Logistic Regression

Stochastic Gradient Descent
Logistic Regression Model

- A discriminative probabilistic model for classification e.g. spam filtering
- Let $x \in \mathbb{R}^d$ be input and $y \in \{-1, 1\}$
Logistic Regression Model

- A discriminative probabilistic model for classification e.g. spam filtering
- Let $x \in \mathbb{R}^d$ be input and $y \in \{-1, 1\}$
- The probabilistic model with sigmoid function
 \[
 p(y = 1|x) = \sigma(w^T x)
 \]
 \[
 \sigma(\eta) = \frac{1}{1 + \exp(-\eta)}
 \]
Logistic Regression Model

- A discriminative probabilistic model for classification e.g. spam filtering
- Let $x \in \mathbb{R}^d$ be input and $y \in \{-1, 1\}$
- The probabilistic model with sigmoid function

$$p(y = 1|x) = \sigma(w^T x)$$

$$\sigma(\eta) = \frac{1}{1 + \exp(-\eta)}$$

- what is the probabilities of $p(y = -1|x)$?
Logistic Regression Model

- A discriminative probabilistic model for classification e.g. spam filtering
- Let $x \in \mathbb{R}^d$ be input and $y \in \{-1, 1\}$
- The probabilistic model with sigmoid function

\[
p(y = 1|x) = \sigma(w^T x)
\]

\[
\sigma(\eta) = \frac{1}{1 + \exp(-\eta)}
\]

- what is the probabilities of $p(y = -1|x)$?

\[
p(y = -1|x) = 1 - p(y = 1|x) = \frac{1}{1 + \exp(w^T x)}
\]
Learning in Logistic Regression

Let $X \in \mathbb{R}^{n \times d}$ and $y \in \{-1, 1\}^n$ be training data.
Learning in Logistic Regression

- Let $X \in \mathbb{R}^{n \times d}$ and $y \in \{-1, 1\}^n$ be training data
- we can use logistic loss to learn the parameter vector w

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i))$$
Learning in Logistic Regression

- Let $X \in \mathbb{R}^{n \times d}$ and $y \in \{-1, 1\}^n$ be training data
- we can use logistic loss to learn the parameter vector w

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i))$$

- we want to find

$$w^* = \arg \min_{w \in \mathbb{R}^d} f(w)$$
Learning in Logistic Regression

- Let $X \in \mathbb{R}^{n \times d}$ and $y \in \{-1, 1\}^n$ be training data
- we can use logistic loss to learn the parameter vector w

\[
 f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i))
\]

- we want to find

\[
 w^* = \arg \min_{w \in \mathbb{R}^d} f(w)
\]

- Since $f(w)$ is convex function w.r.t. w we can use GD to find w^*
Learning in Logistic Regression

- Regularized loss function

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} \| w \|^2 \]
Learning in Logistic Regression

- Regularized loss function

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} \| w \|^2 \]

- Exercise: find the gradient of regularized \(f(w) \)?
Learning in Logistic Regression

- Regularized loss function

\[
f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} \|w\|^2
\]

- Exercise: find the gradient of regularized \(f(w)\)?

- Solution

\[
f_i(w) = \log(1 + \exp(-y_i w^T x_i))
\]
\[
\nabla f_i(w) = \frac{-y_i x_i}{1 + \exp(y_i w^T x_i)}
\]
\[
\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{-y_i x_i}{1 + \exp(y_i w^T x_i)} + \lambda w
\]
Coding Exercise: we want to write a function to calculate the gradient and function. The following code is given. Write the code for `loglos_subfunc`.

```matlab
function [f,g] = loglos(X,Y,w,lambda)
    [n,d]=size(X);
    g=zeros([d,1]);
    f=0;
    for i=1:n
        [f_i,g_i]=loglos_subfunc(X(i,:),Y(i),w);
        g=g+g_i;
        f=f+f_i;
    end
    g=g/n+lambda*w;
    f=f/n+lambda/2*sum(w.^2);
end
```
Learning in Logistic Regression

Solution

```matlab
function [f_i,g_i]=loglos_subfunc(x_i,y_i,w)

z_i=y_i*x_i;
f_i=1+exp(-z_i*w);

%Gradient
g_i=-z_i*(1-1/f_i);

%function value f_i
f_i=log(f_i);
end
```
Learning Logistic Regression

Exercise: Let Z be the transformation of X using some non-linear basis. What would be the new probabilistic model, logistic loss and its gradient?

\[
p(y = 1 | z) = \sigma(w^T z)
\]

\[
f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T z_i)) + \lambda \|w\|^2
\]

\[
\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} -y_i z_i \frac{1}{1 + \exp(y_i w^T z_i)} + \lambda w
\]
Learning Logistic Regression

- **Exercise**: Let Z be the transformation of X using some non-linear basis. What would be the new probabilistic model, logistic loss and its gradient?

