Admin

• Assignment 1 is due tonight.
 – 1 late day to hand in Monday, 2 late days for Wednesday.

• Assignment 2 will be up soon.
 – Start early.

• We’ll start using gradients and linear algebra next week:
 – Many people get lost when we get to this material.
 – If you aren’t comfortable with these, start reviewing/practicing!
Last Time: Outlier Detection

• We discussed **outlier detection**:
 – Identifying “unusually” different objects.
 – Hard to precisely define.

• We discussed 3 common approaches:
 – Fit a model, see if points fit the model.
 – Plot the data, and look for weird points.
 – Cluster the data, and see if points don’t cluster.
Distance-Based Outlier Detection

• Most outlier detection approaches are based on distances.
• Can we skip model/plot/clustering and just measure distances?
 – How many points lie in a radius ‘r’?
 – What is distance to kth nearest neighbour?

• UBC connection (first paper on this topic):

 Algorithms for Mining Distance-Based Outliers in Large Datasets

Edwin M. Knorr and Raymond T. Ng
Department of Computer Science
University of British Columbia
Global Distance-Based Outlier Detection: KNN

• KNN outlier detection:
 – For each point, compute the average distance to its KNN.
 – Sort the set of ‘n’ average distances.
 – Choose the biggest values as outliers.
 • Filter out points that are far from their KNNs.

• Goldstein and Uchida [2016]:
 – Compared 19 methods on 10 datasets.
 – KNN best for finding “global” outliers.
 – “Local” outliers best found with local distance-based methods...

http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152173
Local Distance-Based Outlier Detection

• As with density-based clustering, problem with differing densities:

• Outlier o_2 has similar density as elements of cluster C_1.

• Basic idea behind local distance-based methods:
 – Outlier o_2 is “relatively” far compared to its neighbours.

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
Local Distance-Based Outlier Detection

• “Outlierness” ratio of example ‘i’:

\[
\text{Outlierness} = \frac{\text{average distance of ‘i’ to its KNNs}}{\text{average distance of neighbours of ‘i’ to their KNNs}}
\]

• If outlierness > 1, \(x_i\) is further away from neighbours than expected.

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
https://en.wikipedia.org/wiki/Local_outlier_factor
Problem with Unsupervised Outlier Detection

• Why wasn’t the hole in the ozone layer discovered for 9 years?

• Can be hard to decide when to report an outlier:
 – If you report too many non-outliers, users will turn you off.
 – Most antivirus programs do not use ML methods (see "base-rate fallacy")
Supervised Outlier Detection

• Final approach to outlier detection is to use supervised learning:
 • $y_i = 1$ if x_i is an outlier.
 • $y_i = 0$ if x_i is a regular point.

• We can use our methods for supervised learning:
 – We can find very complicated outlier patterns.
 – Classic credit card fraud detection methods used decision trees.

• But it needs supervision:
 – We need to know what outliers look like.
 – We may not detect new “types” of outliers.
(pause)
Motivation: Product Recommendation

• A customer comes to your website looking to buy at item:

• You want to find similar items that they might also buy:
User-Product Matrix

Column gives all users that bought product.

Row x_i gives all items bought by user i. By convention, x_i is a $d \times 1$ column vector.

$X_{ij} = 1$ means user i bought item j.

$X_{ij} = 0$ means user i has not buy item j.
Amazon Product Recommendation

- **Amazon product recommendation method:**

 \[X = \begin{bmatrix} \vdots \\ \|x_i - x_j\| \end{bmatrix} \]

 - Return the KNNs across columns.
 - Find ‘j’ values minimizing \(|x_i - x_j|\).
 - Products that were bought by similar users.

- But first divide each column by its norm, \(x_i/\|x_i\|\).
 - This is called **normalization**.
 - Reflects whether product is bought by many people or few people.
Amazon Product Recommendation

• Consider this user-item matrix:

\[X = \begin{bmatrix}
 \text{John} & 1 & 1 & 1 & 1 & 0 & 1 \\
 \text{Paul} & 1 & 0 & 1 & 0 & 1 & 0 \\
 \text{George} & 1 & 0 & 1 & 0 & 1 & 1 \\
 \text{Ringo} & 1 & 0 & 1 & 0 & 1 & 1 \\
 \text{Yoko} & 1 & 1 & 0 & 1 & 0 & 0
\end{bmatrix} \]

