We will have tutorials on non-holiday days this week.

Assignment 2 is due Friday.
 – 1 late day to hand it in on Monday, 2 for Wednesday.
 – The “imread” function is in PyPlot (not Images.jl), weird error in findMin.jl (fixed in a2.zip).

Assignment 1 marks are up.
 – If you have questions, see “Assignment 1 Marking Thread” on Piazza.

Extra office hours:
 – 2 TAs on the Thursday 2-3pm office hours when assignments are due.
 – Extra office hours this Friday at 1-2 (Siyuan at Table 2).
 – Extra instructor office hours on October 19th 4pm (ICICS 246).

Midterm details:
 – In class October 20th (55 minutes).
 – 1 page double-sided cheat sheet.
 – Previous midterms posted on Piazza.
 – Short-answer questions on “non-bonus” (white) slides.
 – Calculation questions will focus on assignment topics.
 – Topics only appearing in L14 will treated as “bonus”.
Last Week: Linear Regression

- We discussed **linear models**:
 \[y_i = \sum_{j=1}^{d} w_j x_{ij} = w^\top x_i \]

- “Multiply feature \(x_{ij} \) by weight \(w_j \), add them to get \(y_i \).”

- We discussed **squared error function**:
 \[f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^\top x_i - y_i)^2 \]

- Interactive demo:

The Social Cortex

As brain size increases, so does group size. Human group size as predicted by Dunbar’s model comes out to about 150.

![Graph showing average social group size against size of neocortex relative to rest of brain](data: the social brain hypothesis, Dunbar 1998)

To predict on test case \(x_i \), use
\[\hat{y}_i = w_i^\top \hat{x}_i \]
Motivation: Large-Scale Least Squares

• Normal equations find ‘w’ with $\nabla f(w) = 0$ in $O(nd^2 + d^3)$ time.
 $$(X^TX)w = X^Ty$$
 \[\begin{align*}
 &O(nd^2) \quad O(nd) \\
 &\text{(matrix multiply) \quad (matrix-vector)}
 \end{align*} \]

 – Very slow if ‘d’ is large.

• Alternative when ‘d’ is large is gradient descent methods.
 – Probably the most important class of algorithms in machine learning.
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is an iterative optimization algorithm:
 - It starts with a “guess” w^0.
 - It uses the gradient $\nabla f(w^0)$ to generate a better guess w^1.
 - It uses the gradient $\nabla f(w^1)$ to generate a better guess w^2.
 - It uses the gradient $\nabla f(w^2)$ to generate a better guess w^3.
 - ...
 - The limit of w^t as ‘t’ goes to ∞ has $\nabla f(w^t) = 0$.

- It **converges to the global optimum** if ‘f’ is convex.
Gradient Descent for Finding a Local Minimum

• Gradient descent is based on a simple observation:
 – Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is based on a simple observation:
 - Give parameters ‘w’, the **direction of largest decrease** is \(-\nabla f(w)\).
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is based on a simple observation:
 - Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is based on a simple observation:
 - Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.
Gradient Descent for Finding a Local Minimum

• **Gradient descent** is based on a simple observation:
 – Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.

Now the slope $\nabla f(w^4)$ is positive so we move in the negative direction.
Gradient Descent for Finding a Local Minimum

– We start with some initial guess, w^0.
– Generate new guess by moving in the negative gradient direction:

$$w^{t+1} = w^t - \alpha^t \nabla f(w^t)$$

 • This decreases ‘f’ if the “step size” α^0 is small enough.
 • Usually, we decrease α^0 if it increases ‘f’ (see “findMin.jl”).
– Repeat to **successively refine the guess:**

$$w^{t+1} = w^t - \alpha^t \nabla f(w^t) \quad \text{for } t = 1, 2, 3, \ldots$$

– Stop if not making progress or

$$\|\nabla f(w^t)\| \leq \epsilon$$

 ϵ Some small scalar.

 Approximate local minimum
Gradient Descent in 2D

- Under weak conditions, the algorithm converges to a 'w' with $\nabla f(w) = 0$.
 - 'f' is bounded below, ∇f doesn't change arbitrarily fast, small and constant α^t.
Gradient Descent

• Least squares via normal equations vs. gradient descent:
 – Normal equations cost $O(nd^2 + d^3)$.
 – Gradient descent costs $O(ndt)$ to run for ‘t’ iterations.

\[
\text{Computing } \nabla f(w) = X^\top y - X^\top X w \text{ only costs } O(nd).
\]

\[
X^\top (Xw) \underbrace{O(nd)}_{O(n)}
\]

\[
X^\top y \underbrace{O(nd)}_{O(n)}
\]

– Gradient descent can be faster when ‘d’ is very large:
 • If solution is “good enough” for a ‘t’ less than minimum($d, d^2/n$).
 • CPSC 540: ‘t’ proportional to “condition number” of X^TX (no direct ‘d’ dependence).

