CPSC 340: Machine Learning and Data Mining

Finding Similar Items

Fall 2017
Admin

• Assignment 1 is due tonight.
 – 1 late day to hand in Monday, 2 late days for Wednesday.

• Assignment 2 will be up soon.
 – Start early.

• We’ll start using gradients and linear algebra next week:
 – Many people get lost when we get to this material.
 – If you aren’t comfortable with these, start reviewing/practicing!
Last Time: Outlier Detection

• We discussed **outlier detection**:
 – Identifying “unusually” different objects.
 – Hard to precisely define.

• We discussed 3 common approaches:
 – Fit a model, see if points fit the model.
 – Plot the data, and look for weird points.
 – Cluster the data, and see if points don’t cluster.
Distance-Based Outlier Detection

• Most outlier detection approaches are based on distances.
• Can we skip model/plot/clustering and just measure distances?
 – How many points lie in a radius ‘r’?
 – What is distance to k^{th} nearest neighbour?

• UBC connection (first paper on this topic):

 Algorithms for Mining Distance-Based Outliers in Large Datasets

Edwin M. Knorr and Raymond T. Ng
Department of Computer Science
University of British Columbia
Global Distance-Based Outlier Detection: KNN

• **KNN outlier detection:**
 – For each point, compute the average distance to its KNN.
 – Sort these values.
 – Choose the biggest values as outliers.

• **Goldstein and Uchida [2016]:**
 – Compared 19 methods on 10 datasets.
 – KNN best for finding "global" outliers.
 – “Local” outliers best found with local distance-based methods...

http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152173
Local Distance-Based Outlier Detection

• As with density-based clustering, problem with differing densities:

• Outlier o_2 has similar density as elements of cluster C_1.
• Basic idea behind local distance-based methods:
 – Outlier o_2 is “relatively” far compared to its neighbours.
Local Distance-Based Outlier Detection

• “Outlierness” ratio of example ‘i’:

\[
\frac{\text{average distance of } i \text{ to its KNNs}}{\text{average distance of neighbours of } i \text{ to their KNNs}}
\]

• If outlierness > 1, \(x_i\) is further away from neighbours than expected.

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
https://en.wikipedia.org/wiki/Local_outlier_factor
Problem with Unsupervised Outlier Detection

- Why wasn’t the hole in the ozone layer discovered for 9 years?

- Can be hard to decide when to report an outlier:
 - If you report too many non-outliers, users will turn you off.
 - Most antivirus programs do not use ML methods (see "base-rate fallacy")

https://en.wikipedia.org/wiki/Ozone_depletion
Supervised Outlier Detection

• Final approach to outlier detection is to use supervised learning:
 • $y_i = 1$ if x_i is an outlier.
 • $y_i = 0$ if x_i is a regular point.

• We can use our methods for supervised learning:
 – We can find very complicated outlier patterns.

• But it needs supervision:
 – We need to know what outliers look like.
 – We may not detect new “types” of outliers.
(pause)
Motivation: Product Recommendation

• A customer comes to your website looking to buy an item:

• You want to find similar items that they might also buy:
User-Product Matrix

Column gives all users that bought product.

Row x_i gives all items bought by user i. By convention, x_i is a $d \times 1$ column vector.

$X_{ij} = 1$ means user i bought item j.

$X_{ij} = 0$ means user i has not buy item j.
Amazon Product Recommendation

• Amazon product recommendation method:

\[X = \begin{bmatrix} _ & _ & _ \\
\end{bmatrix} \]

1. Divide each column by its norm ("normalization").
 • \(x^i = x^i / ||x^i|| \)
2. Return the KNNs across columns (using Euclidean distance).
 • Find ‘j’ values minimizing \(||x^i - x^j|| \).
 • Products that were bought by similar users.

• So we recommend the “normalized” nearest neighbours.
 – Normalization reflects whether product is “common” or “specialized".
Cost of Finding Nearest Neighbours

• With ‘n’ users and ‘d’ products, finding KNNs costs $O(nd)$.
 – Not feasible if ‘n’ and ‘d’ are in the millions.

