
Tutorial 5

Oct. 10-14, 2016

1 / 17



Overview

Review
Notations
Linear Algebra
Calculus

Least Squares
Regression
Linear Regression
Least Squares
Non-linear basis

2 / 17



Review Notations

Notations

I Greek letters for scalers: α = 1, β = 3.4, γ = π.

I First/last lowercase letters for vector: w = [0.1, 0.2]T.

I First/last uppercase letters for matrices: X, Y,W,A,B.

I For indices we use i, j, k.

I For sizes we use m,n, d, p, k.

I For sets we use S, T, U, V .

I For functions we use f, g, h.

I Dtrain and Dtest are the train and test datasets.
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Review Linear Algebra

Linear Algebra

I Vector dot product (in matrix-form operation):

aTb =
[
a1, a2

]
·
[
b1
b2

]
= a1 · b1 + a2 · b2

I Length of a vector a is ‖a‖ =
√
aTa =

√∑d
i=1 a

2
i .

I We define `p-norm as ‖x‖p = p

√∑d
i=1 |ai|p.

I The length of a vector (as learned in high-school) is an
`2-norm of a vector.

I The `1-norm is ‖x‖1 =
∑d

i=1 |ai|.
I You’ll commonly see ‖x‖22 = xTx.
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Review Linear Algebra

Linear Algebra

I A matrix X is symmetric if XT = X.

I A symmetric matrix X is positive semi-definite if for all
non-zero vectors z we have zTXz ≥ 0.

I f(z) = zTXz is a quadratic function of z, furthermore, f(·) is
convex if X is positive semi-definite.
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Review Calculus

Calculus

I Assuming f(x) : Rd → R.

I The gradient vector ∇f(x) is a vector of partial derivatives
[ ∂
∂x1

f, ∂
∂x2

f, . . . , ∂
∂xd

f].

I The Hessian matrix ∇2f(x) is a matrix of second order
partial derivatives.

∂
∂x1∂x1

f · · · ∂
∂x1∂xd

f
...

...
...

∂
∂xd∂x1

f · · · ∂
∂xd∂xd

f


I In single-variable calculus: A function f(x) is convex around
x if the second derivate f ′′(x) ≥ 0. In that case x is a local
minimum of f(x).
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Review Calculus

Calculus

I The Hessian matrix ∇2f(x) is a matrix of second order
partial derivatives.

∂
∂x1∂x1

f · · · ∂
∂x1∂xd

f
...

...
...

∂
∂xd∂x1

f · · · ∂
∂xd∂xd

f


I In single-variable calculus: A function f(x) is convex around
x if the second derivate f ′′(x) ≥ 0. In that case x is a local
minimum of f(x).

I In multivariate calculus: A function f(x) is convex around x if
the Hessian ∇2f(x) is positive semi-definite. In that case x is
a local minimum of f(x).
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Least Squares Regression

Regression

I Objective. Learn a function f : Rd → R. Given a vector
x ∈ Rd we make a prediction y ∈ R by evaluating the f(x).

I Data. We have a training set Dtrain = {(xi, yi)}mi=1, that is, m
sample pairs of (xi, yi).

I Given a test set Dtest = {(xi, yi)}ni=1 with n pairs, how can we
measure the error of f?

1.
∑n

i=1(f(xi)− yi) is this a good measure?
2.
∑n

i=1 |f(xi)− yi| is this a good measure?
3. 1

n

∑n
i=1 |f(xi)− yi| is this a good measure?

4. 1
n

∑n
i=1(f(xi)− yi)

2 is this a good measure?
5. Is 3 better or 4? (why)
6. What is a good measure?
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Least Squares Linear Regression

Linear Regression - Least Squares

I In this setting the function f(·) has a specific form.

I The function f(x) with a parameter w ∈ Rd makes the
prediction as wTx.

I We can write it as f(x ;w) = wTx.
I Objective. Given Dtrain find a ŵ that minimizes the mean

squared error on Dtrain.
– How can we find ŵ?
– Is ŵ also going to minimize the mean squared error on Dtest?

I We can solve this problem analytically :D.
– You really have to appreciate this – an analytical solution rarely

pops out in typical machine learning problems.
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– Is ŵ also going to minimize the mean squared error on Dtest?

I We can solve this problem analytically :D.
– You really have to appreciate this – an analytical solution rarely

pops out in typical machine learning problems.
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Least Squares Least Squares

Solving Least Squares

I First let’s rewrite the mean squared error as a function of w.

L(w) =
1

m

m∑
i=1

(f(xi)− yi)2

=
1

m

m∑
i=1

(wTxi − yi)2

L(w) =
1

m
(Xw − Y )T(Xw − Y ) =

1

m
‖Xw − Y ‖22

I Notice that L(w) is a quadratic and a convex function of w
(why convex?).

I Thus, the w that sets ∇L(w) = 0 is a minimum of the
function L(w).
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Least Squares Least Squares

Solving Least Squares

I The ∇L(w) is:

∇L(w) =
2

m
XT(Xw − Y )

∇L(w) = 0⇒ w = (XTX)−1XTY

I Is (XTX) necessarily invertible? If not, what should we do?

I What’s the time consuming part of this solution?
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Least Squares Least Squares

Notes on LS

I What if we’d like to have an intercept (or bias)
f(x) = wT

1 x+ w0 ?

X =

1 xT1
...
1 xTm

 =

1 x
(1)
1 · · · x

(d)
1

...
...

...
...

1 x
(1)
m · · · x

(d)
m
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Least Squares Non-linear basis

Notes on LS

I What if we’d like to have an intercept (or bias)
f(x) = wT

1 x+ w0 ?

I What if it is not a (hyper)-plane or a line?
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