CPSC 340:
Machine Learning and Data Mining

Ordinary Least Squares
Fall 2017



Admin

* You can submit Al with late day on Monday night.
* You can submit A2 with 2 late days on Wednesday night.

* Mark’s office hours will be cancelled on Tuesday (since he’s away).



Supervised Learning Round 2: Regression

 We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y. was discrete: y, = ‘spam’ or y, = ‘not spam’.
* Now we’re going to consider regression:

— We allow y, to be numerical: y, = 10.34cm.



Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:

— Does number of lung cancer deaths change with number of cigarettes?

— Does number of skin cancer deaths change with latitude?

— Does number of gun deaths change with gun ownership?
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Gun ownership vs. gun deaths, by state
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Handling Numerical Labels

* One way to handle numerical y.: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, 20 < age < 30’, ‘age > 30'}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.
— And fine discretization requires lots of data.

* There exist regression versions of classification methods:
— Regression trees, probabilistic models, non-parametric models.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Very interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):
— E.g., x. is number of cigarettes and y, is number of lung cancer deaths.

Linear regression makes predictions ¥ using a linear function of x::
N
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The parameter ‘w’ is the weight or regression coefficient of x..
As x. changes, slope ‘w’ affects the rate that y. increases/decreases:

— Positive ‘w’: J. increase as x; increases.
| |
— Negative ‘w’: J. decreases as x; increases.



Linear Regression in 1 Dimension
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Aside: terminology woes

* Different fields use different terminology and symbols.
— Data points = objects = examples = rows = observations.

— Inputs = predictors = features = explanatory variables= regressors =
independent variables = covariates = columns.

— Outputs = outcomes = targest = response variables = dependent variables
(also called a “label” if it’s categorical).

— Regression coefficients = weights = parameters = betas.
* With linear regression, the symbols are inconsistent too:
— In ML, the data is X and the weights are w.

— In statistics, the data is X and the weights are B.
— In optimization, the data is A and the weights are x.



Least Squares Objective

* Our linear model is given by:
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* So we make predictions for a new example by using:
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e But we can’t use the same error as before:
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Least Squares Objective

* We need a way to evaluate numerical error.

* Classic way is setting slope ‘W’ to minimize sum of squared errors:
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* There are some justifications for this choice. valne For exanle
— A probabilistic interpretation is coming later in the course.

* But usually, itis done because it is easy to minimize.



Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:

F(w) = é (wx = }’i>2
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Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Minimizing a Differential Function

 Math 101 approach to minimizing a differentiable function f':
1. Take the derivative of .
2. Find points ‘w’ where the derivative f’'(w) is equal to O.

3. Choose the smallest one (but check that f"’(w) is positive).
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Digression: Multiplying by a Positive Constant

Note that this problem:
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Has the same set of minimizers as this problem:
N
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And these also have the same minimizers:
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| can multiply ‘f” by any positive constant and not change solution.
— Gradient will still be zero at the same locations.
— We'll use this trick a lot!



Finding Least Squares Solution

* Finding ‘W’ that minimizes sum of squared errors:
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Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.
— For example, environmental factors like exposure to asbestos.

How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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We have a weight w, for feature ‘1’ and w, for feature 2’
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Least Squares in 2-D



Least Squares in 2-Dimensions
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Why don’t we have a y-intercept?

— Linear model is y; = wx, instead of y. = wx, + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y. = 0.

| 0 % o </"\EV€/\ //’eas'/' S(}Vla/fS“

9, solution must 40
o .
o D Thro ugh orign.




Why don’t we have a y-intercept?

— Linear model is y; = wx, instead of y. = wx, + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y. = 0.
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Adding a Bias Variable

* Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”.
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* Now use “Z” as your features in linear regression.
— We'll use ‘v’ instead of ‘W’ as regression weights when we use features ‘7.
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* So we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept in our derivations, which is cleaner.



Least Squares in d-Dimensions

If we have ‘d’ features, the d-dimensional linear model is:
N
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We can re-write this in summation notation:
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In words, our model is that the output is a weighted sum of the inputs.



Notation Alert (again)

* In this course, all vectors are assumed to be column-vectors:
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* So rows of X’ are actually transpose of column-vector x::

T

_ X ——

X=|—xn'—

gr—

Y

- N, -xh ——



Least Squares in d-Dimensions

 The linear least squares model in d-dimensions minimizes:
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* How do we find the best vector ‘w’?
— Set the derivative of each variable (“partial derivative”) to 07



Partial Derivatives
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Summary

Regression considers the case of a numerical y..

Least squares is a classic method for fitting linear models.
— With 1 feature, it has a simple closed-form solution.

Gradient is vector containing partial derivatives of all variables.
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