CPSC 340:
Machine Learning and Data Mining

The Normal Equations
Fall 2017
Gradient and Critical Points in d-Dimensions

• Generalizing “set the derivative to 0 and solve” in d-dimensions:
 – Find ‘w’ where the gradient vector equals the zero vector.
• Gradient is vector with partial derivative ‘j’ in position ‘j’:

$$\nabla f(w) = \begin{bmatrix} 2f \\ 2w_1 \\ 2f \\ 2w_2 \\ \vdots \\ 2f \\ 2w_d \end{bmatrix}$$

Tangent slope is 0 in every direction at minimizers.
Gradient and Critical Points in d-Dimensions

• Generalizing “set the derivative to 0 and solve” in d-dimensions:
 – Find ‘w’ where the gradient vector equals the zero vector.
• Gradient is vector with partial derivative ‘j’ in position ‘j’:

\[\nabla f(w) = \begin{bmatrix} 2f \\ 2w_1 \\ 2f \\ 2w_2 \\ \vdots \\ 2f \\ 2w_d \end{bmatrix} \]

For linear least squares:

\[\nabla f(w) = \begin{bmatrix} \sum_{i=1}^{n} (w^\top x_i - y_i) x_{i1} \\ \sum_{i=1}^{n} (w^\top x_i - y_i) x_{i2} \\ \vdots \\ \sum_{i=1}^{n} (w^\top x_i - y_i) x_{id} \end{bmatrix} \]

Claims for linear least squares:

1. Finding a ‘w’ where \(\nabla f(w)=0 \) can be done by solving a System of linear equations.
2. All ‘w’ where \(\nabla f(w)=0 \) are minimizers.
Least Squares in d-Dimensions

- The linear least squares model in d-dimensions minimizes:
 \[f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

- Computing the partial derivative:
 \[\frac{\partial}{\partial w_j} \left[\frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \right] = \frac{1}{2} \sum_{i=1}^{n} \frac{\partial}{\partial w_j} \left[(w^T x_i - y_i)^2 \right]
 = \frac{1}{2} \sum_{i=1}^{n} 2 (w^T x_i - y_i) \frac{\partial}{\partial w_j} [w^T x_i]
 = \sum_{i=1}^{n} (w^T x_i - y_i) x_{il} \]

Problem: I can't just set to 0 and solve because it depends on \(w_2, w_3, \ldots, w_d \)
Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use matrix notation:
 – We use ‘y’ as an “n times 1” vector containing target ‘y_i’ in position ‘i’.
 – We use ‘x_i’ as a “d times 1” vector containing features ‘j’ of example ‘i’.
 - We’re now going to be careful to make sure these are column vectors.
 – So ‘X’ is a matrix with the x_i^T in row ‘i’.

\[
\begin{align*}
 y &= \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, &
 x_i &= \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix}, &
 X &= \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix}
\end{align*}
\]
Matrix/Norm Notation (MEMORIZE/STUDY THIS)

- To solve the d-dimensional least squares, we use matrix notation:
 - Our prediction for example ‘i’ is given by scalar $w^T x_i$.
 - The matrix-vector product Xw gives predictions for all ‘i’ (n times 1 vector).

\[
\begin{align*}
 w^T x_i &= \sum_{j=1}^{d} w_j x_{ij} \\
 &= w_1 x_{i1} + w_2 x_{i2} + \ldots + w_d x_{id}
\end{align*}
\]

Also, because $w^T x_i$ is a scalar, we have $w^T x_i = x_i^T w$.
(e.g., $[5]^T = [5]$)

\[
Xw = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1d} \\
 x_{21} & x_{22} & \cdots & x_{2d} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix} \begin{bmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_d
\end{bmatrix} = \begin{bmatrix}
 x_{11}w_1 + x_{12}w_2 + \cdots + x_{1d}w_d \\
 x_{21}w_1 + x_{22}w_2 + \cdots + x_{2d}w_d \\
 \vdots \\
 x_{n1}w_1 + x_{n2}w_2 + \cdots + x_{nd}w_d
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 \sum_{j=1}^{d} x_{1j}w_j \\
 \sum_{j=1}^{d} x_{2j}w_j \\
 \vdots \\
 \sum_{j=1}^{d} x_{nj}w_j
\end{bmatrix} = \begin{bmatrix}
 x_1^T w \\
 x_2^T w \\
 \vdots \\
 x_n^T w
\end{bmatrix} = \begin{bmatrix}
 w_1^T x_1 \\
 w_2^T x_2 \\
 \vdots \\
 w_d^T x_d
\end{bmatrix}
\]

