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Non-Parametrics Models Definitions

Definitions

I Parametric Models
– Fixed number of parameters - learned (estimated) from data
– More data ⇒ More accurate models.

I Non-parametric Models
– Number of parameters grows with the amount of data
– More data ⇒ More complex models.

I Parametric or Non-parametric? What are the parameters?
– Decision Trees
– Naive Bayes
– KNN
– Random Forests
– K-Means Clustering
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Non-Parametrics Models KNN

k-Nearest Neighbour

I How does it work?

I What is the effect of k with respect to the fundamental
tradeoff in machine learning?

I What is the runtime of a naive implementation? How could
you speed this up?
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Ensemble Methods Definitions, Examples

Ensemble Methods

I Learning algorithms that take classifiers as input and use the
output of each classifier to determine a classification

I Averaging
– Take the average of the outputs of each classifier (or mode if

categorical)
I Bagging

– Each classifier in the ensemble votes on an output with equal
weight

– Each classifier is trained with a random subset of the training set
I Boosting

– Incrementally build the ensemble. When training new models
higher weight is given to data that was mis-classified by previous
models

I Stacking
– Train a classifier to combine the predictions of the other classifiers

I And more!
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Ensemble Methods Random Forests

Random Forests

I How do they work? How do you train them?
1. Create several bootstrap samples of the data
2. Train a random decision tree on each bootstrap sample
3. Test by averaging the predictions of each tree

I How does the number of trees affect the fundmental tradeoff
of machine learning?

I How does the amount of randomness in the trees affect the
fundamental tradeoff of machine learning?
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Clustering Definitions, Examples

Clustering

I An unsupervised method - not given labels, but want to learn
something about the data

– Specifically the classes, or groups, that the data falls into

I Classes are determined by similarty between data and
dissimilarity to other classes

I e.g. Types of genes, variants of a disease, topics on
Wikipedia, friends on Facebook, etc.
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Clustering k-Means Clustering

k-Means

I How does it work?

I K++ means - what problem does this address?

I Label switching problem
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