- **Solution**:

 \[p(y = 1 | z) = \sigma(w^T z) \]

 \[f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T z_i)) + \frac{\lambda}{2} \|w\|^2 \]

 \[\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{-y_i z_i}{1 + \exp(y_i w^T z_i)} + \lambda w \]
Stochastic Gradient Descent
Gradient Descent Cost for Big Data

▶ Assume our loss function has the following format:

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) \]

e.g.

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) \]
Gradient Descent Cost for Big Data

- Assume our loss function has the following format:

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) \]

 e.g.

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) \]

- Using GD to find the best \(w \):

\[w_{t+1} = w_t - \alpha_t \nabla f(w_t) \]
Gradient Descent Cost for Big Data

- Assume our loss function has the following format:

\[
f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)
\]

e.g.

\[
f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i))
\]

- Using GD to find the best \(w \):

\[
w_{t+1} = w_t - \alpha_t \nabla f(w_t)
\]

- But cost of computing \(\nabla f(w) \) is \(O(n) \) because of the sum:

\[
\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w)
\]
Gradient Descent Cost for Big Data

- Assume our loss function has the following format:

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) \]

e.g.

\[f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^Tx_i)) \]

- Using GD to find the best \(w\):

\[w_{t+1} = w_t - \alpha_t \nabla f(w_t) \]

- But cost of computing \(\nabla f(w)\) is \(O(n)\) because of the sum:

\[\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w) \]

- Cost of each iteration in GD could be enormous when \(n\) is large!
- SGD algorithm: in each iteration pick a f_i randomly and use its gradient

\[i \sim \text{unif}(1, n) \quad w_{t+1} = w_t - \alpha_t \nabla f_i(w_t) \]
Stochastic Gradient Descent (SGD) for Big Data

- SGD algorithm: in each iteration pick a f_i randomly and use its gradient

\[i \sim \text{unif}(1, n) \quad w_{t+1} = w_t - \alpha_t \nabla f_i(w_t) \]

- ∇f_i is an unbiased approximation of ∇f

\[
\mathbb{E} \left[\nabla f_i(w) \right] = \sum_{i=1}^{n} p(i) \nabla f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w) = \nabla f(w)
\]
Stochastic Gradient Descent (SGD) for Big Data

- SGD algorithm: in each iteration pick a \(f_i \) randomly and use its gradient

\[
i \sim \text{unif}(1, n) \quad w_{t+1} = w_t - \alpha_t \nabla f_i(w_t)
\]

- \(\nabla f_i \) is an unbiased approximation of \(\nabla f \)

\[
\mathbb{E} [\nabla f_i(w)] = \sum_{i=1}^{n} p(i) \nabla f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w) = \nabla f(w)
\]

- Cost of each iteration in SGD is constant
Stochastic Gradient Descent (SGD) for Big Data

- SGD algorithm: in each iteration pick a f_i randomly and use its gradient
 \[i \sim \text{unif}(1, n) \quad w_{t+1} = w_t - \alpha_t \nabla f_i(w_t) \]

- ∇f_i is an unbiased approximation of ∇f
 \[\mathbb{E} [\nabla f_i(w)] = \sum_{i=1}^{n} p(i) \nabla f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w) = \nabla f(w) \]

- Cost of each iteration in SGD is constant
- It does not move toward minimizer in each iteration, so is slower than GD
SGD vs GD

- **GD**

- **SGD**
Variance of SGD

Variance of SGD in each iteration:

\[
\text{Var}[\nabla f_i(w)] = \frac{1}{n} \sum_{i=1}^{n} \left\| \nabla f_i(w) - \nabla f(w) \right\|^2
\]

- If variance is small, every step jumps in the right direction.
- If variance is large, many steps jump in the wrong direction.
- Variance can be controlled by decreasing step size or by variance reduction techniques.
Variance of SGD

- Variance of SGD in each iteration:

\[
Var[\nabla f_i(w)] = \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(w) - \nabla f(w)\|^2
\]

- If variance is small, every step jumps in the right direction!

