalties

 We discussed putting a penalty on the model complexity.
— Want to fit the data and have a simple model.

* For example, minimize training error plus the degree of polynomial.
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— If we use p=4, use “training error plus 4” as error.
* If two ‘p’ values have similar error, this prefers the smaller ‘p’.

— Can’t optimize this using normal equations, since it’s discontinuous in ‘p’.



Choosing Degree of Polynomial Basis
* How can we optimize this score?
Slove ( f) - %”Zf\/"y ’/z + P

— Form Z,, solve for ‘v’, compute score(1) = %2 | |Z,v—y]| |* + 1.
— Form Z,, solve for v/, compute score(2) = 2| |Z,v—=y]| |? + 2.
— Form Z,, solve for v/, compute score(3) = 2| |Z,v—-y| |? + 3.

— Form Z,, solve for ‘v’, compute score(4) = 12| | Z,v—y| |* + 4.

— Choose the degree with the lowest score.

* “You need to decrease training error by at least 1 to increase degree by 1.”



Information Criteria

 There are many scores, usually with the form:

Slove ( f> = %“7,,\/"7 ’/Z + )\ K

— The value ‘k’ is the “number of estimated parameters” (“degrees of freedom”).
* For polynomial basis, we have k = (p+1).

— The parameter A > 0 controls how strong we penalize complexity.
* “You need to decrease the training error by least A to increase ‘k’ by 1”.

e Using (A =1) is called Akaike information criterion (AIC).

e Other choices of A give other criteria:

— Mallow’s C,.
— Adjusted R?.



Choosing Degree of Polynomial Basis
* How can we optimize this score in terms of ‘p’?

§(o«e(f> = %”7,9\/“7’/z + \K

— Form Z,, solve for ‘v’, compute score(0) = 2| [Z,v—y]| |? + A
— Form Z,, solve for v/, compute score(1) = 2| |Z,v—y]| |? + 2A.
— Form Z,, solve for v/, compute score(2) = 2| |Z,v—=y| |? + 3A.

— Form Z,, solve for ‘v’, compute score(3) = 12| |Z;v—y| |2 + 4A.

— So we need to improve by “at least A” to justify increasing degree.

* If Nis big, we’ll choose a small degree. If A is small, we’ll choose a large degree.



Bayesian Information Criterion

A disadvantage of these methods:

— Still prefers a larger ‘p” as ‘n” grows.

Solution: make A depend on ‘n’.
For example, the Bayesian information criterion (BIC) uses:
/)\: ‘_'3( Io(j (n)
BIC penalizes a bit more than AIC for large ‘n’.
— As ‘n’ goes to oo, recovers “true” model (“consistent” for model selection).

In practice, we usually just try a bunch of different A values.
— Picking A is like picking ‘k” in k-means.



Discussion of other Scores for Model Selection

* There are many other scores:
— Elbow method (similar to choosing A).

* You could also use BIC for choosing ‘k’ in k-means.

— Methods based on validation error.

e “Take smallest ‘p” within one standard error of minimum cross-validation error”.
— Minimum description length.
— Risk inflation criterion.
— False discovery rate.
— Marginal likelihood (CPSC 540).

* These can adapted to use the L1-norm and other errors.



(pause)



Motivation: Discovering Food Allergies

* Recall the food allergy example:

Egg | Milk | Fish | Wheat | Shellfish | Peanuts | ...
0O 07 0O 0.3 0 0 — 1
03 07 0 06 0 0.01 )
0 0 0 0.8 0 0 — 0
03 07 12 0 0.10 0.01 — 1

* Instead of predicting “sick”, we want to do feature selection:

— Which foods are “relevant” for predicting “sick”.



Feature Selection

e General feature selection problem: A
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— Find the features (columns) of ‘X’ that are important for predicting ‘y’.
* “What are the relevant factors?”
* “What which basis functions should | use among these choices?”
* “What types of new data should | collect?”
* “How can | speed up computation?”

* One of most important problems in ML/statistics, but very messy.
— For now, we’ll say a feature is “relevant” if it helps predict y. from x.



“Association” Approach

* Asimple/common way to do feature selection:

— For each feature ‘j’, compute correlation between feature values x! and ‘y’.

e Say that j’ is relevant if correlation is above 0.9 or below -0.9.

* Turns feature selection into hypothesis testing for each feature.

* There are many other measures of “dependence” (Wikipedia).

* Usually gives unsatisfactory results as it ignores variable interactions:
— Includes irrelevant variables: “Taco Tuesdays”.
* If tacos make you sick, and you often eat tacos on Tuesdays, it will say “Tuesday” is relevant.

— Excludes relevant variables: “Diet Coke + Mentos Eruption”.

* Diet coke and Mentos don’t make you sick on their own, but together they make you sick.


https://en.wikipedia.org/wiki/Correlation_and_dependence

Genome-Wide Association Studies

* Genome-wide association studies:

— Measure if there exists a dependency between each individual “single-
nucleotide polymorphism” in the genome and a particular disease.
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— Has identified thousands of genes “associated” with diseases.

e But by design this has a huge numbers of false positives (and many false negatives).
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“Regression Weight” Approach

* A simple/common approach to feature selection:
— Fit regression weights ‘w’ based on all features (maybe with least squares).
— Take all features ‘j” where weight |w;]| is greater than a threshold.

* This could recognize that “Tuesday” is irrelevant.

— |f you get enough data, and you sometimes eat tacos on other days.
(And the relationship is actually linear.)

* This could recognize that “Diet Coke” and “Mentos” are relevant.

— Assuming this combination occurs enough times in the data.



“Regression Weight” Approach

* A simple/common approach to feature selection:
— Fit regression weights ‘w’ based on all features (maybe with least squares).
— Take all features ‘j” where weight |w;]| is greater than a threshold.

