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Decision Stump

Decision stump: simple decision tree with 1 splitting rule based
on 1 feature.

Binary example:

Assigns a label to each leaf based on the most frequent label.

Most intuitive score: classification accuracy.
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The ”newsgroups.mat” Dataset

The newsgroups.mat Matlab file contains the following objects:
1 X: A sparse binary matrix. Each row corresponds to a post, and

each column corresponds to a word from the word list. A value of 1
means that the word occurred in the post.

2 y: A vector with values 1 through 4, with the value corresponding to
the newsgroup that the post came from.

3 Xtest and ytest: the word lists and newsgroup labels for additional
newsgroup posts.

4 groupnames: The names of four newsgroups.
5 wordlist: A list of words that occur in posts to these newsgroups.
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Example: Binary Decision Stump for newsgroups.mat
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Decision Tree

Decision stumps have only 1 rule based on only 1 feature.

Very limited class of models: usually not very accurate for most
tasks.

Decision trees allow sequences of splits based on multiple
features.

Very general class of models: can get very high accuracy.
However, it’s computationally infeasible to find the best decision
tree.

Most common decision tree learning algorithm in practice:

Greedy recursive splitting.
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Problem 1: Decision Tree for newsgroups.mat

For a maximum depth of 2, 1) draw the learned decision tree.
and 2) re-write the function as a simple program using if/else
statements.
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Solution: Decision Tree for newsgroups.mat
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Solution: Decision Tree for newsgroups.mat

Decision tree:

If-else statement:
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Training, Testing, and Validation Set

Given training data, we would like to learn a model to minimize
error on the testing data

How do we decide decision tree depth?

We care about test error.

But we can’t look at test data.

So what do we do?????

One answer: Use part of your train data to approximate test error.

Split training objects into training set and validation set:

Train model on the training data.
Test model on the validation data.
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Cross-Validation

Isn’t it wasteful to only use part of your data?

k-fold cross-validation:

Train on k-1 folds of the data, validate on the other fold.
Repeat this k times with different splits, and average the score.

Figure 1: Adapted from Wikipedia.

Note: if examples are ordered, split should be random.
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Problem 2: 2-Fold Cross Validation for

newsgroups.mat

Modify the code below to compute the 2-fold cross-validation
scores on the training data alone.

Find the depth that would be chosen by cross-validation.
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Solution: 2-Fold Cross Validation for newsgroups.mat
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Naive Bayes Classifier

Naive Bayes is a probabilistic classifier.

Based on Bayes’ theorem.
Strong independence assumption between features.

In the rest of this tutorial,

We use yi for the label of object i (element i of y).
We use xi for the features of object i (row i of X).
We use xij for feature j of object i.
We use d for the number of features in object i.
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Naive Bayes Classifier

Bayes’ rule

Since the denominator does not depend on yi, we are only
interested in the numerator:

p(yi|xi) ∝ p(xi|yi)p(yi)
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Naive Bayes Classifier

The numerator is equal to the joint probability:

p(xi|yi)p(yi) = p(xi, yi) = p(xi1, ..., xid, yi)

Chain rule:

p(xi1, ..., xid, yi) = p(xi1|xi2, ..., xid, yi)p(xi2, ..., xid, yi)

= ...

= p(xi1|xi2, ..., xid, yi)p(xi2|xi3, ..., xid, yi) ... p(xid|yi)p(yi)

Each feature in xi is independent of the others given yi:

p(xij |xij+1, ..., xid, yi) = p(xij |yi)

Therefore:

p(yi, xi) ∝ p(yi)

d∏
j=1

p(xij |yi)
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Problem 4: Naive Bayes Classifier
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Problem 4: Naive Bayes Classifier
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Solution: Naive Bayes Classifier

We need

p(flu = N |headache = Y, runny nose = N, fever = Y ) ∝
p(headache = Y |flu = N)p(runny nose = N |flu = N)p(fever =
Y |flu = N)p(flu = N) = 1

3 ∗
2
3 ∗

1
3 ∗

1
2 = 0.0370

p(flu = Y |headache = Y, runny nose = N, fever = Y ) ∝
p(headache = Y |flu = Y )p(runny nose = N |flu = Y )p(fever =
Y |flu = Y )p(flu = Y ) = 2

3 ∗
1
3 ∗

2
3 ∗

1
2 = 0.0741
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Bayes’ Theorem

Bayes’ Theorem enables us to reverse probabilities:
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Problem 3: Prosecutor’s fallacy

A crime has been committed in a large city and footprints are
found at the scene of the crime. The guilty person matches the
footprints, p(F |G) = 1. Out of the innocent people, 1% match the
footprints by chance, p(F | ∼ G) = 0.01. A person is interviewed
at random and his/her footprints are found to match those at the
crime scene. Determine the probability that the person is guilty,
or explain why this is not possible, p(G|F ) =?

Let F be the event that the footprints match.
Let G be the event that the person is guilty
∼ G be the event that the person is innocent.
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Solution: Prosecutor’s fallacy

p(G|F ) =
p(F |G)p(G)

p(F )
=

p(F |G)p(G)

p(F |G)p(G) + p(F | ∼ G)p(∼ G)

p(G) =?→ Impossible!
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