Prediction for example ‘i’ is in column ‘i’.
Matrix/Norm Notation (MEMORIZE/STUDY THIS)

• To solve the d-dimensional least squares, we use **matrix notation**:
 – Our **prediction for example ‘i’** is given by scalar $w^T x_i$.
 – The **matrix-vector product Xw** gives predictions for all ‘i’ (n times 1 vector).
 – The **residual vector r** gives $w^T x_i$ minus y_i for all ‘i’ (n times 1 vector).
 – Least squares can be written as the squared L2-norm of the residual.

\[
\begin{align*}
\mathbf{r} &= \begin{bmatrix}
 w^\top x_1 - y_1 \\
 w^\top x_2 - y_2 \\
 \vdots \\
 w^\top x_n - y_n \\
\end{bmatrix}
= \begin{bmatrix}
 w^\top x_1 \\
 w^\top x_2 \\
 \vdots \\
 w^\top x_n \\
\end{bmatrix}
- \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n \\
\end{bmatrix}
= Xw - y
\end{align*}
\]

\[
\sum_{i=1}^{n} (w^\top x_i - y_i)^2 = \sum_{i=1}^{n} (r_i)^2 \\
= \sum_{i=1}^{n} r_i r_i \\
= r^\top r \\
= \|r\|^2 = \|Xw - y\|^2
\]
Matrix Algebra Review (MEMORIZE/STUDY THIS)

• Review of linear algebra operations we’ll use:
 – If ‘a’ and ‘b’ be vectors, and ‘A’ and ‘B’ be matrices then:

\[
\begin{align*}
\mathbf{a}^\top \mathbf{b} &= \mathbf{b}^\top \mathbf{a} \\
\|\mathbf{a}\|_2 &= \mathbf{a}^\top \mathbf{a} \\
(\mathbf{A} + \mathbf{B})^\top &= \mathbf{A}^\top + \mathbf{B}^\top \\
(\mathbf{AB})^\top &= \mathbf{B}^\top \mathbf{A}^\top \\
(\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{B}) &= \mathbf{AA} + \mathbf{BA} + \mathbf{AB} + \mathbf{BB} \\
\mathbf{a}^\top \mathbf{A} \mathbf{b} &= \mathbf{b}^\top \mathbf{A}^\top \mathbf{a}
\end{align*}
\]

Sanity check: ALWAYS CHECK THAT DIMENSIONS MATCH (if not, you did something wrong)
Linear Least Squares

Want \(\mathbf{w} \) that minimizes
\[
f(w) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 = \frac{1}{2} \| \mathbf{Xw} - \mathbf{y} \|_2^2
\]
\[
= \frac{1}{2} (\mathbf{Xw} - \mathbf{y})^T (\mathbf{Xw} - \mathbf{y})
\]
\[
= \frac{1}{2} (\mathbf{w}^T \mathbf{X}^T - \mathbf{y}^T) (\mathbf{Xw} - \mathbf{y})
\]
\[
= \frac{1}{2} \left(\mathbf{w}^T \mathbf{X}^T (\mathbf{Xw} - \mathbf{y}) - \mathbf{y}^T (\mathbf{Xw} - \mathbf{y}) \right)
\]
\[
= \frac{1}{2} \left(\mathbf{w}^T \mathbf{X}^T \mathbf{Xw} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{Xw} + \mathbf{y}^T \mathbf{y} \right)
\]
\[
= \frac{1}{2} \mathbf{w}^T \mathbf{X}^T \mathbf{Xw} - \frac{1}{2} \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \frac{1}{2} \mathbf{y}^T \mathbf{y}
\]

Sanity check: all of these are scalars.
Linear and Quadratic Gradients

• We’ve written as a d-dimensional quadratic:

$$f(w) = \sum_{i=1}^{D} (w^T x_i - y_i)^2 = \frac{1}{2} \|Xw - y\|^2 = \frac{1}{2} w^T X^T Xw - w^T X^T y + \frac{1}{2} y^T y$$

$$= \frac{1}{2} w^T A w + w^T b + c$$

• How do we compute gradient?