• It’s faster if the user-product matrix is sparse: $O(z)$ for z non-zeroes.
 – But ‘z’ is still enormous in the Amazon example.
Closest-Point Problems

• We’ve seen a lot of “closest point” problems:
 – K-nearest neighbours classification.
 – K-means clustering.
 – Density-based clustering.
 – Hierarchical clustering.
 – KNN-based outlier detection.
 – Outlierness ratio.
 – Amazon product recommendation.

• How can we possibly apply these to Amazon-sized datasets?
But first the easy case: “Memorize the Answers”

• Easy case: you have a limited number of possible test examples.
 – E.g., you will always choose an existing product (not arbitrary features).

• In this case, just memorize the answers:
 – For each test example, compute all KNNs and store pointers to answers.
 – At test time, just return a set of pointers to the answers.

• The answers are called an inverted index, queries now cost $O(k)$.
 – Needs an extra $O(nk)$ storage.
Grid-Based Pruning

• Assume we want to find objects within a distance of ‘r’ of point x_i.

Divide space into squares of length r.

Hash examples based on squares:
Hash[“64,76”] = \{x_3, x_{70}\}
(Dict in Python/Julia)
Grid-Based Pruning

• Which squares do we need to check?

Points in same square can have distance less than ‘r’.
Grid-Based Pruning

• Which squares do we need to check?

Points in adjacent squares can have distance less than distance ‘r’.
Grid-Based Pruning

- Which squares do we need to check?

Points in non-adjacent squares must have distance more than ‘r’.
Grid-Based Pruning

- Assume we want to find objects within a distance of ‘r’ of point \(x_i\).

Divide space into squares of length \(r\).

Hash examples based on squares:
Hash[“64,76”] = \{\(x_3, x_{70}\}\)

Only need to check points in same and adjacent squares.
Grid-Based Pruning Discussion

• Similar ideas can be used for other “closest point” calculations.
 – Can be used with any norm.
 – If you want KNN, can use need grids of multiple sizes.

• But we have the “curse of dimensionality”:
 – Number of adjacent regions increases exponentially:
 • 2 with d=1, 8 with d=2, 26 with d=3, 80 with d=4, 252 with d=5, \(3^d-1\) in d-dimension.
Grid-Based Pruning Discussion

- Better choices of regions:
 - Quad-trees.
 - Kd-trees.
 - R-trees.
 - Ball-trees.

- Works better than squares, but worst case is still exponential.

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/R-tree
http://www.astroml.org/book_figures/chapter2/fig_balltree_example.html
Approximate Nearest Neighbours

• *Approximate* nearest neighbours:
 – We allow errors in the nearest neighbour calculation to gain speed.

• A simple and very-fast approximate nearest neighbour method:
 – Only check points within the same square.
 – Works if neighbours are in the same square.
 – But misses neighbours in adjacent squares.

• A simple trick to improve the approximation quality:
 – Use more than one grid.
 – So “close” points have more “chances” to be in the same square.
Approximate Nearest Neighbours

Grid 1:
Approximate Nearest Neighbours

- Using **multiple sets of regions** improves accuracy.
Approximate Nearest Neighbours

• Using **multiple sets of regions** improves accuracy.
Locality-Sensitive Hashing

• Even with multiple regions, approximation can be poor for large ‘d’.

• Common Solution (locality-sensitive hashing):
 – Replace features \(x_i \) with lower-dimensional features \(z_i \).
 • E.g., turns each a 1000000-dimensional \(x_i \) into a 10-dimensional \(z_i \).
 – Choose random \(z_i \) to preserve high-dimensional distances (bonus slides).
 \[||z_i - z_j|| \approx ||x_i - x_j|| \]
 – Find points hashed to the same square in lower-dimensional ‘\(z_i \)’ space.
 – Repeat with different random \(z_i \) values to increase chances of success.
End of Part 2: Key Concepts

• We focused on 3 unsupervised learning tasks:
 – Clustering.
 • Partitioning (k-means) vs. density-based.
 • “Flat” vs. hierarchichal (agglomerative).
 • Vector quantization.
 • Label switching.
 – Outlier Detection.
 • Ambiguous objective.
 • Common approaches (model-based, graphical, clustering, distance-based, supervised).
 – Finding similar items.
 • Amazon product recommendation.
 • Region-based pruning for fast “closest point” calculations.