 Has major problems with collinearity:

— If the “Tuesday” variable always equals the “taco” variable,
it could say that Tuesdays are relevant but tacos are not.
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— If you have two copies of an irrelevant feature,
it could take both irrelevant copies.
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Search and Score Methods

e Most common feature selection framework is search and score:
1. Define score function f(S) that measures quality of a set of features ‘S’.
2. Now search for the variables ‘S’ with the best score.

 Example with 3 features:
— Compute “score” of using feature 1.
— Compute “score” of using feature 2.
— Compute “score” of using feature 3.
— Compute “score” of using features {1,2}.
— Compute “score” of using features {1,3}.
— Compute “score” of using features {2,3}.
— Compute “score” of using features {1,2,3}.
— Compute “score” of using features {}.
— Return the set of features ‘S’ with the best “score”.



Which Score Function?

* The score can’t be the training error.

— Training error goes down as you add features, so will select all features.

A more logical score is the validation error.
— “Find the set of features that gives the lowest validation error.”
— To minimize test error, this is what we want.

* But there are problems due to the large number of sets of variables:
— If we have ‘d’ variables, there are 29 sets of variables.
— Optimization bias is high: we’re optimizing over 29 models (not 10).
— Prone to false positives: irrelevant variables will sometimes help by chance.



“Number of Features” Penalties

* To reduce false positives, we can again use complexity penalties:

swore (7 5 2w, =y)" + size(S)

(

— E.g., we could use squared error and number of non-zeroes.
— We're using ‘x.” as the features ‘S’ of example x..

* |f two ‘S’ have similar error, this prefers the smaller set.
— It prefers having w, = 0 instead of w; = 0.00001.

* Instead of “size(S)”, we usually write this using the “LO-norm”...



LO-Norm and “Number of Features We Use”

* |nlinear modAeIs, setting w; = 0 is the same as removing feature ‘j":
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e The LO “norm” is the number of non-zero values.
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— Not actually a true norm.

— If ‘w’ has a small LO-norm, then it doesn’t use many features.




LO-penalty: optimization

* LO-norm penalty for feature selection:

flw)=2 X =yl + A
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e Suppose we want to use this to evaluate the features S = {1,2}:

— First fit the ‘w’ just using features 1 and 2.
— Now compute the training error with this ‘w’ and features 1 and 2.
— Add A*2 to the training error to get the score.

* We repeat this with other choices of ‘S’ to find the “best” features.



LO-penalty: interpretation

* LO-norm penalty for feature selection:
P)= Lt =y It + Al

* Balances between training error and number of features we use.
— With A=0, we get least squares with all features.
— With A=co, we must set w=0 and not use any features.

— With other A, balances between training error and number of non-zeroes.

* Larger A puts more emphasis on having zeroes in ‘w’ (more feature selection).
 Different values give AIC, BIC, and so on.

23



Forward Selection (Greedy Search Heuristic)

* |n search and score, it’s also just hard to search for the best ‘S’.
— There are 29 possible sets.

* A common greedy search procedure is forward selection:
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Forward Selection (Greedy Search Heuristic)

* Forward selection algorithm for variable selection:
1. Start with an empty set of features, S=1[].
2. For each possible feature ‘j’:

 Compute scores of features in ‘S” combined with feature .
3. Ifno‘j’ improves the score, stop.

4. Otherwise, add the ‘j’ that improves the score the most to ‘S..
e Then go back to Step 2.

* Not guaranteed to find the best set, but reduces many problems:
— Considers O(d?) models: cheaper, ovefits less, has fewer false positives.



Backward Selection and RFE

Forward selection often works better than naive methods.

A related method is backward selection:
— Start with all features, remove the one that most improves the score.

If you consider adding or removing features, it’s called stagewise.

Stochastic local search is a class of fancier methods.
— Simulated annealing, genetic algorithms, ant colony optimization, etc.

Recursive feature elimination is another related method:
— Fit parameters of a regression model.

— Prune features with small regression weights.

— Repeat.



Summary

Information criteria are scores that penalize number of parameters.
— When we want to find the “true” model.

Feature selection is task of choosing the relevant features.
— Obvious simple approaches have obvious simple problems.

Search and score: find features that optimize some score.
— LO-norm penalties are the most common scores.
— Forward selection is a heuristic to search over a smaller set of features.

Next time: getting a good test error even with irrelevant features.



Mallow’s Cp

* Older than AIC and BIC is Mallow’s Cp:
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* Minimizing this score is equivalent to LO-regularization: |
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e So again, viewing A as hyper-parameter, this score is special case.



Adjusted R?

* QOlder than AIC and BIC and Mallow’s Cp is adjusted R?:
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* Maximizing this score is equivalent to LO-regularization:
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e So again, viewing A as hyper-parameter, this score is special case.




Information Criteria with Noise Variance

We defined AIC/BIC for feature selection in least squares as:

FG) =4t =y I+ 2

The first term comes from assuming y. = w'x. + €,
where € comes from a normal distribution with a variance of 1.

— WEe’ll discuss why when discuss MLE and MAP estimation.
If you treat variance as a parameter, then after some manipulation:
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However, this is again equwalent to just changing A.
If you aren’t doing least squares, replace first term by “log-likelihood”.




Complexity Penalties for Other Models

e Scores like AIC and BIC can also be used in other contexts:
— When fitting a decision tree, only split a node if it improves BIC.

— This makes sense if we’re looking for the “true tree”, or maybe just a
simple/interpretable tree that performs well.

* |In these cases we replace “LO-norm” with “degrees of freedom”.

— In linear models fit with least squares, degrees of freedom is number of
non-zeroes.

— Unfortunately, it is not always easy to measure “degrees of freedom”.