Let’s first do it with $d=1$:

$$f(w) = \frac{1}{2} w^2 + wb + c$$

$$f'(w) = aw + b + 0$$

Here are the generalizations to d dimensions:

$$\nabla [c] = 0 \text{ (zero vector)}$$

$$\nabla [w^T b] = b$$

$$\nabla [w^T A w] = A w \text{ (if } A \text{ is symmetric)}$$

Full derivations are on webpage in notes on linear and quadratic gradients.
Linear and Quadratic Gradients

• We’ve written the least squares objective as a quadratic function:

\[
f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \frac{1}{2} \| X_w - y \|^2 = \frac{1}{2} w^T X^T X w - w^T X^T y + \frac{1}{2} y^T y
\]

\[
= \frac{1}{2} w^T A w + w^T b + c
\]

• Gradient is given by:

\[
\nabla f(w) = A w + b + 0
\]

• Using definitions of ‘A’ and ‘b’:

\[
= X^T X w + X^T y
\]

Sanity check: these are both \(d \times 1 \) vectors.
Normal Equations

• Set gradient equal to zero to find the least squares “critical points”:
 \[X^\top X_w - X^\top y = 0 \]

• We now move terms not involving ‘w’ to the other side:
 \[X^\top X_w = X^\top y \]

• This is a set of ‘d’ linear equations called the normal equations.
 – This a linear system like “Ax = b” from Math 152.
 • You can use Gaussian elimination to solve for ‘w’.
 – In Julia, the “\” command can be used to solve linear systems:

 Train: \[w = (X^\top X) \backslash (X^\top y) \]

 Predict: \[\hat{y} = X_{\text{test}} \ast w \]
Incorrect Solutions to Least Squares Problem

The least squares objective is \(f(w) = \frac{1}{2} \| Xw - y \|^2 \)

The minimizers of this objective are solutions to the linear system:
\[
X^T X w = X^T y
\]

The following are not the solutions to the least squares problem:

\[
w = (X^T X)^{-1}(X^T y) \quad \text{(only true if } X^T X \text{ is invertible)}
\]

\[
w X^T X = X^T y \quad \text{(matrix multiplication is not commutative, dimensions don’t even match)}
\]

\[
w = \frac{X^T y}{X^T X} \quad \text{(you cannot divide by a matrix)}
\]
Least Squares Issues

• Issues with least squares model:
 – Solution might **not** be unique.
 – It is **sensitive** to outliers.
 – It always uses all features.
 – Data can might so big we can’t store $X^T X$.
 – It might predict outside range of y_i values.
 – It assumes a **linear** relationship between x_i and y_i.

X is $n \times d$

so X^T is $d \times n$

and $X^T X$ is $d \times d$.

Costs $O(nd^2)$ to calculate:
 – Each of the $O(d^2)$ elements
 is an inner product between length n vectors.
Non-Uniqueness: Colinearity

• Imagine have two features that are identical for all examples.
• Then these features are called **collinear**.
• I can increase weight on one feature, and decrease it on the other, **without changing predictions**.
• Thus the solution is not unique.

• But, any ‘w’ where $\nabla f(w) = 0$ is a global optimum, due to **convexity**.
Convex Functions

• Is finding a ‘w’ with $\nabla f(w) = 0$ good enough?
 – Yes, for convex functions.

• A function is convex if the area above the function is a convex set.
 – All values between any two points above function stay above function.
Convex Functions

• All ‘w’ with $\nabla f(w) = 0$ for convex functions are global minima.

Proof by contradiction:

Consider a local minimum. If this is not global minimum, there must a smaller value.

By convexity we can move along line to global minimum and decrease objective.

– Normal equations finds a global minimum because of convexity.
How do we know if a function is convex?

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff \(f''(w) \geq 0 \) for all ‘w’.

Consider \(f(w) = \frac{1}{2} aw^2 \) for \(a > 0 \). We have \(f'(w) = aw \) and \(f''(w) = a > 0 \) by assumption.

Consider \(f(w) = e^w \). We have \(f'(w) = e^w \) and \(f''(w) = e^w > 0 \) by definition of exponential function.
How do we know if a function is convex?

• Some useful tricks for showing a function is convex:
 – 1-variable, twice-differentiable function is convex iff \(f''(w) \geq 0 \) for all ‘\(w \)’.
 – A convex function multiplied by non-negative constant is convex.

We showed that \(f(w) = e^w \) is convex, so \(f(w) = 10e^w \) is convex.
How do we know if a function is convex?

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \geq 0$ for all w.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.

\[\|w\|, \|w\|^2, \|w\|_1, \|w\|_\infty, \|w\|^2_2\] and so on are all convex.
How do we know if a function is convex?

• Some useful tricks for showing a function is convex:
 – 1-variable, twice-differentiable function is convex iff $f''(w) \geq 0$ for all ‘w’.
 – A convex function multiplied by non-negative constant is convex.
 – Norms and squared norms are convex.
 – The sum of convex functions is a convex function.

$$f(x) = 10e^w + \frac{1}{2} \|w\|^2 \quad \text{is convex}$$

From earlier constant norm squared
How do we know if a function is convex?