- If variance is large, many steps jump in the wrong direction!

- Variance can be controlled by decreasing step size or by variance reduction technique
Variance of SGD in each iteration:

\[\text{Var}[\nabla f_i(w)] = \frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(w) - \nabla f(w)\|^2 \]

- If variance is small, every step jumps in the right direction.
- If variance is large, many steps jump in wrong direction!
Variance of SGD

- Variance of SGD in each iteration:

\[
V_{ar}[\nabla f_i(w)] = \frac{1}{n} \sum_{i=1}^{n} \| \nabla f_i(w) - \nabla f(w) \|^2
\]

- If variance is small, every step jumps in the right direction
- If variance is large, many steps jump in wrong direction!
- Variance can be controlled by decreasing step size or by variance reduction technique
Variance of SGD

- To get convergence we need decreasing step sizes

\[\sum_{t=1}^{\infty} \alpha_t = 1 \]

\[\sum_{t=1}^{\infty} \alpha_t^2 < \infty \]

- Setting \(\alpha_t = O\left(\frac{1}{t}\right) \) satisfies the above conditions but it is too slow

In practice:

\[\alpha_t = \frac{\beta}{t + \gamma} \]

\[\alpha_t = O\left(\frac{1}{\sqrt{t}}\right) \]

or \(O\left(\frac{1}{t^{\beta}}\right) \) for \(\beta \in (0, 1) \)
Variance of SGD

- To get convergence we need decreasing step sizes
- But it cannot shrink too quickly

\[\sum_{t=1}^{\infty} \alpha_t = 1 \]

\[\sum_{t=1}^{\infty} \alpha_t^2 < \infty \]

Effect of variance goes to zero

Setting \(\alpha_t = O\left(\frac{1}{t}\right) \) satisfies the above conditions but it is too slow

In practice:

\[\alpha_t = \frac{\beta}{t + \gamma} \]

\[\alpha_t = O\left(\frac{1}{\sqrt{t}}\right) \]

or \[O\left(\frac{1}{t^{\beta}}\right) \] for \(\beta \in (0, 1) \)
Variance of SGD

- To get convergence we need decreasing step sizes
- But it cannot shrink too quickly
- Two main conditions for decreasing step sizes:

\[
\sum_{t=1}^{\infty} \alpha_t = \infty \quad \text{we can get everywhere} \quad (1)
\]

\[
\sum_{t=1}^{\infty} \alpha_t^2 < \infty \quad \text{effect of variance goes to zero} \quad (2)
\]

- Setting \(\alpha_t = O\left(\frac{1}{t}\right) \) satisfies the above conditions but it is too slow
- In practice: \(\alpha_t = \beta / (t + \gamma) \) or \(O\left(\frac{1}{\sqrt{t}}\right) \) or \(O\left(\frac{1}{t^{\beta}}\right) \) for \(\beta \in (0, 1) \)
Variance of SGD

- To get convergence we need decreasing step sizes
- But it cannot shrink too quickly
- Two main conditions for decreasing step sizes:
 \[\sum_{t=1}^{\infty} \alpha_t = \infty \quad \text{we can get everywhere} \quad (1) \]
 \[\sum_{t=1}^{\infty} \alpha_t^2 < \infty \quad \text{effect of variance goes to zero} \quad (2) \]

- Setting \(\alpha_t = O(1/t) \) satisfies the above conditions but it is too slow
Variance of SGD

- To get convergence we need decreasing step sizes
- But it cannot shrink too quickly
- Two main conditions for decreasing step sizes:

\[
\sum_{t=1}^{\infty} \alpha_t = \infty \quad \text{we can get everywhere} \quad (1)
\]

\[
\sum_{t=1}^{\infty} \alpha_t^2 < \infty \quad \text{effect of variance goes to zero} \quad (2)
\]

- Setting \(\alpha_t = O(1/t) \) satisfies the above conditions but it is too slow
- In practice:

\[
\alpha_t = \beta/(t + \gamma)
\]

\[
\alpha_t = O(1/\sqrt{t}) \text{ or } O(1/t^\beta) \text{ for } \beta \in (0, 1)
\]
SGD for logistic Loss

\[\alpha_t = \frac{\beta}{(t + \gamma)}, \quad f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x_i)) + \frac{\lambda}{2} \|w\|^2 \]