– Normal equations only solve linear least squares problems.
 • Gradient descent solves many other problems.
Beyond Gradient Descent

• There are many variations on gradient descent.
 – Methods employing a “line search” to choose the step-size.
 – “Conjugate” gradient and “accelerated” gradient methods.
 – Newton’s method (which uses second derivatives).
 – Quasi-Newton and Hessian-free Newton methods.
 – Stochastic gradient (later in course).

• This course focuses on gradient descent and stochastic gradient:
 – They’re simple and give reasonable solutions to most ML problems.
 – But the above can be faster for some applications.
(pause)
Least Squares with Outliers

Consider least squares problem with outliers:

\[x \leftarrow \text{“outlier” that doesn’t follow trend} \]

http://setosa.io/ev/ordinary-least-squares-regression
Least Squares with Outliers

• Consider least squares problem with outliers:

\[x \leftarrow \text{"outlier" that doesn't follow trend} \]

• Least squares is very sensitive to outliers.
Least Squares with Outliers

• Squaring error shrinks small errors, and **magnifies large errors**:

 - Least squares minimizes vertical distance **squared**.
 - Absolute Errors
 - Squared errors

• Outliers (large error) influence ‘w’ much more than other points.

http://students.brown.edu/seeing-theory/regression/index.html
Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.
 – Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.
Robust Regression

- **Robust regression** objectives put less focus on large errors (outliers).
- For example, use **absolute error** instead of squared error:
 \[
 f(w) = \sum_{i=1}^{n} |w^T x_i - y_i|
 \]
- Now decreasing ‘small’ and ‘large’ errors is equally important.
- Instead of minimizing L2-norm, minimizes **L1-norm** of residuals:

 \[
 \text{Least squares: } f(w) = \frac{1}{2} \| Xw - y \|^2 \\
 \text{Least absolute error: } f(w) = \| Xw - y \|_1
 \]
Least Squares with Outliers

- Least squares is very sensitive to outliers.

Linear model w minimizing $f(w) = \frac{1}{2} \| Xw - y \|^2$
Least Squares with Outliers

- Absolute error is more robust to outliers:

\[f(w) = \| Xw - y \|_1 = \sum_{i=1}^{n} |w^T x_i - y_i | \]
Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder.
 – We don’t have “normal equations” for minimizing the L1-norm.
 – Absolute value is non-differentiable at 0.

– Generally, harder to minimize non-smooth than smooth functions.
 • Unlike smooth functions, the gradient may not get smaller near a minimizer.
– We’re going to use a smooth approximation, then apply gradient descent.
Smooth Approximations to the L1-Norm

- There are differentiable approximations to absolute value.
 - Common example is Huber loss:

\[f(w) = \sum_{i=1}^{n} h(w^T x_i - y_i) \]

\[h(r_i) = \begin{cases}
\frac{1}{2} r_i^2 & \text{for } |r_i| \leq \varepsilon \\
\varepsilon (|r_i| - \frac{1}{2} \varepsilon) & \text{otherwise}
\end{cases} \]

- Note that ‘h’ is differentiable: \(h'(\varepsilon) = 1 \) and \(h'(-\varepsilon) = -1 \).
- This ‘f’ is convex but setting \(\nabla f(x) = 0 \) does not give a linear system.
- But we can minimize the Huber loss using gradient descent.
Motivation for Considering Worst Case

https://xkcd.com/937/
“Brittle” Regression

• What if you really care about getting the outliers right?
 – You want best performance on worst training example.
 – For example, if in worst case the plane can crash.
• In this case you could use something like the infinity-norm:
 \[
 f(w) = \| X_w - y \|_\infty
 \]
 \[
 x \quad \text{where} \quad \| r \|_\infty = \max_i \{ |r_i| \}
 \]
• Very sensitive to outliers (“brittle”), but worst case will be better.
Log-Sum-Exp Function

• As with the L_1-norm, the L_∞-norm is convex but non-smooth:
 – We can again use a smooth approximation and fit it with gradient descent.

• Convex and smooth approximation to max function is log-sum-exp function:
 \[
 \max_i \{z_i\} \approx \log(\sum_i \exp(z_i))
 \]
 – We’ll use this several times in the course.
 – Notation alert: when I write “log” I always mean “natural” logarithm: $\log(e) = 1$.