• Some useful tricks for showing a function is convex:
 – 1-variable, twice-differentiable function is convex iff \(f''(w) \geq 0 \) for all ‘\(w \)’.
 – A convex function multiplied by non-negative constant is convex.
 – Norms and squared norms are convex.
 – The sum of convex functions is a convex function.
 – The max of convex functions is a convex function.

\[
 f(w) = \max \sum \left\{ 2w, w^2 \right\} \text{ is convex.}
\]
How do we know if a function is convex?

• Some useful tricks for showing a function is convex:
 – 1-variable, twice-differentiable function is convex iff $f''(w) \geq 0$ for all ‘w’.
 – A convex function multiplied by non-negative constant is convex.
 – Norms and squared norms are convex.
 – The sum of convex functions is a convex function.
 – The max of convex functions is a convex function.
 – Composition of a convex function and a linear function is convex.

\[
\text{If } f \text{ is convex the } f(Xw - y) \text{ is convex.}
\]
How do we know if a function is convex?

• Some useful tricks for showing a function is convex:
 – 1-variable, twice-differentiable function is convex iff \(f''(w) \geq 0 \) for all \(w \).
 – A convex function multiplied by non-negative constant is convex.
 – Norms and squared norms are convex.
 – The sum of convex functions is a convex function.
 – The max of convex functions is a convex function.
 – Composition of a convex function and a linear function is convex.

• But: not true that composition of convex with convex is convex:
 Even if \(f \) is convex and \(g \) is convex, \(f(g(w)) \) might not be convex.
 E.g. \(x^2 \) is convex and \(-\log(x)\) is convex but \(-\log(x^2)\) is not convex.
Example: Convexity of Linear Regression

• Consider linear regression objective with squared error:

\[f(w) = \|Xw - y\|^2 \]

• We can use that this is a **convex function composed with linear**:

Let \(g(r) = \|r\|^3 \), which is **convex** because it's a squared norm.

Then \(f(w) = g(Xw - y) \), which is **convex** because it's a convex function composed with the linear function \(h(w) = Xw - y \).
Summary

• Normal equations: solution of least squares as a linear system.
 – Solve \((X^TX)w = (X^ty)\).

• Solution might not be unique because of collinearity.

• But any solution is optimal because of convexity.

• Convex functions:
 – Set of functions with property that \(\nabla f(w) = 0\) implies ‘w’ is a global min.
 – Can (usually) be identified using a few simple rules.

• Next time: overview of numerical optimization concepts.
Convexity, min, and argmin

• If a function is convex, then all stationary points are global optima.

• However, convex functions don’t necessarily have stationary points:
 – For example, $f(x) = a*x$, $f(x) = \exp(x)$, etc.

• Also, more than one ‘x’ can achieve the global optimum:
 – For example, $f(x) = c$ is minimized by any ‘x’.
• **Householder notation**: set of (fairly-logical) conventions for math.

- Use **Greek letters** for scalars: \(\alpha = 1, \beta = 3.5, \gamma = \pi \)
- Use **first/last lowercase** letters for vectors: \(\mathbf{w} = \begin{bmatrix} 0.1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 1 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \end{bmatrix}, \mathbf{a} = \begin{bmatrix} 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0.5 \end{bmatrix} \)
 - Assumed to be **column-vectors**.
- Use **first/last uppercase** letters for matrices: \(X, Y, W, A, B \)

- Indices use \(i, j, k \).
- Sizes use \(m, n, d, p \) and \(k \) is obvious from context.
- Sets use \(S, T, U, V \).
- Functions use \(f, g, h \).

When I write \(x_i \), I mean "grab row \(i \) of \(X \) and make a **column-vector** with its values."
Bonus Slide: Householder(-ish) Notation

- **Householder notation**: set of (fairly-logical) conventions for math:

Our ultimate least squares notation:

\[f(w) = \frac{1}{2} \|Xw - y\|^2 \]

But if we agree on notation we can quickly understand:

\[g(x) = \frac{1}{2} \|Ax - b\|^2 \]

If we use random notation we get things like:

\[H(\beta) = \frac{1}{2} \|R\beta - p\|^2 \]

Is this the same model?
When does least squares have a unique solution?

• We said that least squares solution is not unique if we have repeated columns.
• But there are other ways it could be non-unique:
 – One column is a scaled version of another column.
 – One column could be the sum of 2 other columns.
 – One column could be three times one column minus four times another.
• Least squares solution is unique if and only if all columns of X are “linearly independent”.
 – No column can be written as a “linear combination” of the others.
 – Many equivalent conditions (see Strang’s linear algebra book):
 • X has “full column rank”, X^TX is invertible, X^TX has non-zero eigenvalues, $\det(X^TX) > 0$.
 – Note that we cannot have independent columns if $d > n$.