• Product 1 is most similar to Product 3 (bought by lots of people).
• Product 2 is most similar to Product 4 (also bought by John and Yoko).
• Product 3 is equally similar to Products 1, 5, and 6.
 – Does not take into account that Product 1 is more popular than 5 and 6.
Amazon Product Recommendation

• Consider this user-item matrix (normalized):

\[
X = \begin{bmatrix}
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{5}} & 0 & \frac{1}{\sqrt{4}} & 0 & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{5}} & 0 & \frac{1}{\sqrt{4}} & 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0
\end{bmatrix}
\]

• Product 1 is most similar to Product 3 (bought by lots of people).
• Product 2 is most similar to Product 4 (also bought by John and Yoko).
• Product 3 is **most similar to Product 1**.

 – Normalization means it prefers the popular items.
Cost of Finding Nearest Neighbours

• With ‘n’ users and ‘d’ products, finding KNNs costs $O(nd)$.
 – Not feasible if ‘n’ and ‘d’ are in the millions.

• It’s faster if the user-product matrix is sparse: $O(z)$ for z non-zeroes.
 – But ‘z’ is still enormous in the Amazon example.
Closest-Point Problems

• We’ve seen a lot of “closest point” problems:
 – K-nearest neighbours classification.
 – K-means clustering.
 – Density-based clustering.
 – Hierarchical clustering.
 – KNN-based outlier detection.
 – Outlierness ratio.
 – Amazon product recommendation.

• How can we possibly apply these to Amazon-sized datasets?
But first the easy case: “Memorize the Answers”

• Easy case: you have a **limited number of possible test examples**.
 – E.g., you will always choose an existing product (not arbitrary features).

• In this case, just **memorize the answers**:
 – For each test example, compute all KNNs and store pointers to answers.
 – At test time, just return a set of pointers to the answers.

• The answers are called an **inverted index**, queries now cost $O(k)$.
 – Needs an extra $O(nk)$ storage.
Grid-Based Pruning

• Assume we want to find objects within a distance of ‘r’ of point x_i.

Divide space into squares of length r.

Hash examples based on squares:

Hash[“64,76”] = \{x_3,x_{70}\}

(Dict in Python/Julia)
Grid-Based Pruning

- Which squares do we need to check?

Points in \textit{same square} can have distance less than ‘r’.
Grid-Based Pruning

- Which squares do we need to check?

Points in adjacent squares can have distance less than distance ‘r’.
Grid-Based Pruning

- Which squares do we need to check?

Points in non-adjacent squares must have distance more than ‘r’.
Grid-Based Pruning

- Assume we want to find objects within a distance of \(r \) of point \(x_i \).

Divide space into squares of length \(r \).

Hash examples based on squares:
Hash[“64,76”] = \{x_3, x_{70}\}

(Dict in Python/Julia)

Only need to check points in same and adjacent squares.
Grid-Based Pruning Discussion

• Similar ideas can be used for other “closest point” calculations.
 – Can be used with any norm.
 – If you want KNN, can use need grids of multiple sizes.

• But we have the “curse of dimensionality”:
 – Number of adjacent regions increases exponentially:
 • 2 with d=1, 8 with d=2, 26 with d=3, 80 with d=4, 252 with d=5, $3^d - 1$ in d-dimension.
Grid-Based Pruning Discussion

• Better choices of regions:
 – Quad-trees.
 – Kd-trees.
 – R-trees.
 – Ball-trees.

• Works better than squares, but worst case is still exponential.

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/R-tree
http://www.astroml.org/book_figures/chapter2/fig_balltree_example.html
Approximate Nearest Neighbours

• *Approximate* nearest neighbours:
 – We allow errors in the nearest neighbour calculation to gain speed.

• A simple and very-fast approximate nearest neighbour method:
 – Only check points within the same square.
 – Works if neighbours are in the same square.
 – But misses neighbours in adjacent squares.

• A simple trick to improve the approximation quality:
 – Use more than one grid.
 – So “close” points have more “chances” to be in the same square.
Approximate Nearest Neighbours

Grid 1:
Approximate Nearest Neighbours

- Using **multiple sets of regions** improves accuracy.
Approximate Nearest Neighbours

• Using *multiple sets of regions* improves accuracy.
Locality-Sensitive Hashing

• Even with multiple regions, approximation can be poor for large ‘d’.

