Tutorial 9

CPSC 340

Overview

Learning Features

Feature Selection

PCA and Dimensionality Reduction

Learning Probability Densities

Learning Features

[Why] Feature Selection

- Sometimes, using every feature you have is not a good idea.
- Fundamental tradeoff:
 - More features ⇒ Lower training error.
 - ullet More features \Longrightarrow Training error is worse approximation of test error.

[Why] Feature Selection

- Sometimes, using every feature you have is not a good idea.
- Fundamental tradeoff:
 - More features

 Lower training error.
 - More features \implies Training error is worse approximation of test error.
- Basically,

 - Less features ⇒ simpler model.

• Balance between training error and number of features.

- Balance between training error and number of features.
- Idea new loss function:

$$\hat{L}(w) = L(w) + [\# \text{features}]$$

- Balance between training error and number of features.
- Idea new loss function:

$$\hat{L}(w) = L(w) + [\# \text{features}]$$

- Can't minimize \hat{L} using gradient descent.
- Idea Fix #features, then minimize *L* using gradient descent.

- Balance between training error and number of features.
- Idea new loss function:

$$\hat{L}(w) = L(w) + [\# \text{features}]$$

- Can't minimize \hat{L} using gradient descent.
- Idea Fix #features, then minimize L using gradient descent.
 - Repeat for every subset of the features:
 - Find $w^* = \operatorname{argmin} L(w)$
 - Compute $\hat{L}(w^*)$
 - Return w* that minimizes L

- Balance between training error and number of features.
- Idea new loss function:

$$\hat{L}(w) = L(w) + [\# \text{features}]$$

- Can't minimize \hat{L} using gradient descent.
- Idea Fix #features, then minimize L using gradient descent.
 - Repeat for every subset of the features:
 - Find $w^* = \operatorname{argmin} L(w)$
 - Compute $\hat{L}(w^*)$
 - Return w* that minimizes L
- With d features, this procedure requires training $2^{|d|}$ models.

We can approximate the previous procedure.

We can approximate the previous procedure.

Forward selection procedure:

- Initialize with no features: $S = \emptyset$
- Best error so far: BestErr = ∞
- Repeat until BestErr doesn't decrease:
 - Repeat for every feature not in *S*:
 - Compute min \(\hat{L}\) using this feature and \(\frac{S}{L}\).
 - If for some feature, min $\hat{L} < \mathsf{BestErr}$
 - Add feature that minimizes \hat{L} the most to S.
 - (Else exit loop.)
- Return the model trained on 5.

We can approximate the previous procedure.

Forward selection procedure:

- Initialize with no features: $S = \emptyset$
- Best error so far: BestErr = ∞
- Repeat until BestErr doesn't decrease:
 - Repeat for every feature not in 5:
 - Compute min \(\hat{L}\) using this feature and \(\frac{S}{L}\).
 - If for some feature, min $\hat{L} < \mathsf{BestErr}$
 - Add feature that minimizes \hat{L} the most to S.
 - (Else exit loop.)
- Return the model trained on S.

```
Number of trained models? O(d^2)
(There's a corresponding backward selection algorithm as well.)
```

[Problem] Representation is Important.

Consider training decision trees on the follow two datasets: (Binary classification)

[Problem] Representation is Important.

Consider training decision trees on the follow two datasets: (Binary classification)

 The decision tree for the left dataset requires more depth to get a good error, and will likely overfit.

[Problem] Representation is Important.

Consider training decision trees on the follow two datasets: (Binary classification)

- The decision tree for the left dataset requires more depth to get a good error, and will likely overfit.
- The problem? The right dataset is the exact same data, just rotated 45 degrees.

[PCA] Principal Component Analysis

Objective of PCA:

- Represent the same data points using different features.
- Features are ordered by variance. Oftentimes, features with more variance will give more information about the data.

[PCA] Principal Component Analysis

Objective of PCA:

- Represent the same data points using different features.
- Features are ordered by variance. Oftentimes, features with more variance will give more information about the data.

Result of PCA:

- X = ZW
- X is $n \times d$, Z is $n \times d$, W is $d \times d$
- W is interpreted as a new basis for X. Typically orthogonal.