• Intuition behind log-sum-exp:
 – $\sum_i \exp(z_i) \approx \max_i \exp(z_i)$, as largest element is magnified exponentially (if no ties).
 • While $\log(\exp(z_i)) = z_i$.

Summary

• **Gradient descent** finds stationary point of differentiable function.
 – Finds global optimum if function is convex.

• **Robust regression** using L1-norm is less sensitive to outliers.

• **Brittle regression** using Linf-norm is more sensitive to outliers.

• **Smooth approximations:**
 – Let us apply gradient descent to non-smooth functions.
 – **Huber loss** is a smooth approximation to absolute value.
 – **Log-Sum-Exp** is a smooth approximation to maximum.

• Next time:
 – We start our quest to automatically find the right features...
Why use the negative gradient direction?

• For a twice-differentiable ‘f’, multivariable Taylor expansion gives:
 \[f(w_{t+1}) = f(w_t) + \nabla f(w_t)^T (w_{t+1} - w_t) + \frac{1}{2} (w_{t+1} - w_t) \nabla^2 f(v) (w_{t+1} - w_t) \]
 for some 'v' between \(w_{t+1} \) and \(w_t \).

• If gradient can’t change arbitrarily quickly, Hessian is bounded and:
 \[f(w_{t+1}) = f(w_t) + \nabla f(w_t)^T (w_{t+1} - w_t) + O(\|w_{t+1} - w_t\|^2) \]
 becomes negligible as \(w_{t+1} \) gets close to \(w_t \).

– But which choice of \(w^{t+1} \) decreases ‘f’ the most?
 • As \(\|w^{t+1} - w^t\| \) gets close to zero, the value of \(w^{t+1} \) minimizing \(f(w^{t+1}) \) in this formula converges to \((w^{t+1} - w^t) = -\alpha^t \nabla f(w^t) \) for some scalar \(\alpha^t \).
 • So if we’re moving a small amount, the optimal \(w^{t+1} \) is:
 \[w^{t+1} = w^t - \alpha^t \nabla f(w^t) \]
 for some scalar \(\alpha^t \).
Question from class: "Can we use $w^{t+1} = w^t - \frac{1}{\|\nabla f(w^t)\|} \nabla f(w^t)$?"

This will work for a while, but notice that

$$\|w^{t+1} - w^t\| = \|\frac{1}{\|\nabla f(w^t)\|} \nabla f(w^t)\|$$

$$= \frac{1}{\|\nabla f(w^t)\|} \|\nabla f(w^t)\|$$

$$= 1$$

So the algorithm never converges.
Log-Sum-Exp for Brittle Regression

• To use log-sum-exp for brittle regression:

$$||x_w - y||_{\infty} = \max_i \frac{1}{2} \| w^T x_i - y_i \|^2$$

$$= \max_i \frac{1}{2} \max \{ w^T x_i - y_i, y_i - w^T x_i \}^2$$

$$= \log \left(\sum_{i=1}^{n} \exp(w^T x_i - y_i) + \sum_{i=1}^{n} \exp(y_i - w^T x_i) \right)$$

using log-sum-exp to approximate "max" over $2n$ terms.
Log-Sum-Exp Numerical Trick

• Numerical problem with log-sum-exp is that \(\exp(z_i) \) might overflow.
 – For example, \(\exp(100) \) has more than 40 digits.

• Implementation ‘trick’: Let \(\beta = \max_i \sum z_i \)

\[
\log \left(\sum_i \exp(z_i) \right) = \log \left(\sum_i \exp(z_i - \beta + \beta) \right) \\
= \log \left(\sum_i \exp(z_i - \beta) \exp(\beta) \right) \\
= \log(\exp(\beta)) + \log \left(\sum_i \exp(z_i - \beta) \right) \\
= \beta + \log(\sum_i \exp(z_i - \beta)) \leq 1 \text{ so no overflow}
\]
Gradient Descent for Non-Smooth?

• “You are unlikely to land on a non-smooth point, so gradient descent should work for non-smooth problems?”
 – Consider just trying to minimize the absolute value function:

 \[
 \begin{align*}
 &\text{Norm(gradient)} \text{ is constant when not at 0, so unless you are lucky enough to hit exactly 0, you will just bounce back and forth forever.} \\
 &\text{We didn’t have this problem for smooth functions, since the gradient gets smaller as you approach a minimizer.} \\
 &\text{You could fix this problem by making the step-size slowly go to zero, but you need to do this carefully to make it work, and the algorithm gets much slower.}
 \end{align*}
 \]
Gradient Descent for Non-Smooth?

- Counter-example from Bertsekas’ “Nonlinear Programming” where gradient descent for a non-smooth convex problem does not converge to a minimum.