• Common Solution (locality-sensitive hashing):
 – Replace features \(x_i \) with lower-dimensional features \(z_i \).
 • E.g., turns each a 1000000-dimensional \(x_i \) into a 10-dimensional \(z_i \).
 – Choose random \(z_i \) to preserve high-dimensional distances (bonus slides).
 \[||z_i - z_j|| \approx ||x_i - x_j|| \]
 – Find points hashed to the same square in lower-dimensional ‘\(z_i \)’ space.
 – Repeat with different random \(z_i \) values to increase chances of success.
End of Part 2: Key Concepts

• We focused on 3 unsupervised learning tasks:
 – **Clustering**.
 • Partitioning (k-means) vs. density-based.
 • “Flat” vs. hierarchial (agglomerative).
 • Vector quantization.
 • Label switching.
 – **Outlier Detection**.
 • Ambiguous objective.
 • Common approaches (model-based, graphical, clustering, distance-based, supervised).
 – **Finding similar items**.
 • Amazon product recommendation.
 • Region-based pruning for fast “closest point” calculations.

• If previous years we also covered “association rules”:
Summary

• **Distance-based outlier detection:**
 – Based on measuring (relative) distance to neighbours.

• **Supervised-learning for outlier detection:**
 – Can detect complex outliers given a training set.

• **Amazon product recommendation:**
 – Find similar items using nearest neighbour search.

• **Fast nearest neighbour methods** drastically reduce search time.
 – Inverted indices, distance-based pruning.

• Next week: how do we do supervised learning with a *continuous* y_i?
Locality-Sensitive Hashing

• How do we make **distance-preserving low-dimensional features**?

• **Johnson-Lindenstrauss lemma** (paraphrased):
 – Define element ‘j’ of ‘z_i’ by:
 \[Z_{ij} = w_{1j} x_{i1} + w_{2j} x_{i2} + \cdots + w_{dj} x_{id} \]
 – Where the scalars ‘w_{jc}’ are samples from a standard normal distribution.
 • We can collect them into a matrix ‘W’, which is the same for all ‘i’.
 – If the dimension ‘k’ of the ‘z_i’ is large enough, then: \[\| z_i \cdot z_j \| \approx \| x_i \cdot x_j \| \]
 • Specifically, we’ll require \(k = \Omega(\log(d)) \).
Locality-Sensitive Hashing

• **Locality-sensitive hashing:**
 1. Multiply X by a random Gaussian matrix ‘W’ to reduce dimensionality.
 2. Hash dimension-reduced points into regions.
 3. Test points in the same region as potential nearest neighbours.

• Now *repeat with a different random matrix.*
 – To increase the chances that the closest points are hashed together.

• An accessible overview is here:
Cosine Similarity vs. Normalized Nearest Neighbours

• The Amazon paper says they “maximize cosine similarity”.
• But this is equivalent to normalized nearest neighbours.
• Proof for k=1:

\[
\begin{align*}
\arg\min_j \| \frac{x_i}{\|x_i\|} - \frac{x_j}{\|x_j\|} \| & \equiv \arg\min_j \frac{1}{2} \| \frac{x_i}{\|x_i\|} - \frac{x_j}{\|x_j\|} \|^2 \\
& \equiv \arg\min_j \frac{1}{2} \frac{x_i^\top x_i}{\|x_i\|^2} - 2 \frac{x_i^\top x_j}{\|x_i\| \cdot \|x_j\|} + \frac{1}{2} \frac{x_j^\top x_j}{\|x_j\|^2} \\
& \equiv \arg\min_j \frac{x_i^\top x_j}{\|x_i\| \cdot \|x_j\|} \\
& \equiv \arg\max_j \frac{x_i^\top x_j}{\|x_i\| \cdot \|x_j\|}
\end{align*}
\]

maximum cosine similarity
Outlierness (Symbol Definition)

• Let $N_k(x_i)$ be the k-nearest neighbours of x_i.
• Let $D_k(x_i)$ be the average distance to k-nearest neighbours:

$$D_k(x_i) = \frac{1}{k} \sum_{j \in N_k(x_i)} \|x_i - x_j\|$$

• Outlierness is ratio of $D_k(x_i)$ to average $D_k(x_j)$ for its neighbours ‘j’:

$$O_k(x_i) = \frac{D_k(x_i)}{\frac{1}{k} \sum_{j \notin N_k(x_i)} D_k(x_j)}$$

• If outlierness > 1, x_i is further away from neighbours than expected.
Outlierness with Close Clusters

- If clusters are close, outlierness gives unintuitive results:
 - In this example, ‘p’ has higher outlierness than ‘q’ and ‘r’:
 - The green points are not part of the KNN list of ‘p’ for small ‘k’.

Outlierness with Close Clusters

- ‘Influenced outlierness’ (INFLO) ratio:
 - Include in denominator the ‘reverse’ k-nearest neighbours:
 - Points that have ‘p’ in KNN list.
 - Adds ‘s’ and ‘t’ from bigger cluster that includes ‘p’:

- But still has problems:
 - Dealing with hierarchical clusters.
 - Yields many false positives if you have “global” outliers.
 - Goldstein and Uchida [2016] recommend just using KNN.

[Diagram showing clusters and points]

Malware and Intrusion Detection Systems

- In antivirus software and software for network intrusion detection systems, another method of outlier detection is common:
 - “Signature-based” methods: keep a list of byte sequences that are known to be malicious. Raise an alarm if you detect one.
 - Typically looks for **exact** matches, so can be implemented very quickly.
 - E.g., using data structures like “suffix trees”.
 - Can’t detect new types of outliers, but if you are good at keeping your list of possible malicious sequences up to date then this is very effective.

- Here is an article discussing why ML is *not* common in these settings:
Shingling: Decomposing Objects into Parts

- We say that a program is a virus if it has a malicious byte sequence.
 - We don’t try to compute similarity of the whole program.

- This idea of finding similar “parts” is used in various places.

- A key tool to be help us do this is “shingling”:
 - Dividing an object into consecutive “parts”.
 - For example, we previously saw “bag of words”.

- Given the shingles, we can search for similar parts rather than whole objects.
Shingling Applications

• For example, n-grams are one way to shingle text data.
 – If we use tri-grams, the sentence “there are lots of applications of nearest neighbours” would have these shingles:
 • {“there are lots”, “are lots of”, “lots of applications”, “of applications of”, “applications of nearest”, “of nearest neighbours”}.
 – We can find similar items using similarity/distance between sets.
 • For example, using the Jaccard similarity.

• Applications where finding similar shingles is useful:
 – Detecting plagiarism (shared n-grams indicates copying).
 – BLAST gene search tool (shingle parts of a biological sequence).
 – Entity resolution (finding whether two citations refer to the same thing).
 – Fingerprint recognition (shingles are “minutiae” in different image grid cells).
Shingling Practical Issues

• In practice, you can save memory by not storing the full shingles.
• Instead, define a hash function mapping from shingles to bit-vectors, and just store the bit-vectors.

• However, for some applications even storing the bit-vectors is too costly:
 – This leads to randomized algorithms for computing Jaccard score between huge sets even if you don’t store all the shingles.

• Conceptually, it’s still useful to think of the “bag of shingles” matrix:
 – X_{ij} is ‘1’ if object ‘i’ has shingle ‘j’.
Minhash and Jaccard Similarity

• Let $h(x_i)$ be the smallest index ‘j’ where x_{ij} is non-zero (“minhash”).

• Consider a random permutation of the possible shingles ‘j’:
 – In Julia: `randperm(d)`.
 – The value $h(x_i)$ will be different based on the permutation.

• Neat fact:
 – Probability that $h(x_i) = h(x_j)$ is the Jaccard similarity between x_i and x_j.

• Proof idea:
 – Probability that you stop with $h(x_i) = h(x_j)$ is given by probability that $x_{ik}=x_{jk}=1$ for a random ‘k’, divided by probability that at least one of $x_{ik}=1$ or $x_{jk}=1$ is true for a random ‘k’.
Low-Memory Randomized Jaccard Approximation

• The “neat fact” lets us approximate Jaccard similarity without storing the shingles.

• First we generate a bunch of random permutations.
 – In practice, use a random hash function to randomly map 1:d to 1:d.

• For each example, go through its shingles to compute $h(x_i)$ for each permutation.
 – No need to store the shingles.

• Approximate $\text{Jaccard}(x_i, x_j)$ as the fraction of permutations where $h(x_i) = h(x_j)$.