Tutorial 3
Overview

Non-Parametrics Models
 Definitions
 KNN

Ensemble Methods
 Definitions, Examples
 Random Forests

Clustering
 Definitions, Examples
 k-Means Clustering
Definitions

Non-Parametric Models:
- Fixed number of parameters - learned (estimated) from data
- More data ⇒ More accurate models.

Non-parametric Models:
- Number of parameters grows with the amount of data
- More data ⇒ More complex models.

Parametric or Non-parametric? What are the parameters?
- Decision Trees
- Naive Bayes
- KNN
- Random Forests
- K-Means Clustering
Definitions

- Parametric Models

- Non-parametric Models

- Parametric or Non-parametric? What are the parameters?

- Decision Trees
- Naive Bayes
- KNN
- Random Forests
- K-Means Clustering
Definitions

- **Parametric Models**
 - Fixed number of parameters - learned (estimated) from data
 - More data ⇒ More accurate models.
Definitions

- **Parametric Models**
 - Fixed number of parameters - learned (estimated) from data
 - More data ⇒ More accurate models.

- **Non-parametric Models**
Definitions

- **Parametric Models**
 - Fixed number of parameters - learned (estimated) from data
 - More data ⇒ More accurate models.

- **Non-parametric Models**
 - Number of parameters grows with the amount of data
 - More data ⇒ More complex models.
Definitions

- **Parametric Models**
 - Fixed number of parameters - learned (estimated) from data
 - More data ⇒ More accurate models.

- **Non-parametric Models**
 - Number of parameters grows with the amount of data
 - More data ⇒ More complex models.

- **Parametric or Non-parametric? What are the parameters?**
 - Decision Trees
 - Naive Bayes
 - KNN
 - Random Forests
 - K-Means Clustering
k-Nearest Neighbour

How does it work?

What is the effect of k with respect to the fundamental tradeoff in machine learning?

What is the runtime of a naive implementation? How could you speed this up?
k-Nearest Neighbour

- How does it work?
k-Nearest Neighbour

- How does it work?
- What is the effect of k with respect to the fundamental tradeoff in machine learning?
k-Nearest Neighbour

- How does it work?
- What is the effect of k with respect to the fundamental tradeoff in machine learning?
- What is the runtime of a naive implementation? How could you speed this up?
Ensemble Methods

Ensemble Methods Definitions, Examples
Ensemble Methods

- Learning algorithms that take classifiers as input and use the output of each classifier to determine a classification
Ensemble Methods

- Learning algorithms that take classifiers as input and use the output of each classifier to determine a classification
- Averaging
 - Take the average of the outputs of each classifier (or mode if categorical)
Ensemble Methods

- Learning algorithms that take classifiers as input and use the output of each classifier to determine a classification
- Averaging
 - Take the average of the outputs of each classifier (or mode if categorical)
- Bagging
 - Each classifier in the ensemble votes on an output with equal weight
 - Each classifier is trained with a random subset of the training set
- Boosting
 - Incrementally build the ensemble. When training new models higher weight is given to data that was mis-classified by previous models
- Stacking
 - Train a classifier to combine the predictions of the other classifiers
- And more!
Ensemble Methods

- Learning algorithms that take classifiers as input and use the output of each classifier to determine a classification
- Averaging
 - Take the average of the outputs of each classifier (or mode if categorical)
- Bagging
 - Each classifier in the ensemble votes on an output with equal weight
 - Each classifier is trained with a random subset of the training set
- Boosting
 - Incrementally build the ensemble. When training new models higher weight is given to data that was mis-classified by previous models
Ensemble Methods

- Learning algorithms that take classifiers as input and use the output of each classifier to determine a classification
- **Averaging**
 - Take the average of the outputs of each classifier (or mode if categorical)
- **Bagging**
 - Each classifier in the ensemble votes on an output with equal weight
 - Each classifier is trained with a random subset of the training set
- **Boosting**
 - Incrementally build the ensemble. When training new models, higher weight is given to data that was mis-classified by previous models
- **Stacking**
 - Train a classifier to combine the predictions of the other classifiers

And more!
Ensemble Methods

▶ Learning algorithms that take classifiers as input and use the output of each classifier to determine a classification
▶ Averaging
 – Take the average of the outputs of each classifier (or mode if categorical)
▶ Bagging
 – Each classifier in the ensemble votes on an output with equal weight
 – Each classifier is trained with a random subset of the training set
▶ Boosting
 – Incrementally build the ensemble. When training new models higher weight is given to data that was mis-classified by previous models
▶ Stacking
 – Train a classifier to combine the predictions of the other classifiers
▶ And more!
Random Forests

How do they work? How do you train them?
1. Create several bootstrap samples of the data
2. Train a random decision tree on each bootstrap sample
3. Test by averaging the predictions of each tree

How does the number of trees affect the fundamental tradeoff of machine learning?
How does the amount of randomness in the trees affect the fundamental tradeoff of machine learning?
Random Forests

- How do they work? How do you train them?
Random Forests

- How do they work? How do you train them?
 1. Create several bootstrap samples of the data
Random Forests

How do they work? How do you train them?
1. Create several bootstrap samples of the data
2. Train a random decision tree on each bootstrap sample
Random Forests

- How do they work? How do you train them?
 1. Create several bootstrap samples of the data
 2. Train a random decision tree on each bootstrap sample
 3. Test by averaging the predictions of each tree
Random Forests

- How do they work? How do you train them?
 1. Create several bootstrap samples of the data
 2. Train a random decision tree on each bootstrap sample
 3. Test by averaging the predictions of each tree

- How does the number of trees affect the fundamental tradeoff of machine learning?
Random Forests

How do they work? How do you train them?

1. Create several bootstrap samples of the data
2. Train a random decision tree on each bootstrap sample
3. Test by averaging the predictions of each tree

How does the number of trees affect the fundamental tradeoff of machine learning?

How does the amount of randomness in the trees affect the fundamental tradeoff of machine learning?
Clustering

- An unsupervised method - not given labels, but want to learn something about the data
- Specifically the classes, or groups, that the data falls into
- Classes are determined by similarity between data and dissimilarity to other classes
- e.g. Types of genes, variants of a disease, topics on Wikipedia, friends on Facebook, etc.
Clustering

- An unsupervised method - not given labels, but want to learn something about the data
 - Specifically the classes, or groups, that the data falls into
Clustering

- An unsupervised method - not given labels, but want to learn something about the data
 - Specifically the classes, or groups, that the data falls into
- Classes are determined by similarity between data and dissimilarity to other classes
Clustering

- An unsupervised method - not given labels, but want to learn something about the data
 - Specifically the classes, or groups, that the data falls into
- Classes are determined by similarity between data and dissimilarity to other classes
- e.g. Types of genes, variants of a disease, topics on Wikipedia, friends on Facebook, etc.
k-Means
k-Means

- How does it work?
k-Means

- How does it work?
- K++ means - what problem does this address?
k-Means

- How does it work?
- K++ means - what problem does this address?
- Label switching problem