Coding Exercise: Using the `loglos_subfunc` from previous exercise, complete the SGD code for logistic loss.

```matlab
function w=loglosSGD(X,Y,w_0,beta,gamma,lamb, T)
    w=w_0;
    [n,d]=size(X);
    for t=1:T
        ......
    end
end
```

- **T**: # of iteration
- **w_0**: initial value
SGD for logistic Loss

Solution:

```matlab
function w=loglSSGD(X,Y,w_0,beta,gamma,lambda, T)

w=w_0;
[n,d]=size(X);

for t=1:T
    % generating i randomly
    i=randi(n);

    % computing the gradient of f_i
    [f_i,g_i]=loglos_subfunc(X(i,:),Y(i),w);

    % step size for this iteration
    alpha_t=beta/(t+gamma);

    % SGD update with l2 regularizer
    w=(1-alpha_t*lambda)*w-alpha_t*g_i;

end
end
```
Variance Reduction Technique

- Using mini-batch

In each iteration t, we make a random mini-batch B_t

$$w_{t+1} = w_t - \alpha |B_t| \sum_{f_i \in B_t} \nabla f_i(w_t)$$

Variance is inversely proportional to the mini-batch size

Using auxiliary memory: SAG method

It uses an extra memory y with n cells and each cell y_i stores d value

In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$

Store $\nabla f_i(w_t)$ in y_i

$$w_{t+1} = w_t - \alpha n \sum_{i=1}^{n} y_i$$

Cost of each iteration is constant

Convergence is fast since we use constant step size

The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t

\[w_{t+1} = w_t - \alpha \frac{1}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t) \]

Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d

 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$

 - Store $\nabla f_i(w_t)$ in y_i

\[w_{t+1} = w_t - \frac{\alpha}{n} \sum_{i=1}^{n} y_i \]

Cost of each iteration is constant

Convergence is fast since we use constant step size

The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$

Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - $w_{t+1} = w_t - \frac{\alpha n}{n} \sum_{i=1}^{n} y_i$

Cost of each iteration is constant

Convergence is fast since we use constant step size

The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - $w_{t+1} = w_t - \frac{\alpha}{n} \sum_{i=1}^n y_i$
 - Cost of each iteration is constant
 - Convergence is fast since we use constant step size
 - The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - $w_{t+1} = w_t - \alpha \frac{n}{\sum_{i=1}^{n} y_i}$
 - Cost of each iteration is constant
 - Convergence is fast since we use constant step size
 - The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - cost of each iteration is constant
 - convergence is fast since we use constant step size
 - The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- **Using mini-batch**
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- **Using auxiliary memory: SAG method**
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - $w_{t+1} = w_t - \frac{\alpha}{n} \sum_{i=1}^{n} y_i$
 - Cost of each iteration is constant
 - Convergence is fast since we use constant step size
 - The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - $w_{t+1} = w_t - \frac{\alpha}{n} \sum_{i=1}^{n} y_i$
 - cost of each iteration is constant

- Convergence is fast since we use constant step size

- The memory requirement could be restrictive when n is enormous
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - $w_{t+1} = w_t - \frac{\alpha}{n} \sum_{i=1}^{n} y_i$
 - cost of each iteration is constant
 - convergence is fast since we use constant step size
Variance Reduction Technique

- Using mini-batch
 - In each iteration t, we make a random mini-batch B_t
 - $w_{t+1} = w_t - \frac{\alpha_t}{|B_t|} \sum_{f_i \in B_t} \nabla f_i(w_t)$
 - Variance is inversely proportional to the mini-batch size

- Using auxiliary memory: SAG method
 - It uses an extra memory y with n cells and each cell y_i stores d value
 - In each iteration t, we pick a f_i randomly and evaluate the gradient $\nabla f_i(w_t)$
 - Store $\nabla f_i(w_t)$ in y_i
 - $w_{t+1} = w_t - \frac{\alpha}{n} \sum_{i=1}^{n} y_i$
 - cost of each iteration is constant
 - convergence is fast since we use constant step size
 - The memory requirement could be restrictive when n is enormous