CPSC 340: Machine Learning and Data Mining

Mark Schmidt

University of British Columbia, Fall 2017 www.cs.ubc.ca/~schmidtm/Courses/340-F17

Some images from this lecture are taken from Google Image Search, contact me if you want the reference

Big Data Phenomenon

- We are collecting and storing data at an unprecedented rate.
- Examples:
 - YouTube, Facebook, MOOCs, news sites.
 - Credit cards transactions and Amazon purchases.
 - Transportation data (Google Maps, Waze, Uber)
 - Gene expression data and protein interaction assays.
 - Maps and satellite data.
 - Large hadron collider and surveying the sky.
 - Phone call records and speech recognition results.
 - Video game worlds and user actions.

Big Data Phenomenon

- What do you do with all this data?
 - Too much data to search through it manually.
- But there is valuable information in the data.
 - How can we use it for fun, profit, and/or the greater good?
- Data mining and machine learning are key tools we use to make sense of large datasets.

Data Mining

• Automatically extract useful knowledge from large datasets.

• Usually, to help with human decision making.

Machine Learning

• Using computer to automatically detect patterns in data and use these to make predictions or decisions.

- Most useful when:
 - We want to automate something a human can do.
 - We want to do things a human can't do (look at 1 TB of data).

Data Mining vs. Machine Learning

- Data mining and machine learning are very similar:
 - Data mining often viewed as closer to databases.
 - Machine learning often viewed as closer AI.

- Both are similar to statistics, but more emphasis on:
 - Large datasets and computation.
 - Predictions (instead of descriptions).
 - Flexible models (that work on many problems).

Deep Learning vs. Machine Learning vs. Al

- Traditional we've viewed ML as a subset of AI.
 - And "deep learning" as a subset of ML.

• Spam filtering:

- Credit card fraud detection:
- Product recommendation:

Google	in:spam					- Q	Mark		0 🙎
U		Click here	to enable deskto	p notifie	cations for Gmail. Learn more	Hide			
Gmail -		C	More *				1-6 of 6 <	>	\$ -
COMPOSE	D	elete all spam	messages now (m	nessages	s that have been in Spam more that	an 30 days v	vill be automatically	deleter	d)
COMPOSE		atoosa dahi	bashi	Fw: F	Recommen Pro. Kangavari			O	6:03 am
Inbox	☆ >>	atoosa dah	bashi	Fw: 0	Question about PHD			o	6:02 am
Important		Group3 Sal	es	[Sale	es #TCB-459-11366]: Irregular ac	tivity alert			5:42 am
Sent Mail		memberser	vicesNA	ualbe	rta Your credit card will expire	soon.			3:19 am
Drafts (1)	□ ☆ >>	MALTESAS	OFFICIAL CONF	El lists	[CFP] ARIEET-ADMMET-ISYSM	PARALLEL	CONFERENCES - C)	2:36 am
 > Circles 		MALTESAS		lists	[CFP] MALTESAS SCOPUS Q3	Journal Ba	ased Conferences a	11	10:01 pm

Transaction Date		Transaction Details	Debit	Credit
Aug. 27, 2015	Aug. 28, 2015	BEAN AROUND THE WORLD VANCOUVER, BC	\$10.95	

>

Customers Who Bought This Item Also Bought

• Motion capture:

• Optical character recognition and machine translation:

• Speech recognition:

• Face detection:

• Object detection:

KLAY THOMPSON

• Sports analytics:

• Personal Assistants:

• Medical imaging:

J:63

Self-driving cars:

• Scene completion:

• Image annotation:

a cat is sitting on a toilet seat logprob: -7.79

a display case filled with lots of different types of donuts logprob: -7.78

a group of people sitting at a table with wine glasses <code>logprob: -6.71</code>

Discovering new cancer subtypes:

• Automated Statistician:

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function within each period is very smooth and resembles a sinusoid. This component applies until 1643 and from 1716 onwards.

• Mimicking artistic styles and inceptionism:

Horizon

Leaves

Towers & Pagodas

Birds & Insects

• "Deep dream":

• Fast physics-based animation:

- Mimicking art style in <u>video</u>.
- Recent work on generating text/music/voice/poetry/dance.

• Beating human Go masters:

- Summary:
 - There is a lot you can do with a bit of statistics and a lot data/computation.
- But it is important to know the limitations of what you are doing.
 - "The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data." – John Tukey
 - A huge number of people applying ML are just "overfitting".
- We are in exciting times.
 - Major recent progress in fields like speech recognition and computer vision.
 - Things are changing a lot on the timescale of 3-5 years.
 - A bubble in ML investments.

(pause)

Reasons NOT to take this class

- Compared to typical CS classes, there is a lot more math:
 - Requires linear algebra, probability, and multivariate calculus (at once).
 - "I think the prerequisites for this course should require that students have obtained at least 75% (or around there) in the required math courses. As someone who who did not excel at math, I felt severely under prepared and struggled immensely in this course, especially seeing that I have taken CPSC courses in the past with similar math requirements, but were not nearly as math heavy as CPSC340."
- If you've only taken a few math courses (or have low math grades), this course will ruin your life for the next 4 months.
- It's better to improve your math, then take this course later.
 - Take MATH 302 or 307 instead.

Reasons NOT to take this class

- This is not a class on "how to use scikit-learn or TensorFlow".
 - You will need to implement things from scratch, and modify existing code.
- Instead, this is a 300-level computer science course:
 - You are expected to be able to quickly understand and write code.
 - You are expected to be able to analyze algorithms in big-O notation.
- We're going to use the Julia programming language.
 - You are expected to be able to learn a programming language on your own.
 - Mike Gelbart teaches it in Python.
- If you only have limited programming experience, this course will ruin your life for the next 4 months.
- It's better to get programming experience, then take this course later.
 Take CPSC 310 or 320 instead.

Reasons NOT to take this class

- Do NOT take this grade expecting a high grade with low effort.
- Many people find the assignments very long and very difficult.
 - You will need to put time and effort into learning new/difficult skills.
 - If you aren't strong at math and CS, they may take all of your time.
- Class averages have only been high because of graduate students.

- NOT because this is an "easy" course, it's not.

CPSC 340 vs. CPSC 540

- There is also a graduate ML course, CPSC 540:
 - More advanced material.
 - More focus on theory/implementation, less focus on applications.
 - More prerequisites and higher workload.
- For almost all students, CPSC 340 is the right class to take:
 - CPSC 340 focuses on the most widely-used methods in practice.
 - It covers much more material than standard ML classes like Coursera.
 - CPSC 540 focuses on less widely-used methods and research topics.
 - It is intended as a continuation of CPSC 340.
 - You'll miss important topics if you skip CPSC 340.

Essential Links

- Please bookmark the course homepage:
 - www.cs.ubc.ca/~schmidtm/Courses/340-F17
 - Contains lecture slides, assignments, optional readings, additional notes.
- You should sign up for Piazza:
 - www.piazza.com/ubc.ca/winterterm12017/cpsc340/home.
 - Can be used to ask questions about lectures/assignments/exams.
 - May occasionally be used for course announcements.
- Use Piazza instead of e-mail for questions:
 - I can take a long time to respond e-mails.

Textbooks

- No required textbook.
- I'll post relevant sections out of these books as optional readings:
 - Artificial Intelligence: A Modern Approach (Rusell & Norvig).
 - Introduction to Data Mining (Tan et al.).
 - The Elements of Statistical Learning (Hastie et al.).
 - Mining Massive Datasets (Leskovec et al.)
 - Machine Learning: A Probabilistic Perspective (Murphy).
- Most of these are on reserve in the ICICS reading room.
- List of related courses on the webpage, or you can use Google.

TA Cheat Sheet

Hashemi Hooman

• Xin Bei She

- Siyuan He

Sharan Vaswani

Nasim Zolaktaf

Tanner Johnson

• Angad Kalra

• Zainab Zolaktaf

Assignments and Working in Teams

- There will be 6 Assignments worth 30% of final grade:
 - Usually a combination of math and programming.
 - Submitted as a zip file using the Handin program.
 - You will need to setup a CS account to use this.
 - Make sure to follow the formatting instructions (hand in early and often).
- Assignment 0 is on the webpage, and is due next Friday.
- Assignment 0 must be done individually.
- Assignments 1-5 can be done in pairs.
 - There is no commitment to keep the same pairs between assignments.

Late "Class" Policy for Assignments

- Assignments will be due at midnight "anytime on Earth" (ATE).
- If you can't make it, you can use "late classes":
 - For example, if assignment is due on a Friday:
 - Handing it in Friday is 0 late classes.
 - Handing it in Monday is 1 late class.
 - Handing it in Wednesday is 2 late classes.
 - You will get a mark of 0 on an assignment if you:
 - Use more than 2 late classes on the assignment.
 - Exceed 4 late classes across all assignments.
 - Submit the solutions to an assignment from a previous term.
- We'll try to put grades on Connect within 10 days of due date.

Programming Language: Julia

• 3 most-used languages in these areas: Python, Matlab, and R.

- We will be using Julia which is similar to Matlab.
 - Except it's free and is way faster than Python/Matlab/R.
- No, you cannot use Python/Matlab/R/etc.
 - Assignments have prepared code that we won't translate to 3 languages.
 - TAs shouldn't have to know 3 languages to grade.

Waiting List and Auditing

- Right now only CS students register directly.
- 181/195 seats are filled, but the room supports 250 students.
- We're going to start registering people from the waiting list.
 - Being on the waiting list is the only way to get registered:
 - https://www.cs.ubc.ca/students/undergrad/courses/waitlists
 - You might be registered without being notified, be sure to check!
 - They might also ask to submit a prereq form, let me know if you have issues.
- Because the room is full, we may not have seats for auditors.
 - If there is space, I'll describe (light) auditing requirements then.

Getting Help

- Many students find the assignments long and difficult.
- But there are many sources of help:
 - TA office hours and instructor office hours (see webpage for times).
 - Starting in the second week of class.
 - Piazza.
 - Weekly tutorials.
 - Starting in second week of class.
 - Will go through provided code, review background material, review big concepts, and/or do exercises.
 - Tutorials are optional be you must be registered in a tutorial section to stay enrolled.
 - Other students (ask your neighbor for their e-mail).
 - The web (almost all topics are covered in many places).

Midterm and Final

- In-class midterm worth 20% and a (cumulative) final worth 50%
 - Closed-book.
 - One doubled-sided 'cheat sheet' for midterm.
 - Two doubled-sided pages for final.
 - No need to pass the final to pass the course (but recommended).
- Midterm is tentatively schedule for October 20th.
- I don't control when the final is, don't make travel plans before December 22nd.
- There will be two types of questions:
 - 'Technical' questions requiring things like pseudo-code or derivations.
 - Similar to assignment questions, only be related topics covered in assignments.
 - 'Conceptual' questions testing understanding of key concepts.
 - All lecture slide material except "bonus slides" is fair game here.

Lectures

- All slides will be posted online (before lecture, and final version after).
- Please ask questions: you probably have similar questions to others.
 I may deflect to the next lecture or Piazza for certain questions.
- Be warned that the course we will move fast and cover a lot of topics:
 - Big ideas will be covered slowly and carefully.
 - But a bunch of other topics won't be covered in a lot of detail.
- Isn't it wrong to have only have shallow knowledge?
 - In this field, it's better to know many methods than to know 5 in detail.
 - This is called the "no free lunch" theorem: different problems need different solutions.

Bonus Slides

- I will include a lot of "bonus slides".
 - May mention advanced variations of methods from lecture.
 - May overview big topics that we don't have time for.
 - May go over technical details that would derail class.
- You are not expected to learn the material on these slides.
 But they're useful if you want to take 540 or work in this area.
- I'll use this colour of background on bonus slides.

Code of Conduct

- Do not post offensive or disrespectful content on Piazza.
- If you have a problem or complaint, let me know (maybe we can fix it).
- Do not distribute any course materials without permission.
- Do not record lectures without permission.
- Think about how/when to ask for help:
 - Don't ask for help after being stuck for 10 seconds. Make a reasonable effort to solve your problem (check instructions, Piazza, and Google).
 - But don't wait until the 10th hour of debugging before asking for help.
 - If you do, the assignments will take all of your time.
- There will be no post-course grade changes based on grade thresholds:
 49% will not be rounded to 50%, and 71% will not be rounded to 72%.

Cheating and Plagiarism

- Read about UBC's policy on "academic misconduct" (cheating):
 - <u>http://www.calendar.ubc.ca/Vancouver/index.cfm?tree=3,54,111,959</u>
- When submitting assignments, acknowledge all sources:
 - Put "I had help from Sally on this question" on your submission.
 - Put "I found this from another course's material" on your submission.
 - Put "I copied this section from this website" on your submission.
 - Otherwise, this is plagiarism (course material/textbooks are ok with me).
- At Canadian schools, this is taken very seriously.
 - Could receive 0 in course, be expelled from UBC, or have degree revoked.

Course Outline

• Next class discusses data "exploratory data analysis".

- After that, the remaining lectures focus on five topics:
 - 1) Supervised Learning.
 - 2) Unsupervised learning.
 - 3) Linear prediction.
 - 4) Latent-factor models.
 - 5) Deep learning.

(pause)

Supervised Learning

- Classification:
 - Given an object, assign it to predefined 'classes'.
- Examples:
 - Spam filtering.

Google

COMPOSE

Gmail -

Inbox Starred Important Sent Mail Drafts (1) Spam (6)

Circles

Body part recognition

in:spam

MALTESAS

*

it	cion.				
	Click here to enable deskton	atifications for Cma			
	C More *		1-6 of 6 < >	Q -	
De	elete all spam messages now (mes	sages that have been in Spam more than 30 days will	be automatically delete	ed)	1
*	atoosa dahbashi	W: RECOMMEN PRO. KANGAVARI	e	6:03 am	
*	atoosa dahbashi	w: Question about PHD	e	6:02 am	1
	Group3 Sales	Sales #TCB-459-11366]: Irregular activity alert		5:42 am	
*	memberservicesNA	ualberta Your credit card will expire soon.		3:19 am	
*	MALTESAS OFFICIAL CONFE	lists [CEP] ARIFET-ADMMET-ISYSM PARALLEL C	ONFERENCES - O	2:36 am	

lists [CFP] MALTESAS SCOPUS Q3 Journal Based Conferences a

10:01 pm

Unsupervised Learning

- Clustering:
 - Find groups of `similar' items in data.
- Examples:
 - Are there subtypes of tumors?
 - Are there high-crime hotspots?
- Outlier detection:
 - Finding data that doesn't belong.
- Association rules:
 - Finding items frequently 'bought together'.

Transaction Date	→ Posted Date	Transaction Details	Debit	Credit
Aug. 27, 2015	Aug. 28, 2015	BEAN AROUND THE WORLD VANCOUVER, BC	\$10.95	

Linear Prediction

- Regression:
 - Predicting continuous-valued outputs.
- Working with very high-dimensional data.

Latent-Factor Models

- Principal component analysis and friends:
 - Low-dimensional representations.
 - Decomposing objects into "parts".
 - Visualizing high-dimensional data.
- Collaborative filtering:
 - Predicting user ratings of items.

and the second
ttern Recognition and
achine Learning
formation Science and
ristopher Bishop
全全全 公 115
rdcover
0.76 Drime

	The second second second
NING	Time Kulle Robert Budean James Referan
-	The Elements of Statistical Learning Insulfing Volume and Produce
<u>.</u>	Second Editors -
	S terrer
m Data	The Elements of S
u-Mostafa	Learning: Data Mi
88	Inference, and Pre
	Trevor Hastie

	PROBABILISTIC GRAPHICAL MODELS RECORDAL AND RECORDS
Statistical	Probabilistic Graphical
ning,	Models: Principles and
diction,	Techniques (Adaptive
	Daphne Koller
	含含含含 合 28
	Hardcover

>

Customers Who Bought This Item Also Bought

Learning Fro Yaser S Al Hardcove

Deep Learning

• Neural networks: Brain-inspired ML when you have a lot of data/computation but don't know what is relevant.

Photo I took in the UK on the way home from the "Optimization and Big Data" workshop:

