
Tutorial 8

CPSC 340



Logistic Regression

Stochastic Gradient Descent



Logistic Regression Model

I A discriminative probabilistic model for classification e.g.
spam filtering

I Let x ∈ Rd be input and y ∈ {−1,1}

I The probabilistic model with sigmoid function

p(y = 1|x) = σ(wT x)

σ(η) =
1

1 + exp(−η)

I what is the probabilities of p(y = −1|x)?
I

p(y = −1|x) = 1− p(y = 1|x) = 1
1 + exp(wT x)
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Learning in Logistic Regression

I Let X ∈ Rn×d and y ∈ {−1,1}n be training data

I we can use logistic loss to learn the parameter vector w

f (w) =
1
n

n∑

i=1

log(1 + exp(−yiwT xi))

I we want to find
w∗ = arg min

w∈Rd
f (w)

I Since f (w) is convex function w.r.t. w we can use GD to
find w∗
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Learning in Logistic Regression

I Regularized loss function

f (w) =
1
n

n∑

i=1

log(1 + exp(−yiwT xi)) +
λ

2
‖w‖2

I Exercise: find the gradient of regularized f(w)?
I Solution

fi(w) = log(1 + exp(−yiwT xi))

∇fi(w) =
−yixi

1 + exp(yiwT xi)

∇f (w) =
1
n

n∑

i=1

−yixi

1 + exp(yiwT xi)
+ λw
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Learning in Logistic Regression

I Coding Exercise: we want to write a function to calculate
the gradient and function. The following code is given.
Write the code for loglos subfunc.

I



Learning in Logistic Regression

I Solution
I



Learning Logistic Regression

I Exercise: Let Z be the transformation of X using some
non-linear basis. What would be the new probabilistic
model, logistic loss and its gradient?

I Slolution:

p(y = 1|z) = σ(wT z)

f (w) =
1
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Stochastic Gradient Descent



Gradient Descent Cost for Big Data
I Assume our loss function has the following format:

f (w) =
1
n

n∑

i=1

fi(w)

e.g.

f (w) =
1
n

n∑

i=1

log(1 + exp(−yiwT xi))

I Using GD to find the best w :

wt+1 = wt − αt∇f (wt)

I But cost of computing ∇f (w) is O(n) because of the sum:

∇f (w) =
1
n

n∑

i=1

∇fi(w)

I Cost of each iteration in GD could be enormous when n is
large!
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Stochastic Gradient Descent(SGD) for Big Data

I SGD algorithm: in each iteration pick a fi randomly and use
its gradient

i ∼ unif (1,n) wt+1 = wt − αt∇fi(wt)

I ∇fi is an unbiased approximation of ∇f

E [∇fi(w)] =
n∑

i=1

p(i)∇fi(w) =
1
n

n∑

i=1

∇fi(w) = ∇f (w)

I Cost of each iteration in SGD is constant
I It does not move toward minimizer in each iteration, so is

slower than GD
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SGD vs GD

I GD

I

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

I SGD

I
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Variance of SGD

I Variance of SGD in each iteration:

Var [∇fi(w)] =
1
n

n∑

i=1

‖∇fi(w)−∇f (w)‖2

I If variance is small, every step jumps in the right direction
I If variance is large, many steps jump in wrong direction!
I Variance can be controlled by decreasing step size or by

variance reduction technique
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Variance of SGD
I To get convergence we need decreasing step sizes

I But it cannot shrink too quickly
I Two main conditions for decreasing step sizes:

∞∑

t=1

αt =∞ we can get everywhere (1)

∞∑

t=1

α2
t <∞ effect of variance goes to zero (2)

I Setting αt = O(1/t) satisfies the above conditions but it is
too slow

I In practice:

αt = β/(t + γ)

αt = O(1/
√

t) or O(1/tβ) for β ∈ (0,1)
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SGD for logistic Loss

αt = β/(t + γ), f (w) =
1
n

n∑

i=1

log(1 + exp(−yiwT xi)) +
λ

2
‖w‖2

I Coding Exercise: Using the loglos subfunc from previous
exercise, complete the SGD code for logistic loss.

I T : # of iteration
I w0: initial value



SGD for logistic Loss

I Solution:

I



Variance Reduction Technique

I Using mini-batch

I In each iteration t , we make a random mini-batch Bt
I wt+1 = wt − αt

|Bt |
∑

fi∈Bt
∇fi(wt)

I Variance is inversely proportional to the mini-batch size
I Using auxiliary memory: SAG method

I It uses an extra memory y with n cells and each cell yi
stores d value

I In each iteration t , we pick a fi randomly and evaluate the
gradient ∇fi(wt)

I Store ∇fi(wt) in yi
I wt+1 = wt − α

n

∑n
i=1 yi

I cost of each iteration is constant
I convergence is fast since we use constant step size
I The memory requirement could be restrictive when n is

enormous
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