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» Greek letters for scalers: a=1,8=34,y = 7.

» First/last lowercase letters for vector: w = [0.1, 0.2]T.
» First/last uppercase letters for matrices: X, Y, W, A, B.
» For indices we use i, j, k.

» For sizes we use m,n,d,p, k.

» For sets we use S,T,U, V.

» For functions we use f, g, h.

> Dirain and Dyt are the train and test datasets.
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Linear Algebra

» Vector dot product (in matrix-form operation):

b
CLTb = [al,ag] : |:b;:| = a 'bl +as - bg

v

Length of a vector a is ||a|| = VaTa = /30, a2.

We define /,-norm as ||z||, = {/ S ailP.

The length of a vector (as learned in high-school) is an
f5-norm of a vector.
The ¢;-norm is [|z]|; = S0, |ail.

You'll commonly see [|z]|2 = 2Tz,

v

v

v
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Linear Algebra

» A matrix X is symmetric if XT = X

» A symmetric matrix X is positive semi-definite if for all
non-zero vectors z we have z' Xz > 0.

» f(z) = 2T Xz is a quadratic function of z, furthermore, f(-) is
convex if X is positive semi-definite.
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Calculus

» The Hessian matrix V?f(x) is a matrix of second order
partial derivatives.

_90 f§ ... 90
0x10z1 O0x10xyq
_9 f ... 9
Oxg011 Ox g0y

» In single-variable calculus: A function f(x) is convex around
x if the second derivate f”(z) > 0. In that case x is a local
minimum of f(z).

» In multivariate calculus: A function f(x) is convex around z if
the Hessian V?f(x) is positive semi-definite. In that case z is
a local minimum of f(z).
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Regression

» Objective. Learn a function f: R¢ — R. Given a vector
z € R? we make a prediction y € R by evaluating the f(x).

» Data. We have a training set Dyain = { (24, ;) }1",, that is, m
sample pairs of (z;,v;).

» Given a test set Diest = { (i, y:) }i; with n pairs, how can we
measure the error of {7

LY (f(z) — ;) is this a good measure?

Soi i | f(xi) — yi| is this a good measure?

IS L1 f(z:) — il is this a good measure?

LS (f(2;) — y;)? is this a good measure?

Is 3 better or 4?7 (why)

What is a good measure?

> ot
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Linear Regression - Least Squares

» In this setting the function f(-) has a specific form.

» The function f(x) with a parameter w € R? makes the

prediction as w'z.

» We can write it as f(z ;w) = w'z.
» Objective. Given Dy, find a w that minimizes the mean
squared error on Dy ain.

— How can we find w?
— Is w also going to minimize the mean squared error on Dyeg;?

» We can solve this problem analytically :D.

You really have to appreciate this — an analytical solution rarely
pops out in typical machine learning problems.

9/17
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Solving Least Squares

» First let’s rewrite the mean squared error as a function of w.

Llw) = ~ 3 (F) — )

m “
=1
1 m
= ™ Z(UJT%’ - yi)2
=1

1 1
L(w) = E(Xw -V Xw-Y)= EHXw ~Y|3

» Notice that £(w) is a quadratic and a convex function of w
(why convex?).

» Thus, the w that sets VL(w) = 0 is a minimum of the
function £(w).

10 /17
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Solving Least Squares
» The VL(w) is:

VL(w) = %XT(Xw -Y)

VL(w)=0=w=(XTX)"'XTY

» Is (XTX) necessarily invertible? If not, what should we do?

» What’s the time consuming part of this solution?
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1 xrlf 1 wgl) :ng)
X=|: =
T I NI R
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Solving Least Squares in Matlab

function [model] = simplelLeastSquares(X,y)

% Add bias variable
[N,D] = size(X);
¥ = [ones(N,1) X];

% Solve least sguares problem
w o= (X'*X)\X"*y;

model.w = w;
model.predict = @predict;

end

function [yhat] = predict(model, Xtest)
[T,D] = size(Xtest);

w = model.w;

Xtest = [ones(T,l) Xtest];

yhat = Xtest#*w;

end

13/17
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Notes on LS

» What if we’d like to have an intercept (or bias)
f(z) = wix +wy ?
» What if it is not a (hyper)-plane or a line?

1 X1 (Il)Q (Il)g

1 i) (SC2)2 (.1'2)3
Xpoly =

1z, (z2)? (2n)?
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Solving Least Squares in Matlab

functian [mod;l] - leastSquareQBasis(x,y,degree)
¥poly = polyBasis(x,degree);

% Solve least squares problem
w = (Xpoly'#*Xpoly)\Xpoly'=*y;

model.w = w;
model.degree = degree;
model.predict = @predict;

end

function [yhat] = predict(model,Xtest)
Xpoly = polyBasis(Xtest,model.degree);
yhat = Xpoly*model.w;

end

function [Xpoly] = polyBasis(x,m)
n = length(x);
¥poly = zeros(n,m+l);
for i = O:m
Xpoly(:,i+l) = x."i;
end
end

16 /17
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Solving Least Squares in Matlab

Degree 0 Degree 1 Degree 2

Degree 3 Degree 4

Degree 6 Degree 7 Degree 8




	Review
	Notations
	Linear Algebra
	Calculus

	Least Squares
	Regression
	Linear Regression
	Least Squares
	Non-linear basis