[PCA] Principal Component Analysis

Objective of PCA:

- Represent the same data points using different features.
- Features are ordered by variance. Oftentimes, features with more variance will give more information about the data.

Result of PCA:

- $\bullet X = ZW$
- X is $n \times d$, Z is $n \times d$, W is $d \times d$
- W is interpreted as a new basis for X. Typically orthogonal.

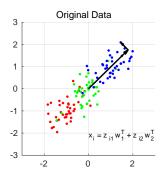
$$\underbrace{\begin{bmatrix} -x_1^T - \\ \vdots \\ -x_n^T - \end{bmatrix}}_{X - T/W} = \begin{bmatrix} -z_1^T - \\ \vdots \\ -z_n^T - \end{bmatrix} \begin{bmatrix} | & | & | \\ (w^T)_1 & \cdots & (w^T)_n \\ | & | & | \end{bmatrix}$$

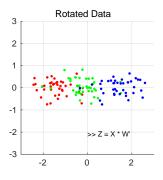
(x_i is a linear combination of the columns of W, with z_i as coefficients.)

PCA Visualized

Result of PCA:

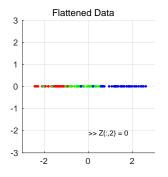
- $\bullet X = ZW$
- X is $n \times d$, Z is $n \times d$, W is $d \times d$
- ullet W is interpreted as a new basis for X. Typically orthogonal.

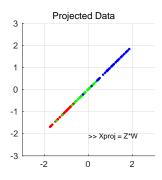




Dimensionality Reduction

- \bullet The columns of W are the principal components.
- These components are ordered.
- The first principal component contains the most amount of information relevant to describing the data *X*.





Summary

- We can choose to use less features to combat overfitting.
- Sometimes the features we have just aren't useful for the model we choose.
- So we perform some operation (eg. PCA) to obtain more meaningful features.
- Along with PCA, we can do dimensionality reduction.
- Reducing the number of features achieves similar effects to feature selection.
- However, PCA + dimensionality reduction ensures we reduce the number of features in a meaningful way.

Learning Probability Densities

- Let's place ourselves in a probabilistic setting.
- We have some data $X = (x_1, x_2, \dots, x_n)$
- We assume the samples x_i are i.i.d. from some density p

- Let's place ourselves in a probabilistic setting.
- We have some data $X = (x_1, x_2, \dots, x_n)$
- We assume the samples x_i are i.i.d. from some density p
- The density p is parameterized by w. Notation p(x; w).

- Let's place ourselves in a probabilistic setting.
- We have some data $X = (x_1, x_2, \dots, x_n)$
- We assume the samples x_i are i.i.d. from some density p
- The density p is parameterized by w. Notation p(x; w).

Examples:

• $x_i \sim \text{Bernoulli}(w)$

$$p(x; w) = w^{x}(1 - w)^{1-x}$$

- Let's place ourselves in a probabilistic setting.
- We have some data $X = (x_1, x_2, \dots, x_n)$
- We assume the samples x_i are i.i.d. from some density p
- The density p is parameterized by w. Notation p(x; w).

Examples:

• $x_i \sim \text{Bernoulli}(w)$

$$p(x; w) = w^{x}(1-w)^{1-x}$$

• $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$p(x; w) = \frac{1}{\sqrt{2\sigma^2 \pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
$$w = \{\mu, \sigma^2\}$$

- Let's place ourselves in a probabilistic setting.
- We have some data $X = (x_1, x_2, \dots, x_n)$
- We assume the samples x_i are i.i.d. from some density p
- The density p is parameterized by w. Notation p(x; w).

Examples:

• $x_i \sim \text{Bernoulli}(w)$

$$p(x; w) = w^{x}(1-w)^{1-x}$$

• $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$p(x; w) = \frac{1}{\sqrt{2\sigma^2 \pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
$$w = \{\mu, \sigma^2\}$$

We interpret p(x; w) as a density function parametrized by w. Oftentimes people write p(x|w) as well.

Assume we have some samples iid from a distribution p(x; w). We don't know w and would like to learn it.

• Frequentist Approach¹:

Bayesian Approach:

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

Assume we have some samples iid from a distribution p(x; w). We don't know w and would like to learn it.

- Frequentist Approach¹:
 - We assume there exist a true distribution $p(x; w_0)$.

Bayesian Approach:

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

Assume we have some samples iid from a distribution p(x; w). We don't know w and would like to learn it.

- Frequentist Approach¹:
 - We assume there exist a true distribution $p(x; w_0)$.
 - We want to learn an approximation to w_0

$$w^* = \arg\max_{w} p(X|w)$$

Bayesian Approach:

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

Assume we have some samples iid from a distribution p(x; w). We don't know w and would like to learn it.

- Frequentist Approach¹:
 - We assume there exist a true distribution $p(x; w_0)$.
 - We want to learn an approximation to w_0

$$w^* = \arg\max_{w} p(X|w)$$

- Result: w* is the parameter that maximizes the likelihood of observing/sampling X.
- Bayesian Approach:

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

Assume we have some samples iid from a distribution p(x; w).

We don't know w and would like to learn it.

- Frequentist Approach¹:
 - We assume there exist a true distribution $p(x; w_0)$.
 - We want to learn an approximation to w_0

$$w^* = \arg\max_{w} p(X|w)$$

- Result: w* is the parameter that maximizes the likelihood of observing/sampling X.
- Bayesian Approach:
 - We assume w is a random variable from some distribution p(w). Now the density function p(x; w) turns into a conditional density p(x|w).

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

Assume we have some samples iid from a distribution p(x; w).

We don't know w and would like to learn it.

- Frequentist Approach¹:
 - We assume there exist a true distribution $p(x; w_0)$.
 - We want to learn an approximation to w_0

$$w^* = \arg\max_{w} p(X|w)$$

- Result: w* is the parameter that maximizes the likelihood of observing/sampling X.
- Bayesian Approach:
 - We assume w is a random variable from some distribution p(w). Now the density function p(x; w) turns into a conditional density p(x|w).
 - After observing X, we update this distribution to reflect our data samples: p(w|X).

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

Assume we have some samples iid from a distribution p(x; w).

We don't know w and would like to learn it.

- Frequentist Approach¹:
 - We assume there exist a true distribution $p(x; w_0)$.
 - We want to learn an approximation to w_0

$$w^* = \arg\max_{w} p(X|w)$$

 Result: w* is the parameter that maximizes the likelihood of observing/sampling X.

- Bayesian Approach:
 - We assume w is a random variable from some distribution p(w). Now the density function p(x; w) turns into a conditional density p(x|w).
 - After observing X, we update this distribution to reflect our data samples: p(w|X).
 - Result: We have now learned a distribution over $w. p(w) \rightarrow_{learn} p(w|X)$

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

Assume we have some samples iid from a distribution p(x; w).

We don't know w and would like to learn it.

- Frequentist Approach¹:
 - We assume there exist a true distribution $p(x; w_0)$.
 - We want to learn an approximation to w_0

$$w^* = \arg\max p(X|w)$$

 Result: w* is the parameter that maximizes the likelihood of observing/sampling X.

- Bayesian Approach:
 - We assume w is a random variable from some distribution p(w). Now the density function p(x; w) turns into a conditional density p(x|w).
 - After observing X, we update this distribution to reflect our data samples: p(w|X).
 - Result: We have now learned a distribution over w. $p(w) \rightarrow_{learn} p(w|X)$
 - Sometimes people still want a single estimate:

$$w^* = \operatorname{arg\,max}_w p(w|X) \text{ (mode)}^2 \text{ or } w^* = \mathbb{E}_{p(w|X)}[w|X] \text{ (mean)}$$

¹Maximum likelihood estimation (MLE)

²Maximum a posteriori (MAP)

[How] Maximum Likelihood Estimation

Remember: We want $w^* = \arg\max_w p(X|w)$

[How] Maximum Likelihood Estimation

```
Remember: We want w^* = \arg \max_w p(X|w)
Procedure for MLE:
```

- Step 1. Given *n* samples $\{x_1, x_2, ..., x_n\}$, write down the joint distribution of the data: p(X; w)
- Step 2. Compute the log-likelihood: $\log p(X; w)$.
- Step 3. Differentiate and equate to zero to find w^* .

(Oftentimes $\log p$ is easier to work with than p itself.)

[How] Maximum Likelihood Estimation

Remember: We want $w^* = \arg \max_w p(X|w)$ Procedure for MLE:

- Step 1. Given *n* samples $\{x_1, x_2, ..., x_n\}$, write down the joint distribution of the data: p(X; w)
- Step 2. Compute the log-likelihood: $\log p(X; w)$.
- Step 3. Differentiate and equate to zero to find w^* .

(Oftentimes $\log p$ is easier to work with than p itself.)

Exercise:

Assume $x_i \sim \text{Bernoulli}(w)$.

$$p(x; w) = w^{x}(1 - w)^{1-x}$$

Write down w^* in terms of x_i and n.

[How] Bayesian Learning

Remember: We want p(w|X), assuming we have some p(w)

[How] Bayesian Learning

Remember: We want p(w|X), assuming we have some p(w)Procedure for Bayesian learning:

- Step 1. Given *n* samples $\{x_1, x_2, \dots, x_n\}$, write down the joint distribution of the data conditioned on w: p(X|w)
- Step 2. Specify a prior: p(w)
- Step 3. Compute the posterior: p(w|X)

$$p(w|X) = \frac{p(X|w)p(w)}{p(X)}$$

[How] Bayesian Learning

Remember: We want p(w|X), assuming we have some p(w)Procedure for Bayesian learning:

- Step 1. Given *n* samples $\{x_1, x_2, \dots, x_n\}$, write down the joint distribution of the data conditioned on w: p(X|w)
- Step 2. Specify a prior: p(w)
- Step 3. Compute the posterior: p(w|X)

$$p(w|X) = \frac{p(X|w)p(w)}{p(X)}$$

Exercise:

Assume $x_i \sim \text{Bernoulli}(w)$.

$$p(x|w) = w^{x}(1-w)^{1-x}$$

Assume $p(w) \sim \text{Beta}(a, b)$.

$$p(w) \propto w^{a-1} (1-w)^{b-1}$$

Derive p(w|X). Optionally, derive the MAP estimate.

Using MLE/MAP estimation is often equivalent to minimizing some loss function.

Using MLE/MAP estimation is often equivalent to minimizing some loss function.

Assignment 4 Question 2.2:

- The likelihood is given by $p(y_i|x_i, w) \sim \text{Normal}(w^Tx_i, 1)$.
- The prior for each variable j is given by $p(w_j) \sim \text{Normal}(0, \lambda^{-1})$.

Using MLE/MAP estimation is often equivalent to minimizing some loss function.

Assignment 4 Question 2.2:

- The likelihood is given by $p(y_i|x_i, w) \sim \text{Normal}(w^Tx_i, 1)$.
- The prior for each variable j is given by $p(w_j) \sim \text{Normal}(0, \lambda^{-1})$.

Then the MAP estimate is given by:

$$w^* = \arg\max_{w} p(w|X) = \arg\min_{w} \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$$

$$12-\text{Regularized Least Squares}$$

Using MLE/MAP estimation is often equivalent to minimizing some loss function.

Assignment 4 Question 2.2:

- The likelihood is given by $p(y_i|x_i, w) \sim \text{Normal}(w^Tx_i, 1)$.
- The prior for each variable j is given by $p(w_i) \sim \text{Normal}(0, \lambda^{-1})$.

Then the MAP estimate is given by:

$$w^* = \arg\max_{w} p(w|X) = \arg\min_{w} \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$$

$$L2-Regularized Least Squares$$

Exercise:

Show the above. You may find this useful:

$$N(x; \mu, \sigma^2) \propto \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Summary

- Two approaches: Frequentist vs. Bayesian.
- Maximum likelihood estimate:

$$w^* = \arg\max_{w} p(X; w)$$

Requires knowing/assuming $p(X; w)^3$.

• Maximum a posterior:

$$w^* = \arg \max_{w} p(w|X)$$

Requires knowing/assuming p(X|w) and p(w). (Apply Bayes' Rule.)

General rule for converting density functions to loss functions:

$$\operatorname{arg\,max}_{w} f(w) = \operatorname{arg\,min}_{w} - \log f(w)$$

Oftentimes $\log f$ is easier to work with than f itself.

³Or written as p(X|w).