CPSC 340: Machine Learning and Data Mining

Ordinary Least Squares (OLS)
Admin

• You can submit A1 with 1 late day on Monday night.
• You can submit A2 with 2 late days on Wednesday night.
• Mark’s office hours will be cancelled on Tuesday (since he’s away).
Supervised Learning Round 2: Regression

• We’re going to revisit supervised learning:

\[X = \begin{bmatrix} \ldots \end{bmatrix}, \quad Y = \begin{bmatrix} \ldots \end{bmatrix} \]

• Previously, we considered classification:
 – We assumed \(y_i \) was discrete: \(y_i = \text{‘spam’} \) or \(y_i = \text{‘not spam’} \).

• Now we’re going to consider regression:
 – We allow \(y_i \) to be numerical: \(y_i = 10.34 \text{cm} \).
Example: Dependent vs. Explanatory Variables

• We want to discover relationship between numerical variables:
 – Does number of lung cancer deaths change with number of cigarettes?
 – Does number of skin cancer deaths change with latitude?

http://onlinecourses.science.psu.edu/stat501/node/11
Example: Dependent vs. Explanatory Variables

• We want to discover relationship between numerical variables:
 – Does number of lung cancer deaths change with number of cigarettes?
 – Does number of skin cancer deaths change with latitude?
 – Does number of gun deaths change with gun ownership?

Handling Numerical Labels

• One way to handle numerical y_i: discretize.
 – E.g., for ‘age’ could we use {‘age ≤ 20’, ‘20 < age ≤ 30’, ‘age > 30’}.
 – Now we can apply methods for classification to do regression.
 – But coarse discretization loses resolution.
 – And fine discretization requires lots of data.
 – We also discard ordering information.

• We could make regression versions of classification methods:
 – regression trees, generative models, non-parametric models.

• Today’s class: one of oldest, but still most popular/important methods
 – Linear regression based on squared error.
 – Very interpretable and the building block for more-complex methods.
Linear Regression in 1 Dimension

• Assume we only have 1 feature (d = 1):
 – E.g., \(x_i \) is number of cigarettes and \(y_i \) is number of lung cancer deaths.
• Linear regression models \(y_i \) is a linear function of \(x_i \):
 \[
 y_i = w x_i
 \]

• The parameter ‘\(w \)’ is the weight or regression coefficient of \(x_i \).
• As \(x_i \) changes, slope ‘\(w \)’ affects the rate that \(y_i \) increases/decreases:
 – Positive ‘\(w \)’: \(y_i \) increase as \(x_i \) increases.
 – Negative ‘\(w \)’: \(y_i \) decreases as \(x_i \) increases.
Linear Regression in 1 Dimension

The equation for the line is $y_i = wx_i$, for a particular slope w.

Graph showing y_i and x_i axes with a line connecting data points.
Aside: terminology woes

• Different fields use different terminology and symbols.
 – data points = objects = examples = rows = observations
 – inputs = predictors = features = explanatory variables = regressors = independent variables = covariates = columns
 – outputs = outcomes = targets = response variables = dependent variables (also called a "label" if it's categorical)
 – regression coefficients = weights = parameters = betas

• With linear regression, the symbols are inconsistent too
 – In ML, the data is X and the weights are w
 – In Statistics, the data is X and the weights are β
 – In optimization, the data is A and the weights are x
Least Squares Objective

• Our linear model is given by:

\[y_i = w x_i \]

• So we make predictions for a new example by using:

\[\hat{y}_i = \hat{w} \hat{x}_i \]

• But we can’t use the same error as before:
 - Even if data comes from a linear model but has noise, we can have \(\hat{y}_i \neq y_i \) for all training examples 'i' for the "best" model.
Least Squares Objective

• We need a way to evaluate numerical error.
• Classic way to set slope ‘w’ is minimizing sum of squared errors:
 \[f(w) = \sum_{i=1}^{n} (w x_i - y_i)^2 \]
 - True value of \(y_i \)
 - Our prediction of \(y_i \)
 - Difference between prediction and true value for example i
 - Sum up the squared differences over all training examples.
• There are some justifications for this choice.
 – A probabilistic interpretation is coming later in the course.
• But usually, it is done because it is easy to minimize.
Least Squares Objective

- Classic way to set slope ‘w’ is minimizing the sum of squared errors:

$$f(w) = \sum_{i=1}^{n} (wx_i - y_i)^2$$

“Error” is the sum of the squared values of these vertical distances between the line (wx_i) and the targets (y_i).

If this error is small, then our predictions are close to the targets.
Least Squares Objective

• Classic way to set slope ‘w’ is minimizing sum of squared errors:

$$f(w) = \sum_{i=1}^{n} (wx_i - y_i)^2$$

"Error" is the sum of the squared values of these vertical distances between the line \((wx_i)\) and the targets \((y_i)\).

If this error is large, then our predictions are far from the targets.
Minimizing a differentiable function

- Math 101 approach to minimizing a differentiable function ‘f’:
 1. Take the derivative of ‘f’.
 2. Find points ‘w’ where the derivative $f'(w)$ is equal to 0.
 3. Choose the smallest one (but check that $f''(w)$ is positive).
Finding Least Squares Solution

• Finding ‘w’ that minimizes sum of squared errors:

\[
f'(w) = \sum_{i=1}^{n} (wx_i - y_i)^2 = \frac{1}{2} (wx_1 - y_1)^2 + \frac{1}{2} (wx_2 - y_2)^2 + \cdots + \frac{1}{2} (wx_n - y_n)^2
\]

\[
f'(w) = \sum_{i=1}^{n} (wx_i - y_i)x_i = (wx_1 - y_1)x_1 + (wx_2 - y_2)x_2 + \cdots + (wx_n - y_n)x_n
\]

Set \(f'(w) = 0 \): \(\sum_{i=1}^{n} (wx_i - y_i)x_i = 0 \) or \(\sum_{i=1}^{n} [wx_i^2 - y_ix_i] = 0 \)

Is this a minimizer?

\[
f''(w) = \sum_{i=1}^{n} x_i^2
\]

Since anything squared is non-negative, \(f''(w) \geq 0 \).

If at least one \(x_i \neq 0 \) then \(f''(w) > 0 \) and this is a minimizer.

So \(w = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2} \)
Adding in a y-intercept

– Linear model is $y_i = w^T x_i + w_0$ instead of $y_i = w^T x_i$ with y-intercept w_0.
– Without an intercept, if $x_i = 0$ then we must predict $y_i = 0$.
Why don’t we have a y-intercept?

– Linear model is $y_i = w^T x_i + w_0$ instead of $y_i = w^T x_i$ with y-intercept w_0.

– Without an intercept, if $x_i = 0$ then we must predict $y_i = 0$.

![Diagram showing linear models with and without y-intercept](image)
Adding a Bias Variable

• Simple trick to add a y-intercept ("bias") variable:
 – Make a new matrix “Z” with an extra feature that is always “1”.

\[
X = \begin{bmatrix}
0.1 & 0.3 \\
0.5 & -0.6 \\
0.2 & 0.4 \\
\end{bmatrix}
\quad Z = \begin{bmatrix}
1 & 0.1 & 0.3 \\
1 & 0.5 & -0.6 \\
1 & 0.2 & 0.4 \\
\end{bmatrix}
\]

• Now use “Z” as features to get a model with a non-zero y-intercept:

\[
y_i = w_0 z_{ib} + w_1 z_{i1} + w_2 z_{i2}
\]

\[
= w_0 + w_1 x_{i1} + w_2 x_{i2}
\]

• So we can have a non-zero y-intercept by changing features.
 – This means we can ignore the y-intercept in our derivations, which is cleaner.
Multiple Explanatory Variables

• Smoking is **not the only contributor** to lung cancer.
 – For example, environmental factors like exposure to asbestos.
• How can we model the **combined effect** of smoking and asbestos?
• A simple way is with a **2-dimensional linear function**:

\[y_i = w_1 x_{i1} + w_2 x_{i2} \]

 - **Value of feature 2 in example i**
 - "weight" on feature 2.
 - **Value of feature 1 in example i**
 - "weight" of feature 1

• We have a weight \(w_1 \) for feature ‘1’ and \(w_2 \) for feature ‘2’.
Least Squares in 2-Dimensions
Least Squares in 2-Dimensions
Least Squares in d-Dimensions

• If we have ‘d’ features, the d-dimensional linear model is:
 \[y_i = w_1 x_{i1} + w_2 x_{i2} + w_3 x_{i3} + \cdots + w_d x_{id} \]

• We can re-write this in summation notation:
 \[y_i = \sum_{j=1}^{d} w_j x_{ij} \]

• We can also re-write this in vector notation:
 \[y_i = w^T x_i \]

• In words, our model is that the output is a weighted sum of the inputs.
NotaQon Alert (again)

• In this course, all vectors are assumed to be column-vectors:

\[w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad x_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix} \]

• So \(w^T x_i \) is a scalar:

\[
 w^T x_i = \begin{bmatrix} w_1 & w_2 & \cdots & w_d \end{bmatrix} \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix} = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_d x_{id} = \sum_{j=1}^{d} w_j x_{id}
\]

• So rows of ‘X’ are actually transpose of column-vector \(x_i \):

\[
X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}
\]
Least Squares in d-Dimensions

• The linear least squares model in d-dimensions minimizes:

\[f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

• How do we find the best vector ‘w’?
 – Set the derivative of each variable ("partial derivative") to 0?
Partial Derivatives
Partial Derivatives

The tangent line in the direction of w_2

"Partial" derivative of f with respect to w_2 is the derivative with respect to w when all other variables are held fixed.

Denoted by $\frac{\partial}{\partial w_2}$ for variable w_2.
Next lecture: the normal equations

\[
\min_w \frac{1}{2} \|Xw - y\|_2^2
\]

\[
w = (X'X)^{-1}(X'y)
\]

\[
y\hat{=} = X * w
\]
Summary

• **Regression** considers the case of a numerical y_i.
• **Least squares** is a classic method for fitting linear models.
 – With 1 feature, it has a simple closed-form solution.
• **y-intercept** can be modeled by using a column of 1s.
• **Gradient** is vector containing partial derivatives of all variables.
• **Linear system of equations** gives least squares with ‘d’ features.