• If previous years we also covered “association rules”:
Summary

• **Distance-based outlier detection:**
 – Based on measuring (relative) distance to neighbours.

• **Supervised-learning for outlier detection:**
 – Can detect complex outliers given a training set.

• **Amazon product recommendation:**
 – Find similar items using nearest neighbour search.

• **Fast nearest neighbour methods** drastically reduce search time.
 – Inverted indices, distance-based pruning.

• Next week: how do we do supervised learning with a *continuous* y_i?
Locality-Sensitive Hashing

• How do we make distance-preserving low-dimensional features?

• **Johnson-Lindenstrauss lemma** (paraphrased):
 – Define element ‘j’ of ‘z_i’ by:
 \[z_{ij} = w_{j1} x_{ii} + w_{j2} x_{i2} + \cdots + w_{jd} x_{id} \]
 – Where the scalars ‘w_{jc}’ are samples from a standard normal distribution.
 • We can collect them into a matrix ‘W’, which is the same for all ‘i’.
 – If the dimension ‘k’ of the ‘z_i’ is large enough, then: \[\|z_i - z_j\| \approx \|x_i - x_j\| \]
 • Specifically, we’ll require \(k = \Omega(\log(d)) \).
Locality-Sensitive Hashing

• Locality-sensitive hashing:
 1. Multiply X by a random Gaussian matrix ‘W’ to reduce dimensionality.
 2. Hash dimension-reduced points into regions.
 3. Test points in the same region as potential nearest neighbours.

• Now repeat with a different random matrix.
 – To increase the chances that the closest points are hashed together.

• An accessible overview is here:
Cosine Similarity vs. Normalized Nearest Neighbours

• The Amazon paper says they “maximize cosine similarity”.
• But this is equivalent to normalized nearest neighbours.
• Proof for $k=1$:

\[
\arg\min_j \left\| \frac{x_i}{\|x_i\|} - \frac{x_j}{\|x_j\|} \right\| \equiv \arg\min_j \frac{1}{2} \left\| \frac{x_i}{\|x_i\|} - \frac{x_j}{\|x_j\|} \right\|^2 \\
\equiv \arg\min_j \frac{1}{2} \frac{x_i^T x_i}{\|x_i\|^2} - \frac{2 x_i^T x_j}{\|x_i\| \|x_j\|} + \frac{1}{2} \frac{x_j^T x_j}{\|x_j\|^2} \\
\equiv \arg\min_j - \frac{x_i^T x_j}{\|x_i\| \|x_j\|} \\
\equiv \arg\max_j \frac{x_i^T x_j}{\|x_i\| \|x_j\|} \rightarrow \text{maximum cosine similarity}
\]
Outlierness (Symbol Definition)

• Let $N_k(x_i)$ be the k-nearest neighbours of x_i.
• Let $D_k(x_i)$ be the average distance to k-nearest neighbours:
 $$D_k(x_i) = \frac{1}{k} \sum_{j \in N_k(x_i)} ||x_i - x_j||$$
• Outlierness is ratio of $D_k(x_i)$ to average $D_k(x_j)$ for its neighbours ‘j’:
 $$O_k(x_i) = \frac{D_k(x_i)}{\frac{1}{k} \sum_{j \in N_k(x_i)} D_k(x_j)}$$
• If outlierness > 1, x_i is further away from neighbours than expected.
Outlierness with Close Clusters

• If clusters are close, outlierness gives unintuitive results:
 - The green points are not part of the KNN list of ‘p’ for small ‘k’.

In this example, ‘p’ has higher outlierness than ‘q’ and ‘r’:

Outlierness with Close Clusters

- 'Influenced outlierness' (INFLO) ratio:
 - Include in denominator the 'reverse' k-nearest neighbours:
 - Points that have ‘p’ in KNN list.
 - Adds ‘s’ and ‘t’ from bigger cluster that includes ‘p’:

- But still has problems:
 - Dealing with hierarchical clusters.
 - Yields many false positives if you have “global” outliers.
 - Goldstein and Uchida [2016] recommend just using KNN.

Malware and Intrusion Detection Systems

• In antivirus software and software for network intrusion detection systems, another method of outlier detection is common:
 – “Signature-based” methods: keep a list of byte sequences that are known to be malicious. Raise an alarm if you detect one.
 – Typically looks for **exact** matches, so can be implemented very quickly.
 • E.g., using data structures like “suffix trees”.
 – Can’t detect new types of outliers, but if you are good at keeping your list of possible malicious sequences up to date then this is very effective.

• Here is an article discussing why ML is *not* common in these settings:
Shingling: Decomposing Objects into Parts

• We say that a program is a virus if it has a malicious byte sequence.
 – We don’t try to compute similarity of the whole program.

• This idea of finding similar “parts” is used in various places.

• A key tool to be help us do this is “shingling”:
 – Dividing an object into consecutive “parts”.
 – For example, we previously saw “bag of words”.

• Given the shingles, we can search for similar parts rather than whole objects.
Shingling Applications

• For example, n-grams are one way to shingle text data.
 – If we use tri-grams, the sentence “there are lots of applications of nearest neighbours” would have these shingles:
 • {“there are lots”, “are lots of”, “lots of applications”, “of applications of”, “applications of nearest”, “of nearest neighbours”}.
 – We can find similar items using similarity/distance between sets.
 • For example, using the Jaccard similarity.

• Applications where finding similar shingles is useful:
 – Detecting plagiarism (shared n-grams indicates copying).
 – BLAST gene search tool (shingle parts of a biological sequence).
 – Entity resolution (finding whether two citations refer to the same thing).
 – Fingerprint recognition (shingles are “minutiae” in different image grid cells).
Shingling Practical Issues

• In practice, you can save memory by not storing the full shingles. Instead, define a hash function mapping from shingles to bit-vectors, and just store the bit-vectors.

• However, for some applications even storing the bit-vectors is too costly:
 – This leads to randomized algorithms for computing Jaccard score between huge sets even if you don’t store all the shingles.

• Conceptually, it’s still useful to think of the “bag of shingles” matrix:
 – X_{ij} is ‘1’ if object ‘i’ has shingle ‘j’.
Minhash and Jaccard Similarity

- Let $h(x_i)$ be the smallest index ‘j’ where x_{ij} is non-zero (“minhash”).

- Consider a random permutation of the possible shingles ‘j’:
 - In Julia: `randperm(d)`.
 - The value $h(x_i)$ will be different based on the permutation.

- Neat fact:
 - Probability that $h(x_i) = h(x_j)$ is the Jaccard similarity between x_i and x_j.

- Proof idea:
 - Probability that you stop with $h(x_i) = h(x_j)$ is given by probability that $x_{ik} = x_{jk} = 1$ for a random ‘k’, divided by probability that at least one of $x_{ik} = 1$ or $x_{jk} = 1$ is true for a random ‘k’.
Low-Memory Randomized Jaccard Approximation

- The “neat fact” lets us approximate Jaccard similarity without storing the shingles.

- First we generate a bunch of random permutations.
 - In practice, use a random hash function to randomly map 1:d to 1:d.
- For each example, go through its shingles to compute $h(x_i)$ for each permutation.
 - No need to store the shingles.
- Approximate $Jaccard(x_i,x_j)$ as the fraction of permutations where $h(x_i)=h(